
Volume 97, Number 4, July-August 1992

Journal of Research of the National Institute of Standards and Technology

[J. Res. Natl. Inst. Stand. Technol. 97, 471 (1992)]

Symmetric Level Index Arithmetic in
Simulation and Modeling

Volume 97 Number 4 July-August 1992

Daniel W. Lozier

National Institute of Standards
and Technology,
Gaithersburg, MD 20899

and

Peter R. Turner

U.S. Naval Academy,
Annapolis, MD 21402

This paper begins witli a general intro-
duction to the symmetric level-index,
SLI, system of number representation
and arithmetic. This system provides a
robust framework in which experimen-
tal computation can be performed with-
out the risk of failure due to overflow/
underflow or to poor scaling of the
original problem. There follows a brief
summary of some existing computa-
tional experience with this system to
illustrate its strengths in numerical,
graphical and parallel computational
settings. An example of the use of SLI
arithmetic to overcome graphics failure
in the modeling of a turbulent combus-
tion problem is presented. The main

thrust of this paper is to introduce the
idea of SLI-linear least squares data fit-
ting. The use of generalized logarithm
and exponential functions is seen to
offer significant improvement over the
more conventional linear regression
tools for fitting data from a compound
exponential decay such as the decay of
radioactive materials.

Key words: computer graphics; gener-
alized logarithms and exponentials;
least-squares data-fitting; overflow, un-
derflow, and scaling; parallel comput-
ing; symmetric level-index arithmetic.

Accepted: May 21, 1992

1. Introduction

In the field of scientific computation generally
and especially in experimental computing which is
often at the heart of simulation and modeling prob-
lems, the availability of a robust system of arith-
metic offers many advantages. Many such
computational problems are prone to failure due to
overflow or underflow or to a lack of advance
knowledge of a suitable scaling for the problem.
The use of a computer arithmetic system which is
free of these drawbacks would clearly alleviate any
such difficulties.

One such arithmetic is the symmetric level index,
SLI, system. (See [3] for an introductory summary.)
This system was developed from the original level-
index system of Clenshaw and Olver [1] and has
been studied in a number of subsequent papers.
Working to any finite precision, it is closed under

the four basic arithmetic operations (apart from di-
vision by zero, of course) and is therefore free of
underflow and overflow. The arithmetic system al-
lows very large or very small numbers which may
not be representable in a conventional floating-
point system to be used during interim computa-
tion while still returning meaningful results.

Section 2 of the paper describes, briefly, the SLI
representation and its basic algorithms and proper-
ties. The natural error measure for SLI arithmetic,
generalized precision, is also introduced. This mea-
sure will be used in the SLI-linear least squares
data fitting experiments described in Sec. 4.

In Sec. 3, a brief summary of some of the existing
computational evidence supporting the use of SLI
arithmetic is presented. This concentrates first on
two examples (the robust computation of binomial

471

Volume 97, Number 4, July-August 1992

Journal of Research of the National Institute of Standards and Technology

probabilities and the solution of polynomial equa-
tions by the root-squaring technique) which
demonstrate the ability of the system to recover
valuable information from interim results which
would exceed the range of any floating-point sys-
tem. The other principal example reviewed here is
taken from the modeling of turbulent combustion.
In this case, it is seen that commercial contour
plotting packages used with the floating-point sys-
tem produce seriously misleading (but initially
plausible) results while the true situation is re-
vealed by the use of SLI arithmetic. In this case
there is no straightforward rescaling of the original
problem which would allow successful floating-
point computation.

In Sec. 4, we concentrate on a topic which is
commonly used in simulation and statistical
analysis—least squares data-fitting. Our interest is
in curve-fitting, not the related problem of parame-
ter estimation. The particular problem discussed is
a compound exponential decay such as might be
encountered in modeling the decay of radioactive
materials. Compound decays with widely varying
half-lives are not well approximated by the com-
monly used log-linear least squares method. The
use of the SLI representation function—a general-
ized logarithm—permits much better agreement
with the data while still using very low degree ap-
proximating functions. The benefits derived from
using SLI arithmetic—or, in this case, just the SLI
representation—are made plain by a sequence of
graphical examples.

2. The SLI Arithmetic System

The level-index number system for computer
arithmetic was first suggested in Clenshaw and
Olver [1], [2]. The scheme was extended to the
symmetric level index, SLI, representation in [4]
and has been studied in several further papers in
the last few years. Much of the earlier work is sum-
marized in the introductory survey [3]. The primary
virtue of SLI arithmetic is its freedom from over-
flow and underflow and the consequent ease of al-
gorithm development available to the scientific
software designer. This is not the only arithmetic
system that has been proposed with this aim: for
example, the work of Matsui and Iri [14], Hamada
[7], [8], and Yokoo [27] suggested and studied
modified floating-point systems which share some
properties of level-index; Smith, Olver, and Lozier
[21] studied an extended range arithmetic.

Possible hardware implementations of SLI arith-
metic were discussed in [18], [23], and [26] while a

software implementation incorporating some ex-
tended arithmetic was described in [25]. The error
analysis of SLI arithmetic is discussed in [2] and [4]
and is extended in [11], [16], and [17]. Applications
and software engineering aspects of the level-index
system have been discussed in [5], [10], [12], and
[24].

The SLI representation of a real number X is
given by

where the two signs ^^and fx are ± 1 and the gener-
alized exponential function is defined for J: > 0 by

It follows that for Z>1,

X Q^x<\,
exp((l)(A:-l)) ^>i .

Z = exp(exp(...(exp/)...))

where the exponentiation is performed / =[JC] times
and x=l+f. The integer part / of J: is called the
level and the fractional part / is called the index.

The freedom of this system from over- and un-
derflow results from the fact that, working to a pre-
cision of no more than 5 million binary places in
the index, the system is closed under the four basic
arithmetic operations with only three bits allotted
to the level. This is discussed briefly in [1], [4] and
considered in some detail in [11].

The basic SLI arithmetic operation is that of
finding the SLI representation Sz<f>(zy' of Z =X±Y
where X, Y are also given by their SLI representa-
tions. Without loss of generality, we may assume
that X^Y>0 so that 5j = +l. The computation
entails the calculation of the members of three
short sequences which vary according to the partic-
ular circumstances. In every case, the sequence de-
fined by

a/ =
1

' <t>(x-j)
(j=l-l,l-2,...,0)

where l = [x], is computed using the recurrence
relation

a;-i = exp(-l/a/); a/-i = e~^

Depending on the values of rt, ry, and rz, the other
sequences that may be required are given, for ap-
propriate starting values, by

472

Volume 97, Number 4, July-August 1992

Journal of Research of the National Institute of Standards and Technology

'''-<t>ix-jyi^ 4>{y-iy ^ <i>(y-j)

Specifically, the sequence (bj) is used when
fy = +1. The terms can be computed using

V. = exp(^)

with the initial value given by

(exp(g-Va„) (m<l)
ftm-i-flm-i e»- |exp (g -/) (m =/)

where m =[y] is the level ofy. Since, in this case,
y^x, it follows that O^bj < 1.

The sequence (uj) is used when rx = +l,ry= -1
and is computed like (fly). It is similarly bounded:
Q^aj, aj<l.

For the case where r* =ry = -1, the requirement
^>y implies;c^}'. The sequence (oj) is computed
as before along with the sequence (/3>). This latter
is computed using the recurrence relation

«-=-p(^)

for; </ with the initial value

a _fexp(f-l/a,) (I <m)
P'-^-Uxp(f-g) (i-m)

The results of these calculations can be combined
to yield, for the first two cases

co = l±6o or co=l±floao

while for the "small" case, we compute

co'=-=l±i3b
Co

from which the required terms of the c-sequence
may be computed by the recurrence

Cj = l-^flj In C;-i .

The number of such terms is bounded by / — 1 after
which some terms of the sequence hj may be
needed. This just involves forming repeated natural
logarithms of c/-i. Detailed derivations of the vari-
ous sequences can be found in [2] and [4].

This algorithm is implemented in the software
implementation of SLI arithmetic described in [25].
This implementation also takes advantage of the
relative ease of performing extended arithmetic op-
erations such as summation or forming scalar prod-
ucts in SLI arithmetic, the details of which are
discussed more fully in [25], [26]. The major advan-
tage of these extended operations is likely to be in
parallel computing environments where most of
the likely speed loss suffered by SLI arithmetic will
be recouped.

The results of [26] indicate that a parallel SLI
processor could yield a reasonable speed-up over
serial floating-point computation for extended
operations of even moderate length. A fairer "par-
allel-parallel" comparison suggests a likely slow-
down of arithmetic by a factor of around 2 for
extended operations—which probably represents a
loss of some 10 to 20% in run-time. However, even
that small price to pay for a robust arithmetic is
likely to be recouped for many parallel operations.

In [12], it is seen that several basic operations
such as forming vector norms are difficult to pro-
gram both efficiently and robustly for floating-
point machines but become straightforward tasks
in the SLI environment. It is the simplicity of pro-
gramming, and code which is free of special scaling
or exception-handling cases, which are likely to tip
the balance in favor of SLI arithmetic once suitable
hardware implementations exist.

The appropriate error measure for computation
in the level index system is no longer relative error
(which corresponds approximately to absolute pre-
cision in the mantissa of floating-point numbers)
hvA. generalized precision which corresponds to abso-
lute precision in the index. This error measure is
introduced in [1]. Generalized precision has some
significant advantages compared to relative error,
not least of which is that it is a metric so that the
symmetry of jc approximating i, and Jc approximat-
ing J:, is a natural aspect of the error analysis. De-
tailed error analyses of numerical processes will
inevitably be different in this system than for any of
the floating-point systems but significant progress
has already been made in this respect. (See, for
example, [1], [17], [26].)

473

Volume 97, Number 4, July-August 1992

Journal of Research of the National Institute of Standards and Technology

Again considerable benefits can be achieved for
extended calculations. Olver [17] has demonstrated
that, at relatively low cost, it is possible to perform
a concurrent error analysis. Such analysis is partic-
ularly well-suited to a parallel environment since it
would be performed by simultaneous duplication of
the operations for slightly adjusted data. The ad-
justments are similar to the use of directed round-
ing in interval arithmetic and have a similar effect
in yielding guaranteed error bounds for the results
obtained.

A first-order error analysis for extended sums
and products [26] leads to conclusions that are
broadly similar to those for the floating-point sys-
tem. However, for the SLI system, we find that the
generalized precision of the final result is bounded
by Nil times the generalized precision for individ-
ual operations.

3. Computational Evidence

We give three examples of computations which
are highly susceptible to underflow and/or over-
flow, and we present computational evidence that
SLI arithmetic produces valid results. The first ex-
ample, the binomial probability distribution, was
treated in [22] to introduce and evaluate tech-
niques for dealing with underflow and overflow in
floating-point, FLP, computation. The second ex-
ample, the classical Graeffe algorithm for deter-
mining the zeros of a polynomial, is almost never
used in FLP computation because the root-squar-
ing process almost always introduces very large
and/or very small numbers as intermediate results.
The final example is drawn from a computer
graphics display of an analytical solution to a
model problem in turbulent combustion theory.

3.1 Binomial Probability Distribution (BPD)

In addition to [22] this example was treated in
[14] and [3]. The BPD and its importance in statis-
tics is discussed, for example, in [15], pp. 54-58.
Let/3 be the probability of a favored outcome from
an individual chance event. Then q = \-p is the
probability that the favored outcome will not occur.
Now, the probability of the favored outcome occur-
ring exactly k times in n events is

h-\kjP ? •

This distribution attains its maximum when k
equals its modal value

kc=[{n+\)p}

and/i decreases steadily as k moves away from kc.
The values of/* are exceedingly small when n is

of moderate size and k is not close to kc. For exam-
ple, [22] considers n =2000 and/j =0.1. Since the
underflow threshold^ in IEEE standard 32-bit FLP
arithmetic is 1.18x10"^^ for normalized numbers,
fk underflows when Q^k^Sl and 393^ it^2000.
Replacement of these underflows by zero (or de-
normalized numbers) may be acceptable for many
purposes, such as for the computation of the cumu-
lative probability

m

Jt=0

In reality, however, fk and / are always strictly posi-
tive, and it can be disconcerting when a computer
program prints zero.

A more serious problem, perhaps, is that an FLP
algorithm must guard carefully against intermedi-
ate underflow and overflow. Overflow is possible in
forming the binomial coefficient

(2)-^ -l),..(n-k + l)
k\

and underflow is possible in forming powers of p
and q. Indeed, with n =2000, p =0.1 and k=k,-
200,

/2oo=0.02972 287717

but

(^) = lO^*'-^ p'^= 10-^, ^»™ = lo-''^-^'*

Since 0 </* < 1, the algorithm cannot be allowed to
fail because of overflow. Zero is an acceptable re-
sult only lifk is below the underflow threshold.

Two algorithms are considered in [22]. Al-
gorithm I forms/i by (i) multiplying in all factors of
the numerator of the binomial coefficient, (ii) di-
viding out all factors of the denominator, (iii) mul-
tiplying in all factors of p*, and (iv) multiplying in
all factors of g""*. As we have seen, this algorithm
is sure to fail in many cases of interest. It is ren-
dered usable in [22] by introducing a counter / and
two large positive constants c\ and c-i such that C1C2
is slightly less than the overflow threshold and 1/
C1C2 is slightly more than the underflow threshold.

' Here and elsewhere in this section, numbers written with a
decimal point are correct to all places shown.

474

Volume 97, Number 4, July-August 1992

Journal of Research of the National Institute of Standards and Technology

Let us refer to this modification as Algorithm lA.
Before each arithmetic operation, Algorithm lA
tests the current result. If it does not lie between
1/ci and ci, it is scaled into this interval by multiply-
ing or dividing by ci and incrementing or decre-
menting / accordingly. At the end, cifk is represent-
ed as a normalized FLP number with / 5 0. If / = 0,
the algorithm is complete. If / = ! and C]fk<yc2,
the algorithm divides once by ci and returns/*. In
all other cases the algorithm returns zero.

Algorithm II forms fk from the same operations
as Algorithm I but in different order. Operations
from part (i) increase the current result, whereas
those from the other three parts decrease it. Al-
gorithm II uses only a single large constant cu It
starts with increasing operations. When the current
result would exceed ci. Algorithm II switches to de-
creasing operations until the current result would
fall below 1/ci, at which point it switches back to
increasing operations. The algorithm ends when ei-
ther fk is completely formed or the current result
falls below 1/ci and no increasing operations re-
main, in which case fk is returned as zero.

These algorithms may be compared as follows.
Algorithm I produces the shortest program with
the simplest logic. It requires no tests or system-de-
pendent constants. It is feasible for SLI but not for
FLP arithmetic. Algorithm lA produces a program
more than twice as long because, at every arith-
metic operation, it requires a test and contingent
coding to handle underflow or overflow. The num-
ber of contingent operations depends onp,n,k,ci
and cz. The latter two constants depend on the un-
derflow and overflow thresholds but there is no
natural mathematical definition of this depen-
dence. A counter is required also. The algorithm is
designed for FLP and is not appropriate for SLI
arithmetic. Algorithm II produces a program that
is slightly more complex and slightly shorter than
Algorithm lA. It requires a test but no contingent
coding at every arithmetic operation, only one con-
stant, and no counter. It is feasible for both FLP
and SLI arithmetic.

Table 1 summarizes these observations. The
table also gives some data on the relative error in
the computed value of /200, with p =0.1 and
n =2000, in 32-bit SLI and FLP arithmetic. Mea-
sured relative errors were obtained by comparison
against 64-bit FLP calculations. The measured er-
ror is similar for Algorithm II in both arithmetics,
with the smaller error occurring in SLI. For Al-
gorithm I, the FLP error is » because of overflow
failure. The SLI error is larger than for Algorithm
II because the simpler algorithm generates larger

intermediate values (up to 10*''-^ for Algorithm I,
2Q36.3 JQJ. Algorithm II). Algorithm lA is not appro-
priate for SLI and was used only as a specific rem-
edy for FLP arithmetic. It performed 31 contingent
operations in computing/200 and produced an error
slightly larger than the FLP error of Algorithm II.

Table 1. Attributes of three algorithms for the binomial proba-
bility distribution, n = number of events, k = number of favored
outcomes, C = number of contingent operations to avoid under-
flow and overflow

I lA II

Program length Short Long Long
Program logic simple Complex Complex
No. constants 0 2 1
No. counters 0 1 0
No. operations n+2k n+2k+c n+2k
No. tests 0 n+2k n+2k
Measured rel err 6.4X10-" N.A. -1.5x10-5

(SLI)
Measured rel err 00 -4.5x10-' -4.3 X10-'

(FLP)

3.2 The Graeffe Root-Squaring Process

At the end of the preceding subsection, it was
suggested that one algorithm for the BPD leads to
larger relative errors than another because the first
algorithm generates larger intermediate values. Al-
though this is true for the BPD, it is not a reliable
guide for all algorithms. Indeed, it is easily proved
that the relative error in a function _y =f(x) caused
by a relative error its argument is approximated to
first order by

where
8y='Af(x)8x

. , . xf'(x)

This function is sometimes called the relative-error
amplification factor for /. However, it either ampli-
fies or deamplifies the relative error according to
whether |^/(j;)|>l or \Af(x)\<l. If \(Af{x)\<l, the
deamplification effect is very strong. An example is
y =x'' for 0<fl <1. Here the deamplification factor
is Af(x) = a.

The Graeffe root-squaring process is a very old
numerical method for solving algebraic equations;
in [9] it is traced back to 1762. For more modern
accounts, see [6], [9], and [20], pp. 1174-8. Let

p(x)=a„!c"+a„-ix''~^ + ... +ao, a„i>iO

475

Volume 97, Number 4, July-August 1992

Journal of Research of the National Institute of Standards and Technology

be an arbitrary polynomial. If y is a zero of 7J(JI:),
the Graeffe process forms approximations to IT']"'
where m can be arbitrarily large. More specifically,
if a subset of zeros lies on or very near a circle in
the complex plane, the method finds the mth
power of the radius of the circle and an algebraic
equation for the mth powers of the zeros in the
subset. The size of m in any particular application
depends on how well separated these circles are -
the smaller the separation, the higher m must be.
The idea of the method is to increase the separa-
tion of the circles by squaring their radii.

The Graeffe process involves the construction
[20], p. 1174 of a finite number of the polynomials
in the sequence

such that the zeros oip^'\x) are the zeros ofp{x)
raised to the 2''th power. Here/?'°^s^—that is,
a ^p =0) for all; — and

min {j,n -j)

In particular,

As the iteration proceeds, some (or none or all) of
the a'/'with 0<j<n begin to satisfy the approxi-
mation

fl/^+'>=(-iy[a«r.

Let us suppose this happens for some r and

0<;i<;2 <...<;.<«

and let us define ;o = 0, js+\=n. Then there are
zeros oi p(x) that lie on or very near a circle of
radius

Because the deamplification factor 2"' is small, this
determination of ly,! should be very stable. This
expectation is borne out by examples in [6], [9], and
[20], all done by desk calculator or slide rule in the
era before FLP computation became widespread.
Indeed, on p. 187 of [6] it is stated that Graeffe's
method is "generally useful" and "well adapted to
the computing machine or slide rule"; obviously
the author did not appreciate the impact of under-
flow or overflow! In most of these examples num-
bers are generated that significantly exceed the

IEEE overflow threshold, even in double precision.
When ,y =« -1, the preceding discussion suffices

to summarize the use of the Graeffe process up to
the determination of the phase angle; if the polyno-
mial has all real coefficients, the phase angle is ei-
ther 0 or TT and the determination can be made by
substitution of ± y, into the original equation. In all
other cases the method needs modification or ex-
tension. Some of these are indicated in [6], [9], and
[20], including the important case of real polynomi-
als with nonrepeated real and complex conjugate
zeros.

The Graeffe process has fallen into disuse be-
cause it is not well suited to FLP computation. Cer-
tainly alternative methods are available to solve
algebraic equations. One popular method is to use
an algorithm from numerical linear algebra to find
the eigenvalues of the so-called companion matrbc
of p{x). However, the Graeffe process could
equally well be applied to the problem of finding
matrix eigenvalues. This is a powerful motivation
for considering SLI computer arithmetic.

Such a consideration was begun in [3] and [5],
where the method is described and a preliminary
error analysis is given. Several more substantial ex-
amples are computed in SLI arithmetic with very
satisfactory results even when very large values of
m were needed. The method has also received at-
tention in [14].

3.3 Graphics for a Combustion Problem

A model problem in the theory of turbulent com-
bustion, introduced in [13], involves two chemical
species (fuel and oxidizer) which occupy two adja-
cent half-spaces separated conceptually by an im-
pervious plane boundary. At time r=0, the
boundary loses its imperviousness and a line vortex
is imposed in the plane of the boundary, leaving
the two species free to diffuse into each other, re-
act, and produce a flame surface at the boundary,
which is distorted by the vortex into a cylindrically
symmetric spiral surface. With the axis of the vor-
tex identified as the z-axis, cylindrical symmetry re-
duces the spatial variables to plane polar
coordinates. The location and shape of the flame
surface is of particular interest in applications. For
example, reactant consumption and heat produc-
tion are obtained by integrating the normal deriva-
tive of the solution along the flame surface.

This problem has undergone extensive analytical
and computational development in recent years.
For example, the development in [19] of a solution
in terms of a similarity variable

476

Volume 97, Number 4, July-August 1992

Journal of Research of the National Institute of Standards and Technology

^ = te

where v is the kinematic viscosity, opened up the
possibility of a two-dimensional analysis.

Indeed, an explicit representation was obtained
of a function Z (TJ , ©) as a Fourier series. The flame
surface of the model problem corresponds to the
level curves, or contours, of this function. There-
fore, it can be computed (in principle, at least) by
inverse interpolation from data on a grid. The data
are the computed values of Z on the grid. Powerful
graphics software is available to compute and dis-
play contours on a wide variety of graphics devices.
Unfortunately, this software is not robust in the
face of underflow, as we shall see in the case of the
flame surface.

From a mathematical as well as a scientific
standpoint, Z(7],e) exhibits interesting behavior.
As 77-*0 for fbced 6, it oscillates with unboundedly
growing frequency while its magnitude tends to
zero exponentially fast. Of particular interest is the
shape of the contours Z= ±e. For a small e>0,
the two contours reflect each other in the origin.
Their shape is a spiral which winds toward the
origin up to a point that depends on e, at which it
abruptly reverses direction and winds away from
the origin. In the limit as e-»0, the contours fuse
into one that can be regarded as having two
branches, one a spiral that winds right down to the
origin while encircUng it infinitely often and the
other its reflection in the origin.

This complicated behavior suggests that it would
be a difficult challenge for graphics software to
produce correct contours. Indeed, this is the case.
IEEE single-precision arithmetic, with a word
length of 32 bits, was used to execute a standard
library subroutine for contour plotting. Fig. 1 shows
the results for e = 0. Clearly, the central contour
does not exhibit the required symmetry or spiral
behavior.

Figure 2 was produced in exactly the same way
except SLI arithmetic was used. In particular, no
algorithms were changed and no scaling was intro-
duced. The mesh of 151^ points is identical. The
smallest magnitude of data on the mesh, excluding
the origin, was 10"''^'^, approximately. The contour
shows the correct qualitative and quantitative be-
havior within the limits of the mesh resolution.
With a refinement of the mesh, the infinite spiral
would be resolved correspondingly closer to the
origin; in fact, this was demonstrated on a mesh
nine times finer, in which case the smallest magni-
tude was lO"^****^, approximately.

Fig. 1. Contours of 2 = - 0.4(0.1)0.4 computed in IEEE single
precision by the GCONTR graphics subroutine. Resolution =
15P.

Fig. 2. Contours of Z = - 0.4(0.1)0.4 computed in 32-bit SLI by
the GCONTR graphics subroutine. Resolution = 151^.

Figure 3 is a repeat of Fig. 1 but with one modi-
fication: A black mark is plotted at every mesh
point where the functional data was zero. The only
mesh point where Z = 0 is the origin; all the other
zeros are the result of underflow. This shows clearly
that the sole cause of the graphics failure in FLP
arithmetic is underflow.

477

Volume 97, Number 4, July-August 1992

Journal of Research of the National Institute of Standards and Technology

Fig. 3. Contours of Z = - 0.4(0.1)0.4 computed in IEEE single
precision by the GCONTR graphics subroutine. Resolution =
151^. Black marks indicate points where 2 underflowcd.

From a scientist's point of view, the meaning of
these results is the following. Small values of e cor-
respond to cases of near stoichiometry among the
concentrations of the combustion reactants. Perfect
stoichiometry corresponds to complete combustion,
in which all reactants are consumed fully. If a nu-
merical experiment is conducted in which e takes
the sequence of values 10"^ 10"*, 0, say, the results
are confusing. That is, the scientist sees correct be-
havior for the nonzero values but incorrect behavior
for e = 0. The transition to perfect stoichiometry
cannot be made visible graphically with any cur-
rently available floating-point processor. This de-
fect does not arise with SLI arithmetic.

We conclude this section by remarking that scal-
ing does not provide an effective solution to the
FLP graphics failure. The stoichiometric contour
Z = 0 is obtained by inverse interpolation from
nearby data on the grid. For grid points near the
origin, as we have seen, this data is exceedingly
small. However, for grid points near the boundary
of the plotting region, the data is not small; cer-
tainly it is not below the underflow threshold. The
data varies over some 4O0O0 orders of magnitude.
Since IEEE single precision varies over only 76 or-
ders of magnitude, approximately 526 scalings
would be required. Clearly, scaling attacks the fail-
ure only very weakly. Added to this weakness would
be the difficulties presented by the contouring soft-

ware itself. The scaling in this example needs to be
done in thin annuli around the origin but the soft-
ware works with rectangular regions. Therefore, a
complicated mosaic of subregions would need to be
combined to form the complete contour plot.

4. SLI-Linear Least Squares Data-Fitting

This section is concerned with a common tech-
nique in simulation — least squares fitting of data.
The experiments reported provide a comparison
between linear least squares, log-linear least
squares and SLI-linear least squares as curve fitting
techniques for data from compound exponential de-
cay functions such as might arise in studying ra-
dioactive decay.

The principle of linear least squares polynomial
fitting to data is to find that polynomial of fixed
(maximum) degree, N say, for which the sum of
squared errors

n

1=0

is minimized. Here, the data consists of the ordered
pairs {xi,yi) and it is assumed that the number of
data points n +1 exceeds A'^ (usually by a significant
proportion).

The log-linear fit to this data uses the approxima-
tion exp(^^(:t)) where qN is the least squares poly-
nomial approximation to the data (x,,lnj',).

The SLI-linear fit uses (p(qn{x)) where, this
time, qu is the least squares polynomial approxima-
tion to the data (xi, ^^,)) where the functions <P, V
are the functions used in the SLI representation of
positive real numbers. They are defined by:

nxy-

and

^^""^ U(l + |j>:|)-' x<0

where <^ is the generalized exponential defmed in
Sec. 2 and the generalized logarithm \f/ is hs inverse.

The first experiments all used the same test func-
tion to generate the data on [0, 5]:

/(x) = 20e-^^ + 5e-"

478

Volume 97, Number 4, July-August 1992

Journal of Research of the National Institute of Standards and Technology

which consists of two exponential decay compo-
nents the first of which is initially much the greater
but decays much faster. In all cases, the least
squares approximations of the appropriate degree
using polynomial, log-linear and SLI-linear fitting
are plotted together with the original function for
comparison.

The first set of graphs^ Fig. 4 uses (degree 1)
linear least squares fits to randomly generated data
sets in [0, 5] subject only to a bias towards zero in
the selection. This was achieved by forcing approxi-

mately 50% of the data to lie in [0, 1], 25% in [1,
2], 12.5% in [2, 3] and so on. For the first pair of
graphs the choice of data points was entirely ran-
dom save for the distribution described above. The
best fit was achieved with the SLI-linear approxi-
mation. In the second pair. Fig. 5, the further re-
striction that JCQ^O was enforced. Again the
SLI-linear approximation is the best in both cases
and forcing 0 to be a data point has improved sig-
nificantly the "goodness of fit" near the origin.

(a) (b)

Fig. 4. (a) 8 data points, and (b) 32 data points.

(a) (b)

Fig. 5. (a) 8 data jwints including 0, and (b) 32 data points including 0.

479

Volume 97, Number 4, July-August 1992

Journal of Research of the National Institute of Standards and Technology

The next set of graphs, Fig. 6, shows the result of
quadratic approximations using different numbers
of randomly chosen data points with the constraint
that two of them were tied to the end-points. In
every instance two of the curves were almost indis-
tinguishable: the test function and the SLI fit. The
polynomial fit was uniformly the worst—as would
be e^qjected. Typically, the logarithmic fit either re-
mains too high throughout the region or starts too
low and then crosses to become too large. The sec-

ond pair of graphs in Fig. 6 magnifies the region
[0,1.5] X [0,15] for different random data sets.

The effect of an entirely random data set is illus-
trated in Fig. 7. With even three data points the
SLI-fit again produces tolerably good agreement
with the original function—in sharp contrast to
both the others having reached their respective
minima to the left ofx =2. With a larger number of
data points, the SLI approximation again repro-
duces the original function to high accuracy.

(a) (b)

(c) (d)

Fig. 6. (a) 3 points, (b) 40 points, (c) 3 points, magnified view, and (d) 40 points, magnified view.

480

Volume 97, Number 4, July-August 1992

Journal of Research of the National Institute of Standards and Technology

(a) (b)

Fig. 7. (a) 3 points, and (b) 35 points.

The observation in the Figs. 6 and 7 that the
SLI-quadratic fit using just three points (including
the end-points) has produced such close agreement
with the test function suggested further investiga-
tion to see whether this low degree approximation
can be relied upon to produce high-accuracy ap-
proximations. This reliability persists for all choices
of three data points {0, ill, 5} for j =1, 2, ..., 9.
The results for / = 1 and 9 are presented in Fig. 8.
Again the second pair magnifies the region
[0,1.5] X [0,15].

Consideration of a table of differences suggests
that interpolation at just two points may yield sur-
prisingly good results. The evidence thus far is that
use of the left-hand end-point is advantageous.
This proved to be especially true in the linear inter-
polation case. Interpolation at 0 and / for / = 1,...,
5 continued the pattern of the SLI fit being visibly
superior. The graphs for the cases / = 2 and 4 are
reproduced in Fig. 9.

Experiments using 3 components including a
term with much slower decay again had the consis-
tent result that the SLI-approximations were supe-
rior. See Fig. 10. The data function used was:

/(;t)=20e-^+5e-^ + e" ■xli

The first of the graphs in Fig. 10 shows the result of
a quadratic approximation using 20 random data
points including the end-points. The SLI approxi-
mation is almost exact except at the left-hand end
where, like the others, it lies below the data curve.
The second one demonstrates that increasing the
degree of the approximation to cubic yields almost
perfect agreement with a mere 7 data points. The
polynomial fit has its local maximum around AC =4.
The log-linear fit is also effective beyond about
jc =2 by which stage the two faster decaying terms
have become insignificant.

The final example was to approximate a "faster-
than-exponential" decay given by

f{x) = 25 exp(-x^- yi) + 5 exp(-x)

over the interval [0,2.5]. The graph is typical of the
results which again indicate a superiority for the
SLI-approximation. In this case quadratic approxi-
mations and 20 randomly placed data points were
used. The SLI approximation is the only one with
the right "shape" having an inflection point very
close to that of the test function. The results are il-
lustrated in Fig. 11.

481

Volume 97, Number 4, July-August 1992

Journal of Research of the National Institute of Standards and Technology

(a) (b)

(c) (d)

Fig. 8. Three fixed data points: endpoints and stated point, (a) 0.5, (b) 4.5, (c) 0.5, magnified view, and (d) 4.5, magnified view.

482

Volume 97, Number 4, July-August 1992

Journal of Research of the National Institute of Standards and Technology

(a) (b)

Fig. 9. (a) Data points 0, 2, and (b) data points 0, 4.

(a) (b)

Fig. 10. (a) 20 points, quadratic fit, and (b) 7 points, cubic approximation.

483

Volume 97, Number 4, July-August 1992

Journal of Research of the National Institute of Standards and Technology

Fig. II. Faster than expotiential decay, 20 random data points,
quadratic approximations.

5. Conclusions

The principal conclusions to be drawn from this
paper are that SLI arithmetic offers a robust alter-
native to the floating-point system which enables
many of the standard tasks of scientific computing
to be performed in a simple yet reliable way. The
computational evidence of Sec. 3 summarizes its
power in three inherently different situations: com-
puting binomial probabilities, solving polynomial
equations and contour plotting for functions which
have widely varying values and so are not amenable
to scaling.

The final section discusses the use of SLI arith-
metic in a curve-fitting situation and demonstrates
that the SLI representation can be used to advan-
tage in fitting data from a compound exponential
decay. The experimental evidence indicates that a
very good fit can be obtained with a low order SLI-
linear least squares fit using only a small number of
data points. This topic will be the subject of further
experiment and analysis.

6. References

[1] C. W. Clenshaw and F. W. J.OIver, Beyond floating point,
J. ACM 31, 319-328 (1984).

[2] C. W. Clenshaw and F. W. J.OIver, Level-index arithmetic
operations, SIAM J. Num. Anal. 24, 47(M85 (1987).

[3] C. W. Clenshaw, F. W. J. Giver, and P. R.Turner, Level-
index arithmetic: An introductoiy survey, Numerical
Analysis and Parallel Processing, P. R. Turner, ed.. Lec-

ture Notes in Mathematics 1397, Springer Verlag (1989)
pp. 95-168.

[4] C. W. Clenshaw and P. R. Turner, The symmetric level-
index system, IMA J. Num. Anal. 8, 517-526 (1988).

[5] C. W. Clenshaw and P. R. Turner, Root-squaring using
level-index arithmetic. Computing 43, 171-185 (1989).

[6] N. B. Conkwright, Introduction to the Theory of Equa-
tions, Ginn and Company (1957).

[7] H. Hamada URR: Universal representation of real num-
bers, New Generation Computing 1, 205-209 (1983).

[8] H. Hamada, A new real number representation and its
operation, Proc. ARITH8, M. J. Irwin and R. Stefanelli,
eds., IEEE Computer Society, Washington DC, May
1987, pp. 153-157.

[9] C. A. Hutchinson, On Graeffe's Method for the Numeri-
cal Solution of Algebraic Equations, American Mathe-
matical Monthly 42,149-161 (1935).

[10] D. W. Lozier, An Underflow-induced Graphics Failure,
to be published.

[11] D. W. Lozier and F. W. J. Olver, Closure and precision in
level-index arithmetic, SIAM J. Num. Anal. 27, 1295-1304
(1990).

[12] D. W. Lozier and P. R. Turner, Robust Parallel Computa-
tion in Floating-Point and SLI Arithmetic, to be pub-
lished in Computing.

[13] F. E. Marble, Growth of a diffusion flame in the field of a
vortex, in Recent Advances in Aerospace Sciences,
C. Casci, ed., (1985).

[14] S. Matsui and M. Iri An overflow/underflow-free float-
ing-point representation of numbers, J. Information
Proc. 4, 123-133 (1981).

[15] A. F. Mood, Introduction to the Theory of Statistics,
McGraw-Hill (1950).

[16] F. W. J. Olver, A new approach to error arithmetic,
SIAM J. Num. Anal. IS, 368-393 (1978).

[17] F. W. J. Olver, Rounding errors in algebraic processes-
in level-index arithmetic, Proc. Reliable Numerical Com-
putation, M. G. Cox and S. Hammarling, eds., Oxford,
(1990) pp. 197-205.

[18] F. W. J. Olver and P. R. Turner, Implementation of level-
index arithmetic using partial table look-up, Proc.
ARITH8, M. J. Irwin and R. Stefanelli, eds., IEEE Com-
puter Society, Washington, DC (1987) pp. 144-147.

[19] R. G. Rehm, H. R. Baum, D. W. Lozier, and J. Aronson,
Diffusion-controlled reaction in a vortex fleld. Combus-
tion Sci. Technol. 66, 293-317 (1989).

[20] K. Rektorys, Survey of Applicable Mathematics, The MIT
Press (1969).

[21] J. M. Smith, F. W. J. Olver and D. W. Lozier, Extended-
range arithmetic and normalized Legendre polynomials,
ACM Trans. Math. Softw. 7, 93-105 (1981).

[22] P. H. Sterbenz, Floating-Point Computation, Prentice-
Hall (1974).

[23] P. R. Turner, Towards a fast implementation of level-
index arithmetic, Bull. IMA 22, 188-191 (1986).

[24] P. R.Turner, Algorithms for the elementary functions in
level-index arithmetic. Scientific Software Systems, M. G.
Cox and J. C. Mason, eds.. Chapman and Hall (1990) pp.
123-134.

484

Volume 97, Number 4, July-August 1992

Journal of Research of the National Institute of Standards and Technology

[25] P. R. Turner, A software implementation of SLI arith-
metic, Proc. ARITH9, M. D. Ercegovac and E. Swartzlan-
der, eds., IEEE Computer Society, Washington, DC,
September 1989, pp. 18-24.

[26] P. R. Turner, Implementation and analysis of extended
SLI operations, Proc. ARITHIO, P. Komerup and D. W.
Matula, eds., IEEE Computer Society, Washington, DC,
June 1991, pp. 118-126.

[27] H.Yokoo, Overflow/underflow-free floating-point number
representations with self-delimiting variable length expo-
nent field, Proc. ARITHIO, P. Komerup and D. W.
Matula, eds., IEEE Computer Society, Washington, DC,
June 1991, pp. 110-117.

About the Authors:: Daniel W. Lozier is a mathe-
matician in the Applied and Computational Mathe-
matics Division of the NIST Computing and Applied
Mathematics Laboratory in Gaithersburg, MD. Peter
R. Turner is a professor in the Mathematics Depart-
ment of the U.S. Naval Academy in Annapolis, MD.
The National Institute of Standards and Technology is
an agency of the Technology Administration, U.S.
Department of Commerce.

485

