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This study was conducted to verify that 
the probe-position error correction can 
be successfully applied to real data ob- 
tained on a planar near-field range 
where probe position errors are known. 
Since probe position-error correction is 
most important at high frequencies, 
measurements were made at 60 GHz. 
Six planar scans at z positions sepa- 
rated by 0.03 A were obtained. The cor- 
rection technique was applied to an 
error-contaminated near field con- 
structed out of the six scans according 
to a discretized periodic error function. 
The results indicate that probe position 
errors can be removed from real near- 

field data as successfully as from simu- 
lated data; some residual errors, which 
are thought to be due to multiple re- 
flections, residual drift in the measure- 
ment system, and residual probe 
position errors in all three coordinates, 
are observed. 

Key words:   error correction; experi- 
mental verification; planar near fields; 
probe-position errors. 

Accepted: December 24, 1991 

1.   Introduction 

In this study I establish the correctness and effec- 
tiveness of the probe-position error correction using 
real rather than simulated data. All of the required 
theory has been thoroughly discussed in [1] and [2] 
for the p/anar and spherical error correction, respec- 
tively. In these publications we demonstrated that 
computer simulations using exact near fields and 
computer-generated error-contaminated near fields 
successfully produced error-corrected near fields 
that agree with the original error-free near fields 
within fractions of a decibel in amplitude and to 
within a fraction of a degree in phase. The method 
has been shown to work for errors as large as 0.2 A 
at 3.3 GHz. Similar results were obtained with the- 
oretical computer simulations at 60 GHz in the con- 
text of this study. Such results indicate that the 
theoretical formalisms appearing in [1] and [2] are 
correct, independent of the frequency or the near- 
field pattern. 

However, an important aspect of the correction 
problem has not yet been addressed. We must ex- 
amine the error correction procedure in the pres- 
ence of 

(a) multiple reflections in measured near fields 
(b) residual drift in measured near fields, and 
(c) residual errors in the probe's position, 

which are experimental factors not taken into ac- 
count in the theory nor in the numerical simula- 
tions. In addition, any probe position error function 
used with real data is necessarily discretized rather 
than continuous, and the extent to which this effects 
the success of the correction procedure is not im- 
mediately apparent. Therefore, the technique must 
be robust and stable enough that the introduction 
of these additional uncertainties (experimental ef- 
fects) into the procedure does not destroy its useful- 
ness. For example, the uncertainties due to multiple 
reflections are of the order of or larger than the 
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uncertainties due to probe position errors [3]. We 
can consider these two effects to be independent 
and, therefore, expect that the error correction 
technique will not fail with real data. 

This work completes a long series of studies. It 
establishes the theoretical correctness of the error- 
correction formalism, even when used with data 
contaminated by experimental effects, and demon- 
strates the practical usefulness of the error-correc- 
tion procedure. 

We first present a brief overview of the theoreti- 
cal concepts needed to understand probe-position 
error correction. Next, we describe the experimen- 
tal design and measurements we obtained to cor- 
rectly implement the error correction, and, finally, 
we observe what effects the experimental contami- 
nations, as described in (a), (b) and (c) above, have 
on the results. 

2.   Theoretical Review 

In planar near-field measurements, data are, in 
reality, taken on an irregular plane on an irregular 
grid. We denote an irregular grid on which mea- 
surements are taken by j: + Sx, wherex =x(x,y,z) is 
an exact set of grid points separated by constant 
increments in x and y, z=Zo is a constant, and 
8x(x,y,z) is the deviation of the position of the 
probe from the exact grid position at (x,y,zo). We 
assume that the probe-position error function 
Sx(x,y,z) is known at every point of measurement. 
If the near field that exists at the exact grid posi- 
tions is denoted by b(x) and the measured near 
field is denoted hy b{x + Sx), then we can write 

b(x + 5x) = {l + T)b{x), (1) 

where (1 + T) is the infinite Taylor series operator 
taking a continuous function from a point to a 
neighboring point. An error-contaminated near- 
field function can now be defined as 

b(x;8x)= b(x + Sx), (2) 

which means that the error-contaminated near 
field exists on a regular grid x, and computations 
using fast Fourier transforms can be performed on 
it. Equations (1) and (2) yield 

b(x;Sx) = (l + T)b(x). (3) 

The error-correction technique can be stated math- 
ematically as 

bix) = il + T)-'bix;Sx), (4) 

which implies that the error-free near field on a reg- 
ular grid can be obtained from the error-contami- 

nated (measured) near field by obtaining the 
inverse of the operator 1 + T, and applying this in- 
verse to the measurements. This leads to the well- 
ordered small parameter expansion (to fourth 
order), 

b{x) = {l-ti-t2-t3-ti + tlti+tit2 + til3+t2tl+t2t2 

+titi-tititi-tit2ti-lttit2-t2titi+titititi)b(x;8x),    (5) 

where t„=\ln\{Sxk)"idldXk)", the nth-order term 
of the Taylor series for the coordinate Xk. For fur- 
ther details and in-depth discussions see [1,2], 
wherein the method of computing the required 
derivatives and the structure of the individual 
terms in Eq. (5) are discussed further. Also, for a 
thorough documentation of the the software pack- 
age developed to implement the error-correction 
technique see [4]. 

3.   Experimental  Design  and  Measure- 
ments 

To enhance the high-frequency calibration capa- 
bility at NIST, we decided to test the probe correc- 
tion procedure at 60 GHz using a center-fed 
Cassegrain parabolic reflector antenna of 0.5 m in 
diameter. Since the wavelength \~5 mm at this 
frequency, a probe-position error as small as 1 mm 
»0.2A can lead to significant errors in the mea- 
sured near fields, and, consequently, in the far 
fields obtained from such error-contaminated near 
fields. For example, the phase error would be an 
unacceptable 72° for a plane wave. 

A schematic of the sequence of measurements 
and the experimental design parameters is shown 
in Fig. 1. Given planar near-field scans labelled 
with indexes 0... TV, and separated by small dis- 
tances Sz, we can construct any number of error- 
contaminated near fields by selecting a near-field 
value at each i^,y) point in the scan area according 
to the scan plane index. The index can be specified 
using any criteria that uniquely assigns the integers 
0 to TV at each point in the scan plane. When the 
corresponding near-field values are thought of as 
part of a single scan, an error-contaminated near 
field is obtained. This field can be arbitrarily as- 
signed to exist at Zo, without loss of generality. 

For the error-correction study we have used the 
index function 

;■ = int [Ncos^ (3 ax) cos^ {^ay) + 0.5], 

where a = 2v/L, L is the length of the scan plane 
in centimeters, and int is the fortran truncate-to- 
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Fig. 1. The experimental design used to verify the probe posi- 
tion error-correction technique at 60 GHz. The sbt scan planes 2o 
to Zs were separated by Sz = 0.03 A, so that the maximum possible 
probe position error is Az = 0.15 A. The residual errors are shown 
schematically. 

integer function. The discretized probe position- 
error function is then [z]=jdz, and the maximum 
probe position error Az=N8z. Previous simula- 
tions using the continuous probe position-error 
function z = 4zcos^(3co[;)cos^(3a>') have demon- 
strated the success of the error-correction tech- 
nique at 3.3 GHz [1] for Az =0.2X. The choice of 
periodic error functions was motivated by the fact 
that periodic position errors induce high sidelobe 
errors in the far field. 

The magnitudes of the experimental parameters 
8z and Az =NSz, where A'' +1 is the number of scan 
planes, were chosen to ensure that system imperfec- 
tions do not overwhelm the experimental results 
sought. Residual system drift during a tie-scan [5] 
and repeatability of the laser positioning system 
used to locate the scan planes are the relevant ex- 
perimental factors here. If 8<l> denotes the system 
phase drift during St, the time needed to complete 
a tie scan, and A<f) is a typical phase difference be- 
tween the near fields at successive scan planes, then 
we must have A<t>>d<j) to be able to isolate position 
error effects. Similarly, phase errors due to re- 
peatability must be much less than Acf). 

3.1   System Drift 

Figure 2 shows the phase as a function of time at 
the normalization point in a scan plane over a pe- 
riod of a few hours. The crucial experimental 
parameter here is the maximum expected phase 
shift S<f> during 5f«2 min, which was the time re- 
quired to obtain a single tie-scan. Less stringently, 
an average or most probable phase shift can be 
used. From Fig. 2 we estimate that 84> == 4°. Hence, 

5z=0.03A, which represents a phase error of 
A4> = 10.8° in a plane wave, was chosen as the dis- 
tance between the individual scans (see Fig. 1). This 
distance is also greater than the residual position 
errors of =*0.04 mm known to exist on the accu- 
rately aligned planar near-field range at NIST [6]. 
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Fig. 2. The phase drift in degrees as a function of time as ob- 
served at the normalization point. Each horizontal box repre- 
sents 20 min. The residual drift is estimated to be «4°. 

3.2   Repeatability of the Laser Positioning Sys- 
tem 

The scan planes were located using a laser posi- 
tioning system that could measure translations in 
the z direction accurately at the normalization point 
of the scan. The initial point was located in the zo 
scan plane, and the distance between the probe and 
the antenna was increased manually by dz (read on 
a digital display) seven times. This whole cycle was 
repeated eight times. As shown in Fig. 3 the relative 
normalization values in each scan plane were 
recorded at the time the scan plane was located. We 
observe that as the probe is moved from the zo scan 
plane, the variability in the amplitude of the signal 
increases, until atzs the variability begins to be large 
enough to compete with the variations as we step 
from scan plane to scan plane. Hence, the scan 
plane at zs was chosen to delineate the maximum 
acceptable probe position error Az under the 
prevailing experimental conditions, giving 
^z = 5Sz = 0.15A. An examination of the re- 
peatability of the phase reveals no additional prob- 
lems with this choice. The variability observed here 
can be attributed to system drift and to human error 
in positioning the probe. These two effects cannot 
be separated without further study, and no attempt 
was made to do this. Figure 3 also shows theoretical 
normalization values in each scan plane. This is fur- 
ther discussed in Sec. 6 when multiple reflections 
are considered. 
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Figure 4 shows the amplitude of the near field 
measured at ZQ. The scan area was 1x1 m^, and 
data were taken at 2 mm intervals in both the j; and 
y directions. The resulting 501 x 501 data matrix 
was zero-filled to get a 512x512 dataset, which 
was then used in all subsequent analysis. The near- 
field amplitudes obtained in the scan planes zi to Zs 

are almost indistinguishable from the one shown; 
hence they are not included here. 

Figure 5 shows composite plots of the far fields 
obtained from the six near fields. By definition, 
error-free near-field measurements should yield 
the same far field; hence, the vertical spread among 
the   lines   in   the   plots   is   a  measure   of  the 

^^"^^"^ 

•  theoretical volyes 

z  scan-plane  index z  scan —plone index 

Fig. 3. The repeatability of measurements. The set of measurements show the relative amplitudes (left) and phases (right) at the 
normalization point as a function of z scan-plane index. Errors increase as z increases. Theoretical normalization points, partially elim- 
inating multiple reflection effects, are also shown. 

Fig. 4.   The near field of the center-fed Cassegrain parabolic reflector antenna used in the experiment. The antenna was 0.5 m 
in diameter and operates at 60 GHz. 
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experimental factors present, as discussed in Sec. 1. 
Of these, multiple reflections are thought to be the 
most significant, but an independent verification of 
this interpretation at 60 GHz has not been pur- 
sued. We also observe greater vertical spread in 
Fig. 5a than in Fig. 5c, indicating that errors in the 
X coordinates might be greater than in th&y coordi- 
nates. 

4.   Error-Contaminated Near Fields 

We want to establish to what extent error correc- 
tion is effected when it is applied to real rather than 
simulated data. To accomplish this we compare two 
error-contaminated fields created computationally 
(which contain no experimental contamination) and 
the error-contaminated fields obtained experimen- 
tally. 

Figures 6 and 7 show the continuous and discrete 
probe position-error functions used to obtain simu- 
lated error-contaminated near fields. We per- 
formed simulations using the discrete error 
function to observe any possible significant conse- 
quence to the error-correction technique due to dis- 
cretization, although no serious differences were 
expected. 

Figure 8 shows the amplitude and phase of the 
ratio of the error-contaminated and error-free near 
fields when the continuous error function was used 
to generate the error-contaminated field; Fig. 9 
shows the corresponding fields when the discrete 
error function was used. The nine-lobe structure of 
the error function is clearly discernible in each of 
these plots. In the case of discrete errors the error- 
contaminated region is more sharply delineated 
from the background, where the error in the ampli- 
tude ratio is 0 dB, and the phase errors show up in 
discrete steps rather than as a continuous surface. 
These features were expected, as they mirror the 
structure of the error function. As is shown in the 
next section, these differences in the error-contam- 
inated fields do not effect the success of the error 
correction to any significant degree. 

We constructed an error-contaminated near field 
from the measurements according to the technique 
described in Sec. 3. The amplitude and phase of the 
ratio of this field to the error-free near field ob- 
tained atzo are shown in Fig. 10. There seems to be 
more rapid and pronounced oscillations in the am- 
pHtude errors when compared to the errors shown 
in Fig. 9. We cannot tell at this point to what extent 
such a difference will degrade the effectiveness of 
the error correction. 

To further observe the differences between simu- 
lated and measured error-contaminated near fields 

discussed in the preceding paragraphs, we enlarged 
the center (main beam) region of the plots shown in 
Figs. 8-10. Some small-scale features in these plots 
are worthy of observation. We observe that the sim- 
ulated error amplitude ratios (Figs. 11a and 12a) 
differ little, but that the measured error amplitude 
ratio (Fig. 13a) is significantly different when com- 
pared to simulations. Further the steps in the dis- 
crete phase plots are a lot smoother for the 
simulated field (Fig. 12b) than for the field con- 
structed from data (Fig. 13b). Each of the effects 
listed in the introduction, multiple reflections, resid- 
ual drift, and residual probe position errors, has prob- 
ably contributed to this difference. We anticipate 
that this difference in the phase will effect the accu- 
racy of the error correction, since near-field phase 
errors are the most significant source of errors in 
the far field. We cannot, however, predict to what 
extent the error correction will be effected, since 
the whole procedure is a nonlinear function of the 
error fields and of the position errors [see Eq. (5)]. 

5.   Error-Corrected Fields 

We applied the error-correction technique 
[Eq. (5)] to the error-contaminated near fields dis- 
cussed in the previous section. Again, a comparison 
of the results of the error correction applied to sim- 
ulated and to measured data will reveal the extent 
to which experimental effects in the data confirm 
the success of the technique. We also transformed 
all near fields to obtain the corresponding far fields. 
As will be seen in the subsection below, comparison 
of the far fields demonstrates that the error-correc- 
tion technique is successful for real data both in the 
main beam and sidelobe directions. In the sidelobe 
directions, however, the simulated data yield 
slightly better results. 

5.1   Error-Corrected Near Fields 

In Figs. 14 and 15 we show the main beam por- 
tion of the ratios of simulated error-corrected near 
fields to the error-free near field for the continuous 
and the discrete probe position-error functions, re- 
spectively. Both the amplitude and phase surfaces 
seem to be well defined with a few minor irregular 
features, and the magnitudes are very close to 0 (a 
case which would indicate no residual errors). The 
structure of the residual error surfaces clearly re- 
flect the continuous or discrete nature of the posi- 
tion error function. The phase surface in Fig. 15b 
clearly brings out the nonlinearity of the correction, 
since each step in the error-contaminated field is of 
equal height originally (see Fig. 13b). 
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Figure 16 shows the result of the error correction 
when measured data are used. The well-defined 
structures observed in Figs. 14 and 15 are no longer 
present. When the error-contaminated amplitude 
ratio (Fig. 13a) is compared with the error-cor- 
rected amplitude ratio (Fig. 16a), we observe some 
improvements, but the success of the error correc- 
tion is not obvious. The well-defined residual error 
surface observed with the simulated data is not ap- 
parent. Comparing the error-contaminated phase 
differences (Fig. 13b) with the error-corrected 
phase differences (Fig. 16b), we see that the dis- 
crete phase structure has been altered to what is 
essentially a random surface made up of single 
point ridges and spikes. The residual error surface 
obtained with simulated data is not discernible; 
most likely it is buried beneath the spikes. Never- 
theless, the lack of a discrete structure, together 
with a decrease in the maxima of the phase plots, 
indicates that phase correction has occurred. 

5.2   Error-Corrected Far Fields 

In Figs. 17-19 we show the results of near-field 
to far-field transformations. In these center-cut 
plots we superimposed the error-contaminated, 
error-corrected and error-free far fields. (These 
datasets are drawn with solid circles connected 
with dotted line, open circles connected with a 
solid line, and a solid line, respectively.) Figure 17 
shows these results obtained from measured data 
for the full range of A:^ and k/, because of the den- 
sity of points, essential details of the results are not 
discernible, except at maxima and minima of the 
cuts, where the success of the error correction is 
apparent. To observe more detail, we enlarged 
these center cuts between kx=ky = ±0.3 both for 
simulated and measured data 

In Fig. 18 we compare the results of the error 
correction using simulated error-contaminated 
fields. Here only single solid lines connecting the 
open circles are observed. This is readily inter- 
preted to show that the error-corrected and error- 
free values overlap on the scale of this plot; that is, 
the error correction fully succeeds. Indeed, the 
maximum error in the spectrum [7] that appears at 
kx=ky = {\2'nlL)k = 0.03A: induced by the periodic 
error function used in this simulation is fully re- 
moved. 

In Fig. 19 we compare the results of the error 
correction using error-contaminated fields ob- 
tained from real measured data. We now see two 
solid lines, one with open circles, that do not over- 
lap everywhere, and solid circles connected with 
dotted lines. We observe the difference between 

the error-free and error-corrected lines to be much 
less than the difference between the error-free and 
error-contaminated data at most of the data points. 
We thus conclude that we can almost recover the 
error-free far field from measured error-contami- 
nated near fields by applying the probe-position er- 
ror correction, but residual errors will be present. We 
again observe that the maximum error in the spec- 
trum at kx=ky=(\2'irlL)k—QSliik is removed, as 
in Fig. 18, but a very small residual error is visible 
in this region. The magnitudes of these residual er- 
rors, and those elsewhere, are at acceptable levels. 

6.   Suggestions for Further Study 
The residual errors observed in Fig. 19 are due 

to the experimental factors enumerated in the in- 
troduction. Further reduction of these errors could 
be obtained by altering the measurement and/or 
data analysis process with such sources of experi- 
mental errors in mind. Some steps that need or 
could be taken to improve accuracy of measured 
near fields will be briefly examined here. 

6.1   Multiple Reflections 

Standard near-field measurement seeks to mini- 
mize multiple reflections by appropriately choosing 
the distance between the probe and the antenna 
under test. Residual multiple reflections, still 
present in the data, could possibly be removed by 
some filtering and/or averaging technique. In Fig. 3 
we have shown theoretical normalization values, 
which were derived by transforming the near field 
at zo to obtain the far field, filtering the evanescent 
modes, and then transforming back to the various 
near-field scan planes. This procedure provides 
normalization values for a fictitious near field that 
is a composite of the actual (filtered) near field of 
the antenna and the real modes of the multiple 
reflections present in the data. When such near- 
field data are transformed from scan plane to scan 
plane, the transformations occur in a refiectionless 
environment. Alternatively, the far fields obtained 
from the various near fields can be averaged and 
transformed back to a near-field plane. In this 
manner some of the multiple reflections can be re- 
moved from the data, and the effect of multiple 
reflections on the error correction technique can 
be studied. Neither of these approaches, however, 
removes all of the multiple reflections, since multi- 
ple reflections are not treated as a realistic func- 
tion of A: and_y. Currently, no manageable analytic 
technique that can accomplish this is known. 
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Fig. 5b.   The phases of the nonoveHapping far fields shown in Fig. 5a. 
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Fig. 5c.    The amplitudes of the nonoverlapping far fields as functions otky (see Fig. 5a). 
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Fig. 5d.   The phases of the nonoverlapping far fields as functions of ky (see Fig. 5a). 
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Fig. 6.   The theoretical probe position-error function used in the simulations. The error surface is given byz = Azcos\3oix) cos^(3a)'), 
where a = 2ir/L. 
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Fig. 7.   The discrete probe position error function. The discrete error surface is given by z = Sz int[iVcos^(3a;c) cos^(3ay) + 0.5], where 
N = 5 is the maximum scan plane index, int is the fortran truncate-to-integer function, and a = 2v/L . 
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Fig. 8a.   The ratio of the simulated error-contaminated and error-free near-field amplitudes when the continuous error function in 
Fig. 6 is used. 

Fig. 8b.   The phase difference between the simulated error-contaminated and error-free near fields when the contin- 
uous error function in Fig. 6 is used. 
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Fig. 9a.   The ratio of the simulated error-contaminated and error-free near-field amplitudes when the discrete error function in 
Fig. 7 is used. 
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Fig. 9b.   The phase difference between the simulated error-contaminated and error-free near fields when the discrete 
error function in Fig. 7 is used. 
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Fig. 10a.   The ratio of the error-contaminated and the error-free near-field amplitudes when the discrete error function in Fig. 7 is 
used to construct the error-contaminated near field from measurements. 

Fig. 10b.   The phase difference between the error-contaminated and the error-free near-fields when the discrete error 
function in Fig. 7 is used to construct the error-contaminated near field from measurements. 
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Fig. 11a.   The center (main beam) portion of the the ratio of the simulated error-contaminated and error-free near-field 
amplitudes when the continuous error function in Fig. 6 is used (see Fig. 8a). 

Fig. lib.   The center (main beam) portion of the phase difference between the simulated error-contaminated and error-free near 
fields when the continuous error function in Fig. 6 is used (see Fig. 8b). 
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Fig. 12a.   The center (main beam) portion of the ratio of the simulated error-contaminated and error-free near-field 
amplitudes when the discrete error function in Fig. 7 is used (see Fig. 9a). 

Fig. 12b.   The center (main beam) portion of the phase difference between the simulated error-contaminated and error-free near 
fields when the discrete error function in Fig. 7 is used (see Fig. 9b). 
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Fig, 13a.   The center (main beam) portion of the ratio of the error-contaminated and the error-free near-field amplitudes when the 
discrete error function in Fig. 7 is used to construct the error-contaminated near field from measurements (see Fig. 10a). 

Fig. 13b.   The center (main beam) portion of the phase difference between the error-contaminated and the error-free near-fields 
when the discrete error function in Fig. 7 is used to construct the error-contaminated near field from measurements (see Fig. 10b). 
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Fig. 14a.   The center (main beam) portion of the ratio of the simulated error-corrected and error-free near-field amplitudes when 
the continuous error function in Fig. 6 is used. 
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Fig. 14b.    The center (main beam) portion of the phase difference between the simulated error-corrected and error-free near 
fields when the continuous error function in Fig. 6 is used. 
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Fig. 15a.   The center (main beam) portion of the ratio of the simulated error-corrected and error-free near-field amplitudes when 
the discrete error function in Fig. 7 is used. 

Fig. ISb.   The center (main beam) portion of the phase difference between the simulated error-corrected and error-free near fields 
when the discrete error function in Fig. 7 is used. 
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Fig, 16a.   The center (main beam) portion of the ratio of the error-corrected and the error-free near-field amplitudes when the discrete 
error function in Fig. 7 is used to construct the error-contaminated near field from measurements. 

Fig. 16b.   The center (main beam) portion of the phase difference between the error-corrected and the error-free near-fields 
when the discrete error function in Fig. 7 is used to construct the error-contaminated near field from measurements. 
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Fig. 17a. The amplitudes of the error-contaminated, error-corrected, and error-free far fields as func- 
tions of kx for the full range of kj, derived from measured data. These fields are represented with solid 
circles connected with dotted lines, open circles connected with solid lines, and a solid line, respectively. 
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Fig. 17b. The phases of the error-contaminated, error-corrected and error-free far fields as functions 
ofkx for the full range oikx derived from measured data. These fields are represented with solid circles 
connected with dotted lines, open circles connected with solid lines, and a solid line, respectively. 
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Fig. 17c.   The amplitudes of the error-contaminated, error-corrected, and error-free far fields as func- 
tions of ky for the full range of ky derived from measured data (see Fig. 17a). 
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Fig. 17d.   The phases of the error-contaminated, error-corrected and error-free far fields as functions 
of ky for the full range of ky derived from measured data (see Fig. 17b). 
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Fig. 18a. The center (main beam) portion of the amplitudes of the error-contaminated, error-corrected, 
and error-free far fields as functions oikx derived from simulated data. These fields are represented with 
solid circles connected with dotted lines, open circles connected with solid lines, and a solid line, respec- 
tively. The error-corrected and error-free lines overlap, hence, cannot be distinguished. 
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Fig. 18b. The center (main beam) portion of the phases of the error-contaminated, error-corrected, and 
error-free far fields as functions of kj, derived from simulated data. These fields are represented with 
solid circles connected with dotted lines, open circles connected with solid lines, and a solid line, respec- 
tively. The error-corrected and error-free lines overlap, and, hence, cannot be distinguished. 
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Fig. 18c.   The center (main beam) portion of the amplitudes of the error-contaminated, error-corrected, 
and error-free far fields as functions of k, derived from simulated data (see Fig. 18a). 
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Fig. 18d.   The center (main beam) portion of the phases of the error-contaminated, error-corrected, and 
error-free far fields as functions of ky derived from simulated data (see Fig. 18b). 
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Fig. 19a. The center (main beam) portion of the amplitudes of the error-contaminated, error-corrected, 
and error-free far fields as functions otk, derived from measured data. These fields are represented with 
solid circles connected with dotted lines, open circles connected with solid lines, and a solid line, respec- 
tively. The error-corrected and error-free lines do not overlap, showing the presence of residual errors. 
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Fig. 19b. The center (main beam) portion of the phases of the error-contaminated, error-corrected, and 
error-free far fields as functions of ks derived from measured data. These fields are represented with solid 
circles connected with dotted lines, open circles connected with solid lines, and a solid line, respectively. 
The error-corrected and error-free lines do not overlap, showing the presence of residual errors. 
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Fig. 19c.   The center (main beam) portion of the amplitudes of the error-contaminated, error- 
corrected, and error-free far fields as functions of ky derived from measured data (see Fig. 19a). 
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Fig. 19d.   The center (main beam) portion of the phases of the error-contaminated, error-corrected, and 
error-free far fields as functions of ky derived from measured data (see Fig. 19b). 
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6.2    Residual Drift 

In Fig. 2 we have shown the least amount of 
residual drift observed during a few days of moni- 
toring the system. In the initial stages of analysis 
fast tie-scans are used to analytically remove the 
drift. But system drift during tie-scans will intro- 
duce both amplitude and phase errors that will 
show up as part of the difference in the smoothness 
in the discrete surfaces shown in Figs. 12b and 13b. 
We could remove such residual drifts by isolating 
the mechanism of interaction between the near- 
field system and the environment. It is thought, but 
not proved, that temperature variations are the 
major cause of such drifts. Hence, the temperature 
sensitivity of each of the components of the scaner 
and its instrumentation should be studied, and the 
most sensitive components should be thermally iso- 
lated from the environment. 

ti.3   Residual Probe-Position Errors 

In Fig. 1 we have represented residual probe po- 
sition errors schematically. In the analysis we have 
assumed that probe position errors were only due 
to data selection from the various scan planes 
Zo.. .zs. Each scan plane was treated as perfectly 
planar. Since the InterScan distance Sz is much 
greater than the residual errors in z, the error cor- 
rection was not effected to first order. We also ig- 
nored X and y position errors; accurate data on 
these errors are not readily available. We can im- 
prove the final results of this study by initially cor- 
recting for known position errors on a single scan 
plane (residual errors). This was not done primar- 
ily because of practical limitations on time and 
funds available for the project. 

Finally, we note that the error-correction analy- 
sis in this study has been carried to fourth order, as 
explicitly prescribed in Eq. (5). By including yz/if/j- 
order terms in the analysis, we could improve con- 
vergence to the error-free values. 
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6.4   Conclusion 

In this study we have shown that probe position 
errors can be removed from real near-field data by 
the technique developed at NIST, and made sug- 
gestions to further improve the quality of near-field 
measurements at high frequencies by fine tuning 
both the measurement system and the correction 
procedure. 
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