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A general theoretical procedure is pre- 
sented to remove known probe-position 
errors in spherical near-field data to 
obtain highly accurate far fields. We 
represent the measured data as a Tay- 
lor series in terms of the displacement 
errors and the ideal spectrum of the 
antenna. This representation is then as- 
sumed to be an actual near field on a 
regularly spaced error-free spherical 
grid. The ideal spectrum is given by an 
infinite series of an error operator act- 
ing on data containing errors of mea- 
surement. This error operator is the 
Taylor series without the zeroth-order 
term. The nth-order approximation to 
the ideal near field of the antenna can 
be explicitly constructed by inspection 
of the error operator. Computer simu- 
lations using periodic error functions 

show that we are dealing with a con- 
vergent series, and the error-correction 
technique is highly successful. This is 
demonstrated for a triply periodic func- 
tion for errors in each of the spherical 
coordinates. Appropriate graphical rep- 
resentations of the error-contaminated, 
error-corrected and error-free near 
fields are presented to enhance under- 
standing of the results. Corresponding 
error-contaminated and error-free far 
fields are also obtained. 
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1.   Introduction 

A recently developed analytic technique that can 
correct for probe-position errors in planar near- 
field measurements to arbitrary accuracy [1,2] is 
also applicable to spherical near-field data after ap- 
propriate modifications. The method has been used 
successfully to remove probe-position errors in the 
planar near field, leading to more accurate far-field 
patterns, even if the maximum error in the probe's 
position is as large as 0.2 A. Only the error-contam- 
inated near-field measurements and an accurate 
probe-position error function are needed to be able 
to implement the correction. It is assumed that the 
probe-position error function is a characteristic of 
the near-field range and has been obtained using 
state-of-the-art laser positioning and precision opti- 
cal systems. The method also requires the ability to 

obtain derivatives of the error-contaminated near 
field defined on an error-free regular grid with re- 
spect to the coordinates. In planar geometry the 
spatial derivatives are obtained using fast Fourier 
transforms (FFT) [1,2]; in spherical geometry the 
derivatives of Hankel functions for radial errors, 
and the derivatives of the spherical electric and 
magnetic vector basis functions for errors in the d 
and <j> coordinates are needed. 

2.   General Analytic Procedure 

Let b{x) and b{x;8x) be the error-free and 
error-contaminated near fields at position jc, and 8x 
the probe-position error function. Here the position 
vector X can be given in planar (Cartesian), cylindri- 
cal, or spherical coordinates. Then, 
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b(x;Sx) = il + T)b{x), (1) 

where T is a differential error operator. Since real 
measurements are taken on an irregular grid, 
x + 8x, the measured values can be represented in 
terms of an unknown error-free near field b (x) and 
the Taylor series expansion of this field around the 
regular grid x. Thus, the error operator is nothing 
but the Taylor series operator without the leading 
zeroth-order term. The exact functional form of T 
depends on the coordinate system used in repre- 
senting the near field. To solve for the error-free 
near field eq (1) can be inverted to yield 

b(x) = il + Ty'b(x;Sx), (2) 

which can then be expanded to any arbitrary order 
in 8x. First, we expand eq (2) as 

b(x) = il-T + TT-TrT + TnT-...)b(x;5x), 

(3) and observe that 

T=tl+t2+t3+t4...+tk+. (4) 

In general, the A:th-order term in the Taylor series 

(5) T has the form tk=^ {Ssf j-j;, 

where, in Cartesian coordinates, s is :«:, 3' or z, in 
cylindrical coordinates 5 is p, <^ orz, and in spheri- 
cal coordinates s is r, 0, or if). Equation (4) can 
now be used to arrange the terms in eq (3) in an 
ascending order of approximation. Thus, to fourth- 
order in Ss 

bix) = (l 

-tl-t2-t3-t4 

+ tlh + tit2 +ht3 +t2h + t2t2 +t3tl 

-hhh~tit2tl-tiUt2 -t2hh 

+ t,t,titi) b(x; dx). (6) 

The explicit functional forms of T, t^, and eq (6) in 
Cartesian geometry (planar scanning) can be found 
in [1,2], where the question of convergence of the 
n th-order expansion has also been discussed. 

The following observations about the structure 
of eq (6) are worthwhile: 

(a) The first line of the equation is the zeroth- 
order approximation to the ideal near field 
and corresponds to the first term in eq (3). 

(b) Each subsequent term in eq (3) gives rise to 
all the terms on a subsequent line in eq (6). 

For example, the term TTT gives rise to all 
the triple product terms in eq (6); all other 
terms originate from another term in eq (3). 

(c) The sum of subscripts in each of the terms in 
eq (6) is 4 or less, indicating that we have 
written down a fourth-order approximation. 

(d) All possible combinations of subscripts occur, 
subject to the constraint in (c). 

(e) Fifth- or higher-order approximations can be 
quickly written down using observations (b), 
(c), and (d) as guidelines. 

Finally, we make^ the following nontrivial obser- 
vation: b(x) and b(x; Sx) in eq (6) are both de- 
fined on a mathematically regular grid, even though 
originally the error-contaminated near field was 
obtained on an irregular grid. This shift in the defi- 
nition of the error-contaminated field is an essen- 
tial mathematical step in the error-correction 
procedure under consideration. The redefinition 
becomes important when exact derivatives of the 
error-contaminated near field on a regularly spaced 
grid are required; by definition, such derivatives can 
be obtained mathematically, but cannot be ob- 
tained experimentally. (In Cartesian geometry, or 
for planar near fields, derivatives can be obtained 
using Fourier techniques [1,2].) 

The terms in eq (6) are differential operators 
acting on the error-contaminated near field 
b(x; Sx). Terms such as tit3 and t3ti will yield differ- 
ent contributions as can be seen from the explicit 
expressions in Cartesian coordinates for probe-po- 
sition errors in the z coordinate. Thus, 

'■"* 4*1 («')'# 
and 

^^^^^4^^^)^^^^!' 

(7) 

(8) 

which show that different derivatives act on differ- 
ent functions in the two cases. Further, the deriva- 
tives of the error function Sz as required by each of 
the terms in eq (6) cannot be measured and are 
only defined mathematically [1,2], subject to the 
constraint that each term satisfy Maxwell's equa- 
tions. 

2.1    Simultaneous Errors in Two or More Coordi- 
nate Variables 

The discussion so far has assumed that probe- 
position errors occur in only one coordinate vari- 
able at a time. In fact, simultaneous errors in more 
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than one coordinate can be treated easily by gener- 
alizing eqs (4) and (6). This is accomplished by re- 
defining tk in eq (5). We simply write 

tx=t\'^-¥t?'>+t?\ (9) 

where the superscript indicates one of the three 
coordinates in use. These are just the three first-or- 
der terms that appear in the usual Taylor series 
expansion of any function of three variables. The 
definition of the second-order expression also 
needs to be augmented the same way, but addi- 
tional terms must be included to account for the 
contribution from mixed derivatives. The general h 
term is now written as 

where df'is 

(10) 

tir'^=dsds , d' 
dsds' (11) 

Again these are just the second-order terms in the 
usual Taylor series expression. The definition of 
the third- and higher-order terms tk in eqs (4) and 
(6) can be generalized the same way, and when 
these general expressions are substituted into eq 
(6), we obtain the expression for the error- 
corrected near field in the presence of simulta- 
neous errors in more than one coordinate. Obvi- 
ously the number of terms in eq (6) quickly 
increases with the order of correction and with the 
number of error-contaminated coordinates consid- 
ered. 

3.    Spherical Error Correction 

In spherical scanning, near-field data are ob- 
tained on the surface of a sphere of radius ra at 
regular A9 and A(f) intervals. The center of rotation 
is fixed and the probe points toward this center at 
every point of the spherical grid. At each point two 
measurements are taken, corresponding to the 6 
and 4> components of the measured electric field. 

To study the error-correction technique we will 
consider probe-position errors in a single spherical 
coordinate only. We also assume that the orienta- 
tion of the probe is always correct, meaning that 
the probe points to the center of rotation indepen- 
dent of the position of the probe. To obtain error- 
correction expressions for errors in the r, 6, or 0 
coordinates the explicit form of tk has to be substi- 
tuted into eqs (4) and (6). Thus, for errors in the 

radial coordinate, the A:th-order Taylor series term 
is 

^*=r7(S'-)*^. (12) 

Similar expressions can be immediately written 
down for errors in the 6 and <j) coordinates: 

and 

^*=^W^|^- 

(13) 

(14) 

These error functions depend on the coordinates: 
8r = 8r(ro,d,4>),86 = de(ro,e,<{>), and 8(f> = 8<f){ro,6,<f)) 
for fixed ro. This must be kept in mind when spher- 
ical versions of the expressions shown explicitly in 
eqs (7) and (8) are evaluated. When eqs (12), (13), 
and (14) are substituted into eq (6) we obtain the 
error-corrected spherical near field in terms of the 
error-contaminated (measured) spherical near 
field. 

3.1   Spherical Near Fields 

In spherical geometry, we really have two inde- 
pendent near fields, which are the 6 and (j) compo- 
nents of the electric field E measured by an ideal 
dipole. The tangential electric field E,, with wave- 
number k, can be expressed [3] in terms of an in- 
finite sum of products of spherical Hankel 
functions of the first kind hP{kr) and spherical 
vector basis functions X„m(0,<f>). We can write (us- 
ing r for the unit vector in the radial direction) 

n      m    ^ 

+ a'^^g}P{kr) f xX^(0,</,)] , (15) 

where, m\\ix=kr, 

^"'^(^)=l^f^^"'(^)]- (16) 

The near-field quantities b and b in eq (6) are iden- 
tified with either the 6 or (f) component of Et and 
E,, respectively, where £, is the error-contaminated 
electric field. Only one set of electric coefficients 
aS and one set of magnetic coefficients aj,^ appear 
in eq (15), and the error-correction procedure 
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corrects both components of the measured spheri- 
cal field simultaneously. 

To obtain the coefficients a„m in eq (15) we use 
the explicit definitions and orthogonality relations 
obeyed by the vector basis functions jf„m [3]. These 
are Vn(« +1) X„„(e,(l>)=LY„„(9,(f)), where L = 
-i(rxV) is the the well-known angular momen- 
tum operator widely used in quantum mechanics, 
and the spherical harmonics Y„m(6,(l))=Pnm(0) 
exp(im<}>), where P„m are associated Legendre func- 
tions. In component form, 

Vn(,n +l)X„„(d,(^)= -{m sine'    dO 
(17) 

The orthogonality properties are [3] 

X*„-X„wsmeded({> = b„-„-dmw (18) 
•'o     •'o 

with a similar relationship for f xX„m, and 

X*„' -fxXnn, sin eded4>=0 (19) 

for all «, n', m, m', where S„„' is the ICronecker 
delta. The coefficients can now be obtained [3] us- 
ing eqs (15), (18) and (19): 

f2ir   fir 

a<!^ h^'^kr) = E,(r,e,4>) 'X„l sin 9ded(j> (20) 

and 

ciiSlg!i'Kkr) = 

/■2'ir       rir 

E. 
•'n "'n 

(r,0,<^)-rxxL sin 0d0d(/>.        (21) 

With eqs (18), (19), (20) and (21), any spherical 
near field, error-free or error-contaminated, can be 
cast into the form of eq (15), and given a set of 
coefficients a„m, a spherical vector function can al- 
ways be constructed using eq (15). Consequently, 
each of the terms appearing in eq (6) and any fac- 
tor tk in eq (6) can be evaluated in spherical coordi- 
nates. On a regular grid the summation can be 
accomplished using an efficient FFT summation, 
but on an irregular grid the sum must be evaluated 
directly, or by a Taylor series as described in [1,2]. 

To obtain the coefficients aim^ numerically we 
rewrite eq (20) as 

2alfi}hPikr) = 

2ir f   ET(r,e)-xLi0)\sine\de. 
J —IT 

(22) 

Here the factor 2IT is the result of the (^ integral 
and the factor 2 on the left is introduced to offset 
the effect of extending the range of integration in 
9. Er(r,9) and Xmi{9) are the fli-transforms of 
Ei(r,9,({>) and X„m{6,^), respectively, extended 
into the range [-ir,0]. The integrand in eq (22) is 
now an even function of 9, and can be expanded in 
a Fourier series. 

Er{r,9) -xL {e)\s\n6\ = Xcf" e" ■ae (23) 

where the coefficients c/"" can be obtained by 
Fourier transforming the data. Since only the coef- 
ficient cS"* will survive the term by term integration 
of the sum in eq (23), we immediately obtain from 
eqs (22) and (23) 

aJ!^hP{kr) = 2'^'c"o" (24) 

Similar expressions can be written for a^^rn in eq 
(21). 

3.2   Derivatives of Spherical Near Fields 

To evaluate the terms and factors appearing in eq 
(6) in spherical coordinates, we must be able to ob- 
tain first- and higher-order derivatives of arbitrary 
spherical near fields with respect to any of the 
spherical coordinates. Derivatives with respect to <t) 
are the simplest, since the ^ dependence is only 
through the factors &xp{im<{>) in the vector basis 
functions. Hence, a ^th-order derivative with re- 
spect to (f> will merely alter the coefficients in eq 
(15) according to the substitution, 

a„m-»(//«)*am„ , (25) 

after which the summation can be performed with- 
out change to the summation procedure in use. Ra- 
dial derivatives are only somewhat more 
complicated; we obtain /:th-order derivatives of 
Hankel functions with respect to x after repeated 
differentiation of the recursion relation [3], 

(2n +1) °""^''' =nh<iU,{x) -(« + l)h!iUx). (26) 
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After substitution of derivatives of Hankel func- 
tions in place of the functions themselves in eq 
(15), the existing summation procedure can be 
used without modification to obtain radial deriva- 
tives of the components of the near field. However, 
derivatives with respect to 6 cannot be accom- 
pHshed with ease, since no simple recursion rela- 
tionship exists that can be utilized in a 
straighforward manner in a computer algorithm. 
To obtain d derivatives we have to use Fourier se- 
ries. If we assume that the 8 dependence of the 
components (denoted by superscript s) of Ei has 
been written in the form 

then the A:th-order 6 derivative is 

(27) 

Eoov -We' ,ive (28) 

The coefficients c/'^ can be obtained using a fast 
transform; after modification of the coefficients by 
the factors (//)*, the same FFT can be used to per- 
form the summation indicated in eq (28). Since the 
data must be periodic with a period of 2^: for anal- 
ysis by an FFT, a near field defined on the 0 inter- 
val [0,IT] must be extended to the interval [0,2-17] or 
[ - TTjir] using the symmetry properties of the basis 
functions [4,5]. 

3.3   Data Analysis 

As is evident from the discussion in the preced- 
ing sections, we need efficient numerical proce- 
dures for two basic computational problems arising 
from eq (15): 

(i) Given a spherical vector function E,{6,(f>), we 
must be able to analyze it to obtain the coeffi- 
cients a„m, and 

(ii) Given a set of coefficients a„m, we must be 
able to synthesize the spherical vector function 
Ei(9,(f)) by performing the sum. 

Focusing on a specific term of the full error-correc- 
tion expression as given in eq (6), we can appreci- 
ate the role of these two computational 
procedures. We have, for the case of errors in the r 
coordinate. 

where b now stands for the components of £,. The 
following six steps must be executed to evaluate 
this expression numerically: 

(1) 

(2) 

(3) 

(5) 

(6) 

3' t ht2b=\8rf^i8rf-^,b{r,eA), (29) 

We analyze the components oiE, to obtain co- 
efficients a„m, as defined in eq (15). 
We obtain the second-order radial derivatives 
of the components of Ei by performing the 
summation  in  eq  (15)  using  second-order 
derivatives of the radial functions. 
We multiply the result by the function (^Srf, 
thereby obtaining a new spherical near field. 

(4) We analyze the fields obtained in step (3) to 
get a new set of coefficients a,™, as defined in 
eq (15). 
We obtain the first-order radial derivatives of 
the components of E, by performing the sum- 
mation in eq (15) using first-order derivatives 
of the radial functions. 
We multiply the result in step (5) by 0.5 dr to 
obtain the part of the error-corrected spheri- 
cal near field denoted by ^1^26 in eq (6). 

Similar sequences of steps will correctly evaluate 
any and all of the terms in eq (6) to obtain the 
ideal error-free near field. The procedure is highly 
recursive, and a few well designed subroutines can 
provide the result of the extensive and complex 
computational task called for in eq (6). The proce- 
dure is the same for errors in the 0 and <f) coordi- 
nates. 

3.4   Computer Simulations 

Computer simulations were performed for 
probe-position errors in a single spherical coordi- 
nate only; simultaneous errors in two or three coor- 
dinates were not considered. The following 
sequence of steps were performed for errors in 
each of the spherical coordinates: 

(1) We start with an error-free spherical near 
field and analyze it to obtain its expansion co- 
efficients a„„, [(see eq (15)]. 

(2) We define a probe-position error function 
\8x\ = Ss(d,(j)) to be studied, and choose its 
amplitude. 

(3) We construct an error-contaminated near field 
by performing the summation in eq (15) at the 
irregular grid points x + Sx. This requires a di- 
rect sum at each point of the grid, since no 
efficient method of summing is known to exist 
on an irregular grid. 

(4) We perform the computations in eq (6) to ob- 
tain the error-corrected near field. The steps 
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taken to accomplish this were outlined above 
in some detail (see eq (29) and the brief dis- 
cussion following it). 

(5) We calculate error-free, error-contaminated, 
and error-corrected far fields. 

(6) We compare error-free, error-contaminated, 
and error-corrected fields to study the effec- 
tiveness of the error correction. 

3.5   Results and Discussion 

The near field used in all the simulations was 
generated by a microstrip array antenna consisting 
of four 16 X 16 element subpanels operating at 3.3 
GHz. The scan radius was 128 cm. Figures la and 
lb show perspective plots of the amplitudes of the 
0 and 0 components of the error-free near field. 
The near field was obtained by summing the terms 
in eq (15) with n = 30, after the original near-field 
data were analyzed to obtain coefficients up to 
n = 87. With n = 30, direct summations on irregular 
grids could be performed in about 6 hours on a 
personal computer. Figures 2a and 2b show per- 
spective plots of the amplitudes of the 9 and 0 
components of the error-free far field. 

We chose periodic probe-position error func- 
tions of the form 

8s(0,4>)=A cos^ aO cos^ ^4>, (30) 

where j =r, 6, or (f>, and a=3 = 3. For errors in the 
radial coordinate we chose ^=0.1 X.=l cm, and 
for errors in the angular coordinates, we chose 
A = 0.01 X, which corresponds to a maximum angu- 
lar error of 3.6°. The magnitude of these errors are 
unrealistic, since, on the NIST spherical near field 
scanner, the probe's position errors are estimated 
to be less than dr~0.1 cm, and 5fl«5(^=0.5°. Pe- 
riodic probe-position errors were chosen, because 
such errors in the near field could lead to large 
errors in the far field. This is a well known phe- 
nomenon in planar near-field to far-field transfor- 
mations [6,7]. The procedure, however, could be 
easily performed with nonperiodic error functions. 

The results of the simulations are presented in 
the figures 3-26: perspective plots of ratios of 
error-contaminated and error-free fields are pre- 
sented for errors in the three coordinates sepa- 
rately, followed by perspective plots of ratios of 
error-corrected and error-free fields. Similar plots 
are presented for the far fields. Both amplitudes 
and phases are shown for all cases. 

An examination of the plots immediately reveals 
the success of the error correction. By comparing 

the  amplitudes of the  error-contaminated  and 
error-corrected  ratios,  we   immediately  observe 
insignificant levels of residual errors almost every- 
where on the sphere. The same quantitative obser- 
vation can be made about the phase difference 
plots,  where  the  residual   error  in  the  error- 
corrected phases approaches 0. The following addi- 
tional qualitative observations are worthwhile: 
(i)    The correction is most successful in the for- 

ward hemisphere, especially around the main 
beam at 0 = 0 in all cases. This is true for both 
the near and the far field, 

(ii)   The correction is least successful in the back 
hemisphere,   especially   around   8= ± 180°, 
where the data are ill-determined and small 
in amplitude, 

(iii) There are no large regions on the sphere 
where the correction technique fails, 

(iv) At isolated points the correction seems to be 
less successful as evidenced by peaks in the 
perspective plots. These points correspond to 
deep nulls in the original error-free near field, 
and, consequently, can be understood as arti- 
facts of the ratio field, rather than some more 
serious problem with the technique, 

(v) The radial error function Srlo,<f>) clearly 
shows up in figures (3b) and (4b), as ex- 
pected, since we have essentially plotted the 
phase of the ratio of Hankel functions of the 
form exp(ikr)/r at r + Sr(d,(f>) and r,  with 

(vi) The three-lobe structure of the periodic error 
function over an angular interval of 180° in 6 
and (j) shows up clearly in all the error-con- 
taminated plots, as expected. This structure 
also shows up in the error-corrected plots, in- 
dicating that the error-correction procedure is 
a systematic global reduction of the error 
without altering the functional form of the er- 
ror. This agrees with the structure of eq (6). 

Both the qualitative and quantitative features of 
the results show that the error correction outlined 
in this study can be very useful in providing more 
accurate spherical near-field data to determine ac- 
curate far fields of antennas. 

4.    Suggestions for Further Study 

Here we have demonstrated the effectiveness of 
a novel error-correction technique that removes 
probe-position errors in r, 0, or <j) from spherical 
near-field data. For completeness, the technique 
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should be applied when errors in all three coordi- 
nates are present simultaneously. This is the most 
realistic case. Such a complete error-correction 
technique would be computationally more compli- 
cated and extensive, but in principle not more 
difficult, and should also be effective and success- 
ful. Finally, more realistic probe-position error 

functions should be used, and the correction tech- 
nique should be applied to real error-contaminated 
spherical data. The success of this error-correction 
technique is especially desirable at higher frequen- 
cies, where the realistic amplitudes of the probe- 
position errors on a spherical near-field range are a 
significant part of the wavelength. 
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Figure I.   The amplitude of the error-free near field at 3.3 GHz, (a) the 6 and (b) the ifi component. 
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Figure 2.   The amplitude of the error-free far field at 3.3 GHz, (a) the d and (b) the <i> component. 

397 



Volume 96, Number 4, July-August 1991 

Journal of Research of the National Institute of Standards and Technology 

(a) (b) 

Figure 3.   The amplitudes of the 0 components of the ratios of (a) the error-contaminated and (b) the error-corrected near fields to 
the error-free near field in the case of errors in the r coordinate. 

t 
■5 

I 

.jp     c 

(a) (b) 

Figure 4.   The amplitudes of the 4> components of the ratios of (a) the error-contaminated and (b) the error-corrected near fields to 
the error-free near field in the case of errors in the r coordinate. 
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(a) (b) 

Figure 5.   The phase of the 0 components of the ratios of (a) the error-contaminated and (b) the error-corrected near fields to the 
error-free near field in the case of errors in the r coordinate. 

(a) (b) 
Figure 6.   The phase of the (f> components of the ratios of (a) the error-contaminated and (b) the error-corrected near fields to the 
error-free near field in the case of errors in the r coordinate. 
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(a) (b) 

Figure 7.   The amplitudes of the 9 components of the ratios of (a) the error-contaminated and (b) the error-corrected far fields to the 
error-free far field in the case of errors in the r coordinate. 

(a) (b) 

Figure 8.   The amplitudes of the <!> components of the ratios of (a) the error-contaminated and (b) the error-corrected far fields to the 
error-free far field in the case of errors in the r coordinate. 
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(a) (b) 

Figure 9. The phase of the 0 components of the ratios of (a) the error-contaminated and (b) the error-corrected far fields to the 
error-free far field in the case of errors in the r coordinate. 

(a) (b) 

Figure 10.   The phase of the <^ components of the ratios of (a) the error-contaminated and (b) the error-corrected far fields to the 
error-free far field in the case of errors in the coordinate. 
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(a) (b) 

Figure 11.   The amplitudes of the 0 components of the ratios of (a) the error-contaminated and (b) the error-corrected near fields to 
the error-free near field in the case of errors in the 0 coordinate. 

(a) (b) 

Figure 12.   The amplitudes of the <j> components of the ratios of (a) the error-contaminated and (b) the error-corrected near fields to 
the error-free near field in the case of errors in the 0 coordinate. 
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(a) (b) 

Figure 13.   The phase of the 0 components of the ratios of (a) the error-contaminated and (b) the error-corrected near fields to the 
error-free near field in the case of errors in the 0 coordinate. 

(a) (b) 

Figure 14.   The phase of the <^ components of the ratios of (a) the error-contaminated and (b) the error-corrected near fields to the 
error-free near field in the case of errors in the 0 coordinate. 
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(a) (b) 
Figure 15.   The amplitudes of the 0 components of the ratios of (a) the error-contaminated and (b) the error-corrected far fields to the 
error-free far field in the case of errors in the 0 coordinate. 

(a) (b) 

Figure 16.   The amplitudes of the <j> components of the ratios of (a) the error-contaminated and (b) the error-corrected far fields to 
the error-free far field in the case of errors in the 0 coordinate. 
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Figure 17.   The phase of the 8 components of the ratios of (a) the error-contaminated and (b) the error-corrected far fields to the 
error-free far field in the case of errors in the 6 coordinate. 

n 11 

(a) (b) 

Figure 18.   The phase of the <^ components of the ratios of (a) the error-contaminated and (b) the error-corrected far fields to the 
error-free far field in the case of errors in the 8 coordinate. 
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(a) (b) 

Figure 19.   The amplitudes of the 0 components of the ratios of (a) the error-contaminated and (b) the error-corrected near fields to 
the error-free near field in the case of errors in the (f> coordinate. 

(a) (b) 

Figure 20.   The amplitudes of the i^ components of the ratios of (a) the error-contaminated and (b) the error-corrected near fields to 
the error-free near field in the case of errors in the (j) coordinate. 
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(a) (b) 

Figure 21.   The phase of the 0 components of the ratios of (a) the error-contaminated and (b) the error-corrected near fields to the 
error-free near field in the case of errors in the <^ coordinate. 

(a) (b) 

Figure 22.   The phase of the <^ components of the ratios of (a) the error-contaminated and (b) the error-corrected near fields to the 
error-free near field in the case of errors in the cf) coordinate. 
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(a) (b) 

Figure 23.   The amplitudes of the 0 components of the ratios of (a) the error-contaminated and (b) the error-corrected far fields to the 
error-free far field in the case of errors in the ift coordinate. 
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Figure 24.   The amplitudes of the (f> components of the ratios of (a) the error-contaminated and (b) the error-corrected far fields to 
the error-free far field in the case of errors in the <^ coordinate. 
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Figure 25.   The phase of the B components of the ratios of (a) the error-contaminated and (b) the error-corrected far fields to the 
error-free far field in the case of errors in the 4> coordinate. 
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Figure 26.   The phase of the <l> components of the ratios of (a) the error-contaminated and (b) the error-corrected far fields to the 
error-free far field in the case of errors in the <l> coordinate. 
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