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The interpretation of measurements of 
the properties of weakly ionized plasmas 
in terms of diffusion of electrons and 
ions is reviewed both critically and tuto- 
rially. A particular effort is made to tie 
together various aspects of charged par- 
ticle diffusion phenomena in quiescent, 
partially ionized plasmas. The concepts 
of diffusion length and effective diffu- 
sion coefficient and the treatment of 
partially reflecting boundaries are devel- 
oped in the limit of the space-charge- 
free motion of the electrons or ions. A 
simplified derivation of the screening 
length for space charge electric fields is 
followed by a review of the conven- 
tional derivation of diffusion in the am- 
bipolar limit. A discussion of the scaling 
parameters of the ratio of the diffusion 
length to the screening length and the 
ratio of the diffusion length to the ion 
mean-free-path leads to a map used to 

correlate published models covering the 
complete range of these parameters. The 
models of measurements of the diffusion 
of electrons, several types of positive 
ions, and negative ions are reviewed. 
The role of diffusion in the decay of 
charged particle densities and wall cur- 
rents during the afterglow of a dis- 
charge is then considered. The effects of 
collapse of the space charge field and of 
diffusion cooUng are reviewed. Finally, 
the application of the diffusion models 
to a number of different discharges is 
discussed. 
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1.   Introduction 

The interpretation and planning of measure- 
ments of the properties of partially ionized, quies- 
cent plasmas at low and moderate pressures usually 
requires an understanding of the loss of charged 
particles by diffusion to the walls. This paper is a 
review of models and associated experiments on 
the effects of space charge on the diffusion of 
charged particles to the walls of a discharge vessel 
for a wide range of discharge conditions. Previous 
reviews of this subject are those of Oskam [1] and 
of Cherrington [2]. For the most part, we will be 
concerned with transport perpendicular to applied 
electric and magnetic fields, e.g., we will not con- 

sider space charge and transport in the cathode fall 
or the large amplitude oscillations of electrons and 
ions driven by a high frequency field [3]. Phenom- 
ena which can be described by the models dis- 
cussed range from nearly unperturbed or free-fall 
motion of electrons and ions at the low gas and 
charged-particle densities, through low-pressure 
fluorescent lamps and lasers, to the near equi- 
librium transport of electrons and ions in high pres- 
sure, high-temperature arcs. 

This paper is both critical and tutorial in nature. 
It is assumed that the reader has at least a general 
familiarity with gas discharges and associated coUi- 
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sion phenomena. This author still finds the review 
by Druyvesteyn and Penning [4] to be the most 
useful general discussion of gas discharges and re- 
lated phenomena. Important reviews of specialized 
aspects include: collision phenomena, McDaniel 
[5]; electron energy distribution functions, Holstein 
[6], Allis [7] and Kumar, Skullerud, and Robson 
[8]; microwave discharges, Brown [3] and McDon- 
ald [9]; ion drift and diffusion in uniform electric 
fields, McDaniel and Mason [10]; electron trans- 
port, Huxley and Crompton [11] and Hunter and 
Christophorou [12]; electrical breakdown, Raether 
[13] and Dutton [14]; glow discharges, Francis [15]; 
spark channel formation, Craggs [16] and Gallim- 
berti [17]; and gas lasers, Cherrington [2]. 

This discussion is divided into three major sec- 
tions. In section 2 we consider the diffusion of 
charged particles in the absence of space charge 
fields. Under that topic we discuss the concept of 
the diffusion length, the treatment of boundary 
conditions, and the use of the boundary condition 
to calculate effective diffusion coefficients for a sin- 
gle type of charged particle for a wide range of gas 
densities. We do not discuss the very extensive 
work on the effects of diffusion on the electron or 
ion energy distributions in space-charge free and 
spatially uniform, applied electric fields [7,8,18-20]. 
The second part of the paper, section 3, is con- 
cerned with the calculation of the effects of space 
charge electric fields. We begin with a derivation 
of the Debye screening length. We then calculate 
the electric field strength and the ambipolar diffu- 
sion coefficient appropriate to electrical discharges 
with high electron densities and high gas densities. 
This is followed by a consideration of the range of 
mean-free paths, screening lengths, and diffusion 
lengths appropriate to various experimental condi- 
tions. The presently available theory ranges from 
models appropriate to the free-fall of charged parti- 
cles in the absence of space charge fields to models 
for high gas densities and charge densities. We con- 
sider the theory of the transition from ambipolar 
diffusion of the charged particles at high gas densi- 
ties and then at low gas densities. Next the theory is 
reviewed for high electron and ion densities but a 
range of gas densities from very low values to very 
large values. Finally, we discuss theoretical results 
which cover the whole range of gas and charge 
densities. In the last major section, section 4, appli- 
cations of the models to specific experimental dis- 
charges are reviewed. Except in section 4.1.2 we 
assume that the electron energy distribution is inde- 
pendent of position and is determined by an applied 

dc or high frequency electric field or by the gas 
temperature. 

2.    Space-Charge-Free Diffusion 
2.1    Diffusion Length 

In this section we review models for the diffu- 
sion of charged particles in the absence of space 
charge fields and at high enough gas densities such 
that the boundary conditions are simple. Equations 
describing the electron and ion behavior under 
these conditions are [7] 

dt :-v.r„+Ai««e 

Tg = —Dg V ng±}JugngE, 

(1) 

(2) 

where g is e for electrons or -(- is for positive ions 
and the + and — signs are for ions and electrons, 
respectively. Equation (1) is the continuity equa- 
tion for the electron density n^ or for the density 
«+, where Fg is the flux density for the electrons or 
ions. According to eq (1) the time derivative of the 
electron density is equal to the outflow of electron 
particle flux plus the production by electron impact 
ionization. This latter term contains the rate coeffi- 
cient for ionization ^i, the neutral atom density n, 
and the electron density n^. Equation (2) expresses 
the electron and ion flux densities in terms of the 
density gradients and the contributions from 
charged particle drift in any field that may be 
present. Here Z), is the diffusion coefficient and JLI^ 

is the mobility for the electrons or ions. In this sec- 
tion we will assume that only a single type of 
charged particle is present and that electric fields 
are negligible. 

If we combine the continuity equation and the 
flux equation we obtain the relation between the 
production term and the loss of charged particles 
by diffusion [7], i.e.. 

'-^=Dg 
dt " 

1_3 
r dr m +1^ — kill rig. (3) 

Equation (3) is written in a form appropriate to 
cylindrical geometry and includes diffusion in both 
the radial direction and the axial direction. As 
shown in the next section, the electron/ion density 
is approximately zero at absorbing boundaries. The 
lowest mode solution [2,7] to eq (3) is then 

ng(r,z,t)=ngo exp(v 0 cosf^j Jo r^j-        (4) 
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Substitution of eq (4) into eq (3) gives 

v=k,n 

where 

-^=Vi-Vw, 

J /77V    /2405Y 

(5) 

(6) 

Vj is the ionization frequency, and Vw is the fre- 
quency of particle loss to the walls. Here L and R 
are the length and radius of the container, respec- 
tively. We will use the concept of the diffusion 
length A [5,7], defined for cylindrical geometry by 
eq (6), to characterize the size of the container 
throughout this report. For parallel plane geome- 
try /?= 00 in eq (6) and A=L/7r, where L is now 
the electrode separation. The approximations made 
in assumption of zero density at the boundary are 
discussed in section 2.2. 

2.2   The Effect of Boundaries 

In this subsection we are concerned with a math- 
ematical treatment of the effects of boundaries on 
the solution to the diffusion equation. Our ap- 
proach is to solve for the transport of charged par- 
ticles using the techniques of astrophysics in order 
to take into account the effects of charged particle 
reflection at the boundaries [21]. We begin with 
equations for the intensity I(Q,z), flux r(z), and 
density «j(z) of charged particles, taken from the 
theory of radiation transport [22]. 

cos e^^^^y^ = -QnHQ,z)+^ f dH' /(e',z) 

+ S(z) 
AIT' 

r(z)= rdn/(e,z)cose, 

and 

n?(z) = ^iJ de/(e,z). 

(7) 

(8) 

(9) 

Here v is the speed of the particles, which are as- 
sumed to be monoenergetic. Equation (7) describes 
the attenuation of the beam of charged particles of 
intensity /. This intensity is assumed to be a func- 
tion of the single dimension z and the angle 9 with 

respect to the direction of positive z. The left-hand 
side of eq (7) gives the rate of change of the inten- 
sity with respect to position. The cos 0 factor rep- 
resents the projection of the intensity in the 
direction z. The first term on the right-hand side of 
this equation gives the loss of intensity as the result 
of isotropic elastic collisions with a cross section 
Q. The second term represents the effects of colli- 
sions which scatter the charged particles into the 
solid angle dH about the direction of the intensity. 
The 477 factor is the result of the assumption of 
isotropic scattering. The last term in this equation 
represents production of charged particles, which 
is also assumed to be isotropic. Equations (8) and 
(9) are expressions for the current density in the z 
direction and for the density of charged particles in 
terms of integrals over the intensity. 

Equations (7)-(9) are solved using what is 
known as the two-stream approximation. In the 
formulation from Chandrasekhar [22], the two 
streams are assumed to lie on the surface of a cone 
making an angle 6, with the positive z direction. 
With this approximation one obtains equations for 
/+, representing the intensity in the -j-z direction, 
and /_, representing the intensity in the — z direc- 
tion which are 

cos 0, 
dz 2 

Q«/_ , 5(z) 
+■ 47r 

(10) 

and 

.co,e,^.-fif=.fif^+tl. (11) 

In this section only the subscripts + and — refer to 
direction relative to the z axis and not to the sign of 
charge. The flux or particle current density and the 
particle density are then given by 

r(z) = 27r cos e,(/+-/_), 

and 

«,(z)=^ (/++/_). 

(12) 

(13) 

On the right-hand side of eq (10) we first have the 
loss of the /+ component of intensity due to colli- 
sions. The second term is the gain due to collisions 
of the other component of the intensity. Finally 
one has the source term. Equation (11) is a similar 
equation giving the continuation of the negatively- 
directed component. Equations (12) and (13) give 
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expressions for the current density and the particle 
density in terms of the positive and negative com- 
ponents of the intensity. It should be noted that 
with the choice of cos©, = 1/V3, the equations for 
the flux and density in the two stream approxima- 
tion to the angular distribution are identical to 
those obtained with the first two terms of the 
spherical harmonic expansion [21]. 

Our next step [21] is to rewrite eqs (10)-(13) in 
forms similar to those of eqs (1) and (2). Adding eqs 
(10) and (11) for /+ and /_ gives 

while subtracting the equations yields 

cose, ^^^^^^^ = -Qn (/+ -/-). 

(14) 

(15) 

Term by term comparison of eqs (14) and (15) with 
eqs (1) and (2) in the limits o{E=0 and d«,/d/=0 
leads one to define a diffusion coefficient for this 
approximation by 

£)„=cos^e, 
Qn    3Qn '' 3' 

(16) 

where \, is the mean-free-path for the particle of 
charge type q. If one adopts a Gaussian weight fac- 
tor of cos 0, = I/V3 as discussed by Chandrasekar 
[22], then one obtains the familiar form for the dif- 
fusion coefficient [21] given in the second and third 
equalities of eq (16). 

We now come to the part of the derivation di- 
rectly concerned with boundary conditions and 
follow the treatment of Chantry, Phelps, and 
Schulz [21]. We express the boundary condition at 
z=0 by writing the intensity leaving the boundary 
1+ as equal to a reflection coefficient times the in- 
tensity /_ arriving at the boundary, i.e., I+—pI^. 
Substitution of this relationship into eqs (13) and 
(15) yields the magnitude of the normalized slope 
of the density of charged particles at the 
boundaries, i.e.. 

1 dn, 
tig dz 

Qn    (1-p)   V3(l-p)     1 
■cose,(i+p)   x,(i-fp)   /, (17) 

Equation (17) is often called the Milne boundary 
condition [23]. 

The meaning of the various terms in the 
boundary condition represented by eq (17) are il- 
lustrated in figure 1. The dashed Une shows the 

Distance from boundary 

Figure 1. Boundary condition for electron and ion densities. 

value of (l/K)(d«/dz) atz=0. The intercept of this 
line with the abscissa occurs at a distance beyond 
the boundary equal to /,=(! -f-p)X,/V3(l —p). In 
the limit of zero reflection /, = \,/V3. A more 
detailed calculation [23,24] leads to the conclusion 
that for planar geometry the Vs in eq (17) should 
sometimes be replaced by a number between 1.41 
and 1.5 depending on the reflection coefficient. 

2.3   Effective Diffusion Coefficient 

We now consider the boundary condition appro- 
priate to the problem of diffusion in an infinite 
cylinder and in the limit of a steady-state solution. 
We follow the treatment of McCoubrey [25]. The 
fundamental mode solution to eq (3) is the well- 
known zero-order Bessel function, i.e., n{r)=JoQ'r/ 
R). Substitution of this solution into the boundary 
condition, eq (17), yields the relation between the 
quantity j, the radius of the cylinder R, the mean- 
free path Xg, and the reflection coefficient p 

7V.O)    V3(l-p) 
RJoU)    X,(l-Fp)- 

(18) 

Note thaty is smaller than the value of 2.4 which is 
the first root of Jo(j). For parallel plane geometry 
the left hand side of eq (18) becomes 7 tan (J)/L. 
Substitution of eq (18) into eq (3) yields the condi- 
tion for a steady-state discharge, i.e., the discharge 
"maintenance" condition. 

kitt- 
DJ^_Dsa(A/X„p) 

' R^~       A' 
(19) 
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or for cylindrical geometry 

(20) 

In the second equality of eq (19), we have chosen 
to express the results in terms of an effective diffu- 
sion coefficient D^. 

Chantry [24] has recently proposed a simple em- 
pirical approximation to eq (20) which is 

As 1 

(-¥•) 
(21) 

where ^ is the volume of the discharge chamber 
divided by its surface area and the "extrapolation 
length" ^ q is defined by eq (17). This relation is 
useful for arbitrary geometry, e.g., ^/A is 2.405/2 
for infinite cylindrical geometry and ir/l for paral- 
lel plane geometry. The curve and points of figure 
2 show plots of the ratio D^/D^ as a function of the 
ratio AV^/J for p=0. The solid curve is eq (21) 
while the circles are calculated from eq (20) for 
cylindrical geometry [25]. The squares are calcu- 
lated from the corresponding equation for parallel- 
plane geometry. The agreement among the values 
shown by the points and the curve is evidence of 
the success of Chantry's approximation. Figure 2 
shows that the effective diffusion coefficient D^q 
used to describe the loss of charge particles in eq 
(19) approaches Dg as the container size increases 
and the extrapolated length /, and mean-free-path 
X, decrease. At low values of AV^/, the value of 
D^ decreases below the high pressure limit. 

Since a cursory glance at figure 2 makes it ap- 
pear that charged particle losses to the wall be- 
come much less important as the mean-free path 
becomes longer, we show in figure 3 a plot of the 
wall loss frequency Vw, defined in eq (5) and nor- 
malized to its value at low densities Vwo> as a func- 
tion of the gas density. The horizontal scale for 
figure 3 is actually AV|<f,, which is proportional 
to gas density through 1//,. At low gas densities 
the loss frequency Vw=Vwo is independent of den- 
sity, i.e., collisions are negligible and the charged 
particles move freely to the wall. At large gas den- 
sities the wall loss frequency varies inversely with 
gas density and is given by the Vw=D,/A^=X,v/ 
3A^ where D, and \ vary inversely with density. 
Figure 3 shows that the transition between the two 
regions occurs when AV§<^, is equal to I. Note 
that the transition seen here between the two limit- 
ing forms of loss to the boundary is often observed 
for neutral free radicals in chemical reactors {26]. 

10"' 

11 mil 1  1 [ mill 1   I I mill 1   i i miii—i—m 

• Cylindrical Geometry 

■ Parallel Plane Geometry 
— Chantry 

*     ■   ' ' '"'i '     '   * « ""I '     t   ' ' "III I I   I  i Mill I ■     

10-^ 10-1 1 10 102 10-^ 

h%k^ 

Figure 2. Nonnalized diffusion coefficient for a single type of 
particle. 

Gas Density (Arb. Units) 

Figure 3. Apparent diffusion coefficient vs gas density. 

3.   Effects of Space Charge on Diffusion of 
Electrons and Ions 

We begin this section with a simple formulation 
of the length which characterizes space charge 
phenomena in steady-state plasmas, i.e., the screen- 
ing length. We then consider limiting forms of the 
theory of effects of the self-consistent electric field 
or space charge field on the steady-state diffusion 
problem. Finally, we review the general solutions 
and compare empirical approximations to the re- 
sults of numerical models. 
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3.1    Screening Length 

The screening or shielding length [27] character- 
izes the distance over which an electric potential 
change influences the charge distribution. The spa- 
tial variation of the potential V(r,z) is related to the 
positive ion and electron densities by Poisson's 
equation, i.e.. 

V^ V(r^)=-j(n+-n_-nX (22) 

Note that here and in the rest of this paper, the 
subscripts -f- and — refer to positive and negative 
ions. Plasmas with several types of ions, including 
negative ions, will be considered in section 3.4. For 
the purposes of this discussion, we assume one di- 
mensional geometry and that either positive ions or 
electrons are dominant and of nearly uniform den- 
sity. The solution to eq (22) is then 

zeo 
(23) 

where «, is the density of charged particles. We 
then characterize this change by the distance re- 
quired for the potential energy to change by an 
energy equal to half that of the particle tempera- 
ture, i.e., by eA.V=kTg/2. This distance is called 
the screening or Debye length X^q and is given by 

X-Dq- 
kT„ €okT„_  

e^rig     STT Ry GQ «? 
(24) 

where in the second equality Xj, is in m, kT^ is the 
charged particle temperature in eV, «, is in m~^ 
Ry ^ 13.6 eV, and ao=5.29x IQ-'" m. Note that the 
screening length for electrons and ions differ be- 
cause of differing temperature and densities. We 
will be primarily concerned with the electron 
screening length XD^. 

The screening length relation is used for scaling 
the results of space charge controlled motion and 
can also be derived from the detailed theories, such 
as that of Allis and Rose [28], to be discussed in 
section 3.3.2. 

3.2 Ambipolar Diffusion Theory for High Elec- 
tron, Ion, and Gas Densities: (A/XDe> >1 and 
A/X+>>1) 

We now consider the effects of space charge in 
the limits for which the screening length and the 
mean-free path for positive ions X+  are much 

smaller than the diffusion length A, i.e., in the re- 
gion of high electron, ion, and gas densities but 
negligible electron-ion recombination, etc.. This 
problem was solved many years ago by Schottky 
[29] and the resultant diffusion is termed ambipolar 
diffusion. One begins with expressions for the flux 
of electrons and ions: 

r^(z)= —A V n^ — fji^ «e -Es, 

and 

r+(z)=-£>+V n + -FjLi+«+£s. 

(25) 

(26) 

Equation (25) shows that in the limits considered 
here the electron flux is equal to the negative of a 
diffusion term minus a term representing the drift 
of electrons in response to the electric field E, gen- 
erated by the difference in the electron and ion 
densities, i.e., the space-charge field. A similar ex- 
pression is given in eq (26) for the positive ions. 
Note that the sign of this mobility or drift term has 
been changed as is appropriate to the change in 
sign of the charge. For the steady-state problems of 
interest to us the electron flux is equal to the posi- 
tive ion flux so that there is no build-up of charge 
difference, i.e., Fj is equal to r+. Next it is assumed 
that «e—«+<<«e or n+, i.e., the quasi-neutrality 
assumption. With these assumptions eqs (25) and 
(26) yield an expression for the space charge elec- 
tric field: 

£■.= - 
DeVn 
jLle    n   ' 

(27) 

In the second equality we assumed that Z)e> >-0+ 
and ju,+ >>/j,+, as is usually the case. In this limit 
the electric field is determined entirely by the elec- 
trons. 

Substitution of eq (27) for the electric field into 
eq (25) shows that the two terms on the right-hand 
side essentially cancel each other. Physically this 
means that the electron diffusion current is bal- 
anced rather closely by the electron drift current 
and that the electrons essentially sit in a potential 
well. The potential well appropriate to parallel 
plane geometry is drawn in figure 4. It is based on 
the approximate solution for an absorbing 
boundary, i.e., that «(z) = «o cos(7rz/I,) so that 
V[z)={pj\i^ ln[cos(7rz/L)]. Note that this poten- 
tial becomes infinite at the boundary so that the 
electrons cannot escape. The resolution of this 
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Figure 4. Ambipolar space charge potential as seen by elec- 
trons. 

difficulty through departures from the ambipolar 
limit, i.e., the presence of a space charge sheath, 
near the boundary is treated in the models of sec- 
tion 3.3. 

The final expression for the positive ion flux is 

r.=- V«+ = -AVn+,     (28) 

where for ;ii.e> >/x+ 

The effective diffusion coefficient D^ is known as 
the ambipolar diffusion coefficient. Equation (29) 
shows that when the electron D^fi^ ratio is much 
greater than the positive ion £>+/fj,+ ratio, as in an 
active discharge, then the ambipolar diffusion coef- 
ficient is much greater than the positive ion diffu- 
sion coefficient. The motion of the positive ions in 
the potential shown in figure 4 is that of a continu- 
ally accelerating drift. We will see later how this 
model fails as one approaches the boundaries of the 
discharge tube. 

The electron and ion mobilities and diffusion co- 
efficients have been assumed constant in eqs (25)- 
(29). The effects of an E/n dependent ion mobility 
have been considered by Frost [30] and by Za- 
kharova, Kagan, and Perel' [31]. Other geometries, 

such as coaxial cylinders, have been considered 
[32-34]. The second equalty in eq (29) assumes that 
the electron and ion energy distributions are 
Maxwellian at temperatures of T^ and 71, respec- 
tively. When the electron energy distribution is not 
Maxwellian the concept of a temperature is only 
approximately correct and it is better to retain eD^/ 
jXe from the first equality of eq (29) rather than use 
kT^ [35]. The effects of a non-Maxwellian ion en- 
ergy distribution apparently have not been dis- 
cussed in this context. 

Two useful limits of eq (29) are the thermal equi- 
librium limit, i.e., Te=T+, and the active discharge 
limit, i.e., 7'e>>r+. The thermal equilibrium limit 
is often applicable in the afterglow of pulsed dis- 
charges [1,5] and results in 

A=2£>+. (30) 

This subject will be considered further in section 
3.5.1. The active discharge limit often applies in the 
positive column, etc., [4] and results in 

(31) 

This limit will be considered in more detail in sec- 
tion 4.1.1. 

3.3   Transitional Ambipolar Diffusion 

3.3.1 Map of AAne and A/X+ Space In order 
to correlate various experimental and theoretical 
investigations of ambipolar diffusion, we have 
shown in figure 5 a schematic of the range of diffu- 
sion lengths, positive ion mean-free-paths, and 
screening lengths considered in the theories we 
will discuss, i.e., 0<A/Xoe<oo and 0<A/X+<oo. 
The space-charge free limit resulting in indepen- 
dent particle transport which we considered in sec- 
tion 2 corresponds to moving downward along the 
left-hand side of this square. At the upper left cor- 
ner we have the independent diffusion of the elec- 
trons and the positive ions. At the lower left corner 
we have the collision-free and field-free, i.e., "free 
fall," motion of the ions and electrons to the 
boundary. The ambipolar diffusion limit considered 
in section 3.2 occurs in the upper right-hand corner 
of the square, where both the mean-free-path and 
the screening length are short compared to the dif- 
fusion length. The transition from free diffusion to 
ambipolar diffusion at high gas densities which oc- 
curs along the top side of the square is discussed in 
section 3.3.2. This is followed in section 3.3.3 by a 
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Figure 5. Map of transitional ambipolar diffusion parameters 
and solutions. 

summary of theory of the colHsionless transition 
along the bottom of the square from space charge 
free to space charge dominated or ambipolar mo- 
tion. This theory includes inertial effects which de- 
scribe the acceleration of ions in the absence of 
collisions. The theory including both collision and 
inertia terms is summarized in section 3.3.4 for the 
limit of XDe< <A, i.e., along the right-hand side of 
the square. Section 3.3.5 summarizes theoretical re- 
sults applicable to all of figure 5. Positive ion diffu- 
sion for A/X+> > 1 is discussed in section 3.3.6. 

3.3.2 The Transition from Free to Ambipolar 
Diffusion at High Gas Densities: A/X^>1 and 
0<A/XDe<(» We now consider the transitional 
ambipolar diffusion problem for electrons and posi- 
tive ions corresponding to experiments in which 
the mean-free-path is much smaller than the diffu- 
sion length, and in which the electron screening 
length may vary from much smaller than the diffu- 
sion length to much larger than the diffusion 
length. This problem was first solved by AUis and 
Rose [28] and we will summarize their results. The 
applicable equations are 

r+(z)= -D+ V n++ix+ «+ E„ 

V-re,+=/!:i«ne. 

and, since n_=0, eq (22) becomes 

(25) 

(26) 

(32) 

with the boundary conditions for absorbing walls 
of 

Equations (25) and (26) repeat the continuity equa- 
tions for electrons and ions. Equation (32) is the 
steady-state form of eq (1) for positive ions (g = +), 
while eq (33) is eq (22) with n_=0. The mobility ju 
and diffusion D coefficients are usually treated as 
independent of position. The boundary conditions 
require that the electron and positive ion densities 
are zero at the generalized boundary at R. Follow- 
ing Allis and Rose [28] we expressed the results in 
terms of an effective diffusion coefficient D^^ for 
electrons defined for a steady-state discharge such 
that 

A:irtKri)=Vw«eO= 
nPscrtg (34) 

where «eo is the electron density at the center of the 
discharge. The ratio D^/D^ is a measure of the 
change in the diffusion loss of electrons caused by 
the ambipolar electric fields. Note that some au- 
thors, e.g., Ingold [36] and Cohen and Kruskal [37], 
express the results of the theory in terms of the 
ionization frequency V\^k\ n required to maintain 
the discharge, or in terms of its equal for a steady- 
state discharge, the frequency of electron loss to 
the walls Vw. Two important limits of the solutions 
to eqs (25), (26), (32), and (33) have been discussed 
in sections 3.2 and 2 of this report. When \iy.<, < A 
the ambipolar limit applies and D^=D^. When 
^De> >A, free diffusion of the electrons occurs and 
Dse=D^. According to the expression for the am- 
bipolar diffusion coefficient given in eq (29), the 
ratio of the ambipolar diffusion coefficient to the 
free electron diffusion coefficient D^JD^ for an ac- 
tive discharge (3"e> > r+) is equal to the ratio of 
the positive-ion mobility to the electron mobility. 
Typical experimental values oiD^/D^ are from 10"* 
to a few times 10"^. 

A number of solutions have been obtained for 
the transition from free to ambipolar diffusion at 
high gas densities. One of the earliest was that re- 
ported by Holstein [38], who replaced the radius of 
the tube for electron loss by the radius minus a 
plasma sheath thickness very nearly equal to the 
screening length. A second approximation uses the 
idea that since electron and ion densities have the 
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same spatial distribution in the limits of large and 
small screening lengths one can assume that the ra- 
tio of the electron and ion densities is everywhere 
constant [28,39,40]. Since these solutions are not 
accurate at intermediate values of XnJK, one must 
beware of this popular approach. Numerical solu- 
tions of eqs (25), (26), (32), and (33) were obtained 
by AUis and Rose [28] for parallel plane geometry. 
More recently, numerical techniques have been 
used for 0<A/\2fc<oo in the A/\+>l limit by 
Kregel [41] as part of time dependent solutions and 
by Ingold [36] as part of steady-state solutions for 
0<A/X+<oo. Models based on the separation of 
the plasma into a central region matched to a 
sheath have been extended and refined by several 
authors [28,37,42,43]. The more recent results 
agree well with the numerical results of AUis and 
Rose [28]. Another approach uses power series ap- 
proximations to the electron and positive ion densi- 
ties in parallel-plane geometry [44,45] and 
cylindrical geometry [46]. For reasons which are 
not understood, the latter results [46] for Dje are 
lower than the numerical results [28]. An analytic 
solution for an isothermal plasma, i.e., T^ = T^, by 
Numano [47] agrees with Allis and Rose [28] for a 
limited range of jn+ZiLie- 

Figure 6 shows schematics of spatial distribu- 
tions for the electric potential and the electron and 
positive-ion densities obtained by the numerical 
techniques [28]. The upper curve shows a sche- 
matic of the space-charge potential V{z) as a func- 
tion of distance for parallel-plane geometry. In the 
central portion of the gap near z =0 the potential is 
the same as shown in figure 4, i.e., it is approxi- 
mately parabolic near its origin and increases with 
distance from the origin at a rate determined by the 
D/\i value for the electrons. At a distance from the 
electrodes of the order of the screening length for 
the electrons, the potential variation changes char- 
acter and increases less rapidly, reaching a finite 
value at the electrodes. This finite potential allows 
the electrons to escape over the potential barrier 
and reach the wall. The transition region near the 
wall is known as the ion sheath, because of the 
dominance of positive ions. In the lower part of 
figure 6 we show a schematic of the calculated pos- 
itive ion and electron densities. Note that the elec- 
tron density curve has been multiplied by 100. The 
electron density decreases more rapidly than given 
by the cosine function characteristic of free diffu- 
sion or of ambipolar diffusion, and it approaches 
zero at a distance from the wall of the order of the 
electron screening length. The positive ion density 
on the other hand is much flatter and decreases 

z/A 

Figure 6. Schematic spatial distributions of potential and parti- 
cle densities. 

rapidly only at distances from the wall such that 
ion diffusion becomes more important than the ion 
drift in the space charge electric field which domi- 
nates over most of the volume. 

In figure 7 we have compared some of the theo- 
retical results for the effective diffusion coefficient 
as a function of the ratio of the diffusion length to 
the electron screening length. The simple approxi- 
mation due to Holstein is indicated by H-'s. We see 
that it is close to the other points when the ratio of 
the electron mobility to the ion mobility is rela- 
tively small, as in the case of ft._/jx+ = 32. Hol- 
stein's approximation is much worse for larger 
ratios of mobility. The numerical results of Allis 
and Rose are indicated by the X 's and solid circles 
and show the smooth transition from values Ae/A 
near unity at low values of the ratio A/Xoe to 
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Figure 7. Normalized diffusion coefficients vs A/XDC for X+/ 
A<<1. 

in the electrostatic potential and to obey the Boltz- 
mann equation for their distribution in that poten- 
tial, i.e., ne=«o exp[—eV(zykT]. The density of 
positive ions is 

n+{z)=      7—r- .(y) (35) 

Here v+(y,z) is the velocity a positive ion acquires 
in moving of its point of production at y to the 
point z. The equations for the electron and ion 
fluxes given by eqs (25) and (26) are no longer ade- 
quate and are replaced by 

T^= —A V /2e—/^e «e -^s' rtjA), 
•V(m,v,V2),    (36) 

and 

values equal to the ratio of mobilities of positive 
ions and electrons at high ratios A/Xoe- Similar ra- 
tios have been calculated numerically by Cohen 
and Kruskal [37], solid squares, and by Ingold [36], 
inverted triangles. The solid curves are empirical 
fits to these calculations and will be discussed later. 

3.3.3 Effects of Space Charge at Low Gas Densi- 
ties: >i+/A>>l and 0<A/jDe<!» We now turn 
to the transition between free "diffusion" and am- 
bipolar "diffusion" which occurs at low gas densi- 
ties, that is when \+/A>>l and the charged 
particle motion approaches free-fall in the space 
charge electric field. The long mean free paths 
mean that the coUisional-equilibrium model of 
charged article motion eq (2) will have to be re- 
placed by a model in which the ion velocity distri- 
bution is no longer a function of just the local 
electric field. The screening lengths vary from 
very small values to large values compared to the 
diffusion length. In the X+/A>>1 limit, the fre- 
quency of charged particle loss or reciprocal life- 
time is independent of gas density as for low A/X+ 
in figure 3. Nevertheless, for the sake of unity we 
will express the results in terms of an effective dif- 
fusion coefficient for electrons relative to the free 
diffusion coefficient. Here we are concerned with 
solutions obtained along the lower side of the 
square of figure 5. 

We follow the treatments of Tonks and Lang- 
muir [48] for Xoe/A < < 1 and the treatment of Self 
[49] for arbitrary values of AAoe- Another discus- 
sion of related models is given by Dote and Shi- 
mada [50]. For simplicity we discuss only the one 
dimensional solution. The potential form of Pois- 
son's equation, eq (33), is the basic equation for this 
treatment. The electrons are assumed to be trapped 

T+=—D+ V n+-fp.+ «+ £s— 
n. 

m+v+n 
V(m+vi/2). 

(37) 

Here v^n and v+„ are the collision frequencies for 
electrons and ions with the neutral gas and are de- 
fined for practical purposes by their relation to the 
corresponding mobilities, i.e., Vj^e/Qrij fij). Equa- 
tions (35)-(37) were obtained from the first two ve- 
locity moments of the Boltzmann equations for 
electrons and ions. The last terms on the right-hand 
sides of eqs (36) and (37) are called the inertia terms 
and become important when X^ or X+ becomes 
comparable with the dimensions of the plasma re- 
gion under consideration [36,51-55]. 

For the conditions of interest here the electrons 
are sufficiently close to equilibrium in the potential 
well that the inertia and flux terms of eq (36) can be 
neglected. On the other hand, at the low gas densi- 
ties considered in this section an approximate solu- 
tion to eq (37) is obtained by equating the last two 
terms on the right-hand side to obtain 

tZl. 
2e -f dz£:,(z)=F(z,)-F(z2). (38) 

Here the electron starts at rest at Zj. Equation (38) 
is simply the conservation of energy in the coUi- 
sionless limit. When eq (38) is solved for v^. and 
used in the integral form of eq (35) for «+, the one 
dimensional form of eq (33) becomes 

d'F(z) 
dz^   '' Co 

-eV(,zykT 

[2e) "^"j^   [V(y)-Viz)r 

(39) 
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In the Tonks and Langmuir treatment the left-hand 
side of eq (39) was neglected. From eq (33) we can 
see that this corresponds to the assumption of 
charge neutrality or that \De/A< < 1 and results in 
the neglect of space charge sheaths near the walls. 

Self [49] obtained numerical solutions for the 
complete eq (39). Once this potential has been ob- 
tained one can calculate the flux of charged parti- 
cles and the effective diffusion coefficient using eqs 
(35) and (37). The results of this calculation for ions 
of one atomic mass unit are shown in figure 8. The 
solid triangles show the results obtained by Self for 
parallel-plane geometry. The inverted triangles 
show the results we obtained by extrapolating cal- 
culations by Ingold [36] for parallel plane geometry 
to small values of the A/X+ using the relations of 
section 3.3.5. The open circles show results ob- 
tained by Forrest and Franklin [56] for cylindrical 
geometry. These authors agree with the extrapo- 
lated results from Ingold when corrected for ge- 
ometry at high A/XD^. Possibly their smaller values 
of Ae/-De at low values of A/X,De are the result of a 
different numerical factor relating the density to 
the collisionless flow of charge to the wall. Note 
that the effective diffusion coefficients at large val- 
ues of A/XDC are independent of mass, while at very 
low A/X-De (free fall) the values of D^D^ vary as 
the square root of the mass. Again the solid curve 
is an empirical fit to the detailed theory for paral- 
lel-plane geometry which will be discussed in sec- 
tion 3.3.5. The dashed curve is calculated using the 
empirical formula for cylindrical geometry. A sim- 
plified model for these conditions, but without ex- 
plicit   consideration   of   the   sheath,   has   been 

r-T TTT] 1 TTT] 1 TTTl 1 rTT|—T 

▼ Ingold 

A Self 
O Forrest and Franklin 

J UJJ I LU 

Figure 8. Normalized diffusion coefficients vs A/Xce for X+/ 
A> > 1 and ions of 1 amu. 

developed for cylindrical and rectangular ge- 
ometries by Kino and Shaw [57]. Models devel- 
oped for application to argon-ion lasers will be 
cited in section 4.1. 

3.3.4 Ambipolar Motion at Various Gas Densi- 
ties: A/XDe>>l and 0<A/X+<oo Self and 
Ewald [58] have combined eqs (35) through (37) 
with eq (33) to obtain the results shown in figure 9 
by the open circles and squares for cylindrical and 
planar geometry, respectively. The solid circles are 
results obtained by Ingold [36] for planar geome- 
try. The solid curve is calculated using the empiri- 
cal formula discussed in section 3.3.5. The results 
shown in figure 9 correspond to the right-hand side 
of the square in figure 5. In figure 9 we see that the 
use of AV^X+ instead of A/X+ allows one to com- 
press the calculations for cylindrical and parallel 
plane geometry into a single curve. 

10" 

10"' 

10-- 

10-' 

I    I   MINI 1    TTTTTTTr 

O Self and Ewald - Cylinder 

D Self and Ewald - Parallel Plane 

• Ingold - Parallel Plane 

_I I   ' ' mil '    '   ■ I ii'il 1 t   I I Mill  I 1    I   1 I MM 

10"' 10-1 1 10 102 10^ 

A'^/a. 

Figure 9. Normalized diffusion coefficients vs AV§A.+ for XDU/ 

A<<1. 

3.3.5 General Solution: 0<A/XDe< oo and 
0<A/X+<oo General results appropriate to es- 
sentially all of the area of figure 5 have been ob- 
tained by Forrest and Franklin [56] and by Ingold 
[36] for the case of re> >/■+, i.e., for the "active" 
discharge of Allis and Rose [28]. Some of Ingold's 
results are shown by the solid points in figure 10. 
Here again we have used AV^X^. instead of A/X+ 
in order to combine results for cylindrical and par- 
allel plane geometry. The curve shown for A/ 
XDe=0 and the curves and points shown for 
A/XDe= 00 are the same as those in figures 2 and 9, 
respectively. The curves shown for intermediate 
values of A/X^e are empirical fits obtained by 
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Figure 10. Normalized diffusion coefficients vs AV§\+ for vari- 
ous A/XDC- 

Muller and Phelps [59] by sliding the solid curves 
for A/X0e=O downward and slightly to the right, 
so as to pass through the calculated points from 
Ingold. In other words, we have assumed that the 
theory derived for the motion of particles in the 
absence of space charged fields can be scaled to fit 
Ingold's results for various values of the ratio of 
diffusion length to screening length, including the 
value of infinity. Extrapolations of these curves to 
very low values of t^/^^ were used to obtain the 
points attributed to Ingold in figure 8. 

Ingold's results [36] were obtained using eq (36) 
and (37) for the flux of charged particles. He used 
boundary conditions equivalent to those of section 
2.2 for a completely absorbing boundary. In figure 
11 we have combined figures 7 and 8 to show the 
comparison of various calculations as the ratio A/ 
Xoe is varied. Figures 10 and 11 also show a com- 
parison of the various theoretical calculations of 
the effective diffusion coefficients with the smooth 
curves generated by the empirical formula of 
Muller and Phelps [59]. These formulas have been 
simplified by Chantry [24] with negligible changes 
in magnitude. The resulting relation for Ae/A is 

(20+10(AADe) + (AADe)') 
X 

^20+ 12(o-+ l)'^WM+(o-+ l)(AADe)')' 

(40) 

Figure 11. Normalized diffusion coefficients vs AADS for vari- 
ous A/\+ and fie/n+ = tr. The symbols are the same as in figures 
7 and 8. 

where the effective linear extrapolation length /^ 
defined by Chantry [24] is given by 

X+    °^l6mj L 
fl+3.3(AADe)) 

(l+2.34(c.+l)[^]qA]y 

(41) 

cr=^e/p,+ and the boundaries are assumed to be 
completely absorbing. The quantity ^ was dis- 
cussed in section 2.2. Note that eqs (40) and (41) 
correct some typographical errors in the original 
paper [24,60]. 

In the limit of large electron and ion densities or 
A/AD5> > 1, eqs (40) and (41) reduce to 

Ae 
A 1- 

(Tr/3)'"^g\^cr\-'      I 
A^(l-l-o-)    )    (l + o-)' (42) 

Alternate empirical expressions derived from the 
results of Self and Ewald [58] discussed in section 
3.3.4 have been given by Ferreira and Ricard [61]. 

Chantry [60] has suggested that eqs (40) and (41) 
can be used when T^ is comparable with 7"+, e.g., in 
thermal equilibrium where T^=Tj^, by replacing 
the (1 + cr) factor in these equations by DJD^, 
where A is given by eq (29). 

3.3.6 The Diffusion of Positive Ions Thus far 
we have discussed the results in terms of the effec- 
tive diffusion coefficient for electrons. Since the 
production rates for electrons and ions by electron 
impact ionization are equal and the steady-state 
densities of electrons and ions are unequal, the 
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effective diffusion coefficients for positive ions and 
electrons must differ. Relatively little effort has 
been devoted to evaluation of the effective diffu- 
sion coefficient for positive ions in a steady-state 
discharge. 

The results of AUis and Rose [28] can be used to 
calculate the effective diffusion coefficient for posi- 
tive ions at high gas densities. These results are 
shown by the solid circles in figure 12 where A+/ 
Z)+ is plotted as a function of AAx>+ for AV 
§/+>!, where Ao+ is the screening length for 
positive ions defiined by eq (24) with q = + . Values 
of Ae/^+ versus A/XD+ are shown by the dashed 
curve for comparison. This plot is for cr=32 and 
(Z)e/ju,e)/(Z?+/ju,+)=:100, as onc might expect in an 
active discharge in H2. For values of A/\o+ less 
than about 100 there are significant differences in 
the effective diffusion coefficients for positive ions 
and for electrons, but at higher A/\D+ the positive 
ions and electrons diffuse together as in the am- 
bipolar limit. The author has extended the results 
of Allis and Rose to low A/A.^+ by assuming that 
the electron density is small enough so that the 
electric field is determined only by the ions and 
that the ion production varies as the electron den- 
sity, i.e., as cos (z/A). Thus, self-repulsion domi- 
nates the ion motion for 1<AA£,+ <10. The solid 
diamonds show numerical results. Numerical and 
analytical results show that for 2<A/Xj+<10, 
A+/^+ varies as (AAo+)^ For AA£,+ <1, A+/ 
D+ approaches 1 as expected for no space charge 
effects. The solid curve shows an empirical fit to 
the data for all A/X+. Dote and Shimada [62] have 
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investigated theoretically the diffusion of positive 
ions in an active discharge, but do not find the max- 
imum in the A+/^+ values found by Allis and 
Rose [28]. In the afterglow, where Te=T+, Gerber, 
Gusinow, and Gerardo [63] find a maximum in 
D^+/D+ similar to that of figure 12. See section 
3.5.2. 

3.3.7 Summary of Transitional Ambipolar Diffu- 
sion In sections 3.3.1-3.3.6 we have reviewed the 
available theoretical models describing the loss of 
charged particles to the wall of the discharge ves- 
sel when only electrons and one type of positive 
ion are present in the gas. The theory for the loss of 
electrons covers the complete range of ratios of the 
diffusion length to the screening length and of the 
diffusion length to the positive ion mean-free path. 
A relatively simple empirical expression enables 
one to relate all of the various theoretical results 
for the diffusion of electrons. The theoretical effec- 
tive diffusion coefficient for the loss of positive 
ions to the walls has been extended from that for 
the ambipolar limit to include all values of A/Xn+ 
for AA+> > 1, but theory is not available for A/ 
KD+~^ and K+ZA^l. 

3.4   Electrons and Several Types of Ions 

In this section we review work on the simulta- 
neous diffusion of electrons and several types of 
positive ions and/or negative ions. 

3.4.1 Electrons, Positive Ions, and Negative 
Ions: A/\De> > 1 and A/X+ (AA_ > > 1 This re- 
view of the simultaneous diffusion of electrons, 
positive ions, and negative ions is largely based on 
the early treatment of the subject by Oskam [1], 
For recent general discussions see Rogoff [64] and 
Tsendin [65]. The equations appropriate to the 
simultaneous diffusion of electrons and one type 
each of positive and negative ions in the Umit of 
AAD=>>1 and AA+>>1 are eqs (25) and (26) 
for electrons and positive ions and 

r_(z)= -D_ Vn^-fi_ n_ E, (43) 

Figure 12. Normalized positive ion diffusion coefficients A+/ 
D+ vs A/XD+ for AA+—*■«. 

for negative ions. Here r_ and n_ are the flux and 
density of negative ions, while D_ and JLI_ are the 
diffusion and mobility coefficients for the negative 
ions. As expected, eq (43) for the negative ion cur- 
rent is very similar to eq (25) for the electrons. In 
the steady state one requires that re-l-r_ = r+, so 
that there will be no accumulation of charge within 
the discharge. This condition allows one to calcu- 
late the space-charge electric field from eqs (25), 
(26), and (43) as 
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fjD,V«e+D_V«_-£)+Vn+'j 
K=- 

fjlAe«. -|-JLl_«_+jH+ 
-) 

(44) 

This rather complicated expression simplifies when 
we take into account the condition that A/ 
^De> > 1 so that there is charge neutrality, i.e., the 
sum of the electron and negative ion densities 
equals the positive ion density. Further simplifica- 
tions result if we follow Seeliger [66] and Oskam 
[1] and assume that the spatial distributions of elec- 
trons and all ions are the same, i.e., that 

V«e   V«_    Vn+^Vn (45) 

and that n_//2e=a. When the congruence assump- 
tion represented by eq (45) is valid, the electric 
field is then given by 

E.= (46) 

Since the diffusion coefficient and mobility coeffi- 
cient for electrons are much larger than the corre- 
sponding coefficients for negative ions and positive 
ions, this expression becomes rather simple when 
a/j-_ and afx+<<ju.e, i.e., when the value of a is 
less than about 10. In this case the space charge 
electric field is determined by the electrons just as 
in the absence of negative ions, i.e., as in the second 
form of eq (27). The ambipolar diffusion coeffi- 
cients for this situation are given by 

Ae=(l+a)Z?+(l+^j-l-aZ)_(^-lj, 

>((l + a)fi++aja_j^, (47) 

A- = 2(1-Fa) A    T. ■+1 £>. 

A 
/J-- (48) 

and 

A.=(l+^)i>.^g^.. (49) 

Here we have used the relationship kTJe=Dy\xx 
to simplify the equations. The second forms of the 
equations are the limiting forms for T^>>T_ and 
T+. Of particular interest is the negative value for 
A-. which means that the negative ions flow to- 
ward the center of the discharge. This phe- 
nomenon leads to a breakdown of the assumption 
of congruent spatial distributions of the ions and 
electrons and eventually to a contraction of the 
discharge [66-72]. The consequences of this flow 
are discussed below. When T^=T_ = T^, then 
Ae=(l + a) 2Z)+, A- = (l+a) 2£>+£)_/A, and 
A+= 2£)+. These results would be appropriate to 
an afterglow where the electrons have cooled to 
the gas temperature. See section 3.5.1. 

The equations of continuity for the electrons, 
negative ions, and positive ions are 

3«e 
dt' 

a/i_ 
it 

■■ —^•Te-\-kx n n^—k^ n n^+k^ n n. 

= —V-r_+k^n n^—kin n. 

and 

3«4 

3/ 
= -V.r+-|-/tinn, 

(50) 

(51) 

(52) 

Here k^ is the electron attachment rate coefficient, 
ki is the collisional detachment rate coefficient for 
the negative ions, and k^ is the ionization rate coef- 
ficient. In eq (50) we have indicated that the elec- 
trons may be lost by flow and by electron 
attachment, while they are produced by electron 
impact ionization and by collisional detachment 
from the negative ion. We have neglected poten- 
tially important processes such as electron-positive 
ion and positive ion-negative ion recombination. In 
eq (51) we see that in this model the negative ions 
are lost by flow and by collisional detachment, and 
are produced by electron attachment to the neu- 
trals. Finally, eq (52) gives the positive ion loss by 
flow and production by electron impact ionization. 
We are particularly interested in the steady state 
equation for the negative ions. 

If we solve eqs (50)-(52) for the steady-state ra- 
tio of the negative ion density to the electron den- 
sity a, we obtain 

a=- 

Kn Kn 

(ki n -f-A-/A^)      (K n - (D/jLt,)(jLi_/A^)) 

(53) 
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The second form of eq (53) applies when TJ 
7'_ > > 1 and shows that when the diffusion contri- 
bution is less than coUisional detachment, the value 
of a is positive as required for a meaningful solu- 
tion [65]. In this case one pictures the negative ions 
as diffusing toward the center of the discharge tube 
where they undergo collisional detachment. The 
negative charge then diffuses toward the wall of 
the discharge tube in the form of electrons. In a 
real plasma one has to be concerned that the as- 
sumption of the same spatial distribution for all ions 
may not be valid [65,73]. 

The consequences of various limiting values of a 
are discussed further by Oskam [1] and Rogoff [64]. 
The case of very large a leads to almost free diffu- 
sion of the electrons in the presence of large densi- 
ties of positive and negative ions. This case will be 
discussed further in connection with afterglow 
models and experiment in section 3.5.1. 

The effects of the change in steady-state, space 
charge fields produced by negative ions have been 
considered for flowing afterglows [74] and high 
pressure'mass spectrometers [75]. 

3.4.2 Electrons and Several Types of Positive 
Ions We now consider the situation with several 
types of positive ions and no negative ions [1,64,76- 
78]. The particle flux equations for electrons and 
two types of positive ions, labeled 1 and 2, are 

re(z)= —A V «e —M-e «e ^s, 

r,(z)=-AVn,-i-ja, «,£„ 

and 

r2(z)=-AVrt2+j^2«2^s- 

(25) 

(54a) 

(54b) 

Here the Fy and n, are the fluxes and densities of 
ions 1 and 2 and the Dj and jit, are the diffusion 
coefficients and mobilities for these ions. In the 
steady-state re=ri-|-r2 so that 

Vn 
/Xe  n 

(55) 

This equation is very similar to eq (44). If one 
makes the assumptions that the ratio of Vn/« is the 
same for each ion and for the electrons, as in eq 
(45), and that the plasma is quasineutral, 
«i + n2—«e<<«e. one obtains the familiar expres- 
sion for the electric field given in the second form 

of eq (55). Substitution of this expression into eqs 
(25), (54a), and (54b) yields expressions for the am- 
bipolar diffusion coefficients for each of the ions 
and for the electrons. These relationships were 
used by Phelps [77] to analyze the observed decay 
of helium ions and of electrons in the afterglow of 
a helium discharge. Note that the assumption of 
congruence, i.e., the equality of the Vn/« values 
for the electrons and both types of ions, is not gen- 
erally applicable [1,78]. It should apply when non- 
linear loss and production processes, such as 
electron-positive ion and positive ion-negative ion 
recombination, are negligible and the ions are dis- 
tributed in the fundamental diffusion mode [1,77]. 
In the case of positive ions only, we do not have 
the tendency for diffusion to destroy congruency 
as we did in the negative ion case of section 3.4.1. 

3.5   Ambipolar Diffusion in Afterglow 

Many experimental measurements and theoreti- 
cal analyses have been applied to the diffusion of 
charged particles in the afterglow of a discharge. 
See Oskam [1] for an extensive review of the sub- 
ject. Here we will be concerned with the after- 
glows which are dominated by diffusion. Reactions 
which are nonlinear in the charged particle densi- 
ties, such as recombination, are neglected. The dif- 
fusion models discussed previously for steady-state 
electrical discharges are applicable to many after- 
glow experiments. We will also be concerned with 
departures from the description which have been 
given in previous sections, i.e., with phenomena 
such as diffusion cooling. 

3.5.1 Isothermal Plasmas In this section we 
assume that the electron temperature is equal to the 
positive ion temperature and that both of these 
temperatures are equal to the gas temperature, i.e., 
T^=T^ = T^. We also assume that XD=/A<<1 and 
X+/A< < 1. For these conditions we obtain the by 
now familiar expression for electron particle flux in 
terms of the ambipolar diffusion coefficient given 
by eq (29). When this equation is substituted into 
the time-dependent electron continuity equation, 
we obtain 

(56) 

where D^ is given by eq (29). We consider the solu- 
tion to eq (56) for sufficiently long times such that 
higher order diffusion modes have disappeared. 
The conditions necessary for the neglect of higher 
order diffusion modes are discussed in detail by 
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McDaniel [5]. The result for the lowest diffusion 
mode is 

(57) «e(0 = «e(0) e- -i/y > 

where 

i_A 
y-A^ 

2D^ 2kT^ 
(58) 

The final form of eq (58) is often used to obtain the 
ion mobility from measurements of the decay con- 
stant for the electron and ion densities [1,5,79]. Be- 
cause of various ion conversion processes [1,77], 
not included in eqs (56)-(58), it is generally neces- 
sary to plot the experimental values of n/y as a 
function of n and extrapolate to «=0. Many au- 
thors have used this technique to determine ion 
mobility and under proper circumstances it can 
yield reliable information. However, under many 
circumstances it has not yielded ion mobilities that 
agree with those measured with drift tube tech- 
niques [6,79]. We therefore need to consider 
sources of error in the interpretation of afterglow 
experiments [80]. First, we will consider the depar- 
tures from ambipolar diffusion and the solutions 
given by eqs (57) and (58) which occur when X^^ 
becomes comparable with A. Second, we will dis- 
cuss the phenomenon of diffusion cooling. 

3.5.2 Departures from the Ambipolar Limit 
Measurements and models of the decay of electron 
density and ion wall current in the afterglow of 
pulsed discharges in helium give very direct evi- 
dence of the transition from ambipolar to free 
diffusion [41,63,81-84]. Figure 13 shows schemati- 
cally the results of numerical solutions by Gusinow 
and Gerber [82] of eqs (25), (26), (32), and (33) and 
of eqs (1) with A:i=0 for the time-dependence of 
electron and ion densities in a helium afterglow. At 
early times the electron and ion densities are equal 
and decay with a reciprocal time constant of DJ 
A^=2Z)+/A^. When the charge density decreases 
such that when A/X£i^;:;10 there is a more rapid 
decay of the electron and ion densities. At still 
lower values of A/X^,^ the electron and ion densi- 
ties no longer decay together. The electron decay 
continues to become more rapid until it approaches 
the free diffusion rate. The positive ions, on the 
other hand, soon reach a maximum decay rate cor- 
responding to the peak in figure 12. Their decay 
rate then decreases to a value characteristic of the 
free diffusion of the positive ions, i.e., 1/T=Z)+/A^. 

During this transition the ambipolar field decreases 
to zero. This transition has also been analyzed [85] 

v^ = 2DJA^ = DJA^ 

q109 

VvM = D,/A'^ 

10« 
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ID 
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Figure 13. Schematic of afterglow transients showing transi- 
tional ambipolar diffusion. 

for infinite spherical geometry using the constant 
ion density ratio approximation discussed in section 
3.3.5. 

In the case of afterglows in which negative ions 
are present the electrons disappear rapidly when 
A/Xoe~l and one is left with a plasma composed 
of negative and positive ions. According to eq (46) 
there is very little space charge electric field. A 
number of investigators have shown experimen- 
tally [86-88] and theoretically [41] that since the 
electric field is no longer sufficient to stop the neg- 
ative ion flow, the negative ion wall current sud- 
denly increases at this time. Qualitatively similar 
results have been obtained [89] using the constant 
ratio ion density approximation. 

An interesting feature of these theories and ex- 
periment is the apparent applicability of the steady- 
state results to experimental afterglows [81]. This 
effect is presumably the result of the ability of the 
highly mobile electrons to readjust their density 
rapidly on the time scale of interest. 

3.5.3 Diffusion Cooling A second phe- 
nomenon, which can cause significant errors in the 
simple model of the diffusion of ions in an after- 
glow, is that of diffusion cooling. This effect was 
discovered by Biondi [90] in neon afterglows 
where he observed that the apparent diffusion coef- 
ficient for the electrons and ions dropped by almost 
a factor of two at low gas densities. This effect is 

422 



Volume 95, Number 4, July-August 1990 

Journal of Research of the National Institute of Standards and Technology 

particularly pronounced in neon because the rela- 
tively small ratio of electron to atom mass and low 
momentum transfer cross section for electrons in 
neon result in poor energy exchange between elec- 
trons and gas atoms. Biondi showed that the addi- 
tion of small amounts of helium restored the 
thermal contact between electrons and the gas and 
led to higher values for the effective diffusion coef- 
ficient. 

Figure 14(a) shows in a schematic fashion the 
potential well and electron distribution functions 
appropriate to the diffusion cooling problem. The 
potential well has the typical parabolic shape at the 
center and reaches the finite value at the walls of 
the container. Electrons with energies larger than 
that indicated by the horizontal dashed line can es- 
cape from the well to the walls. If the frequency of 
energy relaxation collisions is sufficiently rapid, 
only those electrons that are very close to the wall 
will be able to cross the potential barrier and the 
space charge field in most of the plasma will be 
unperturbed from the ambipolar value. As the en- 
ergy relaxation frequency is reduced by decreasing 
the elastic collision frequency or by increasing the 
mass of the atom, electrons from near the center of 
the container can reach the wall without imdergo- 
ing energy relaxation. The effect of this process is 
to deplete the high energy tail of the distribution as 
indicated by the unperturbed energy distribution 
Fo(e) shown by the solid curve and the cooled dis- 
tribution Fc(,e) shown by the dashed curve. The 
loss of high energy electrons reduces De/fig, i.e., 
reduces the effective temperature of the electrons, 
and reduces the space charge electric field and the 
loss of ions by ambipolar diffusion. In the limit of 
£)e/jLie-^>0, the ambipolar field goes to zero and the 
ions diffuse freely. Detailed theoretical treatments 
of diffusion cooling are now available [91-94]. 

Figure 14(b) shows the schematic of the values 
of iVAVr as a function of gas density under condi- 
tions in which diffusion cooling is important. The 
points and line through them indicate qualitatively 
the kind of experimental diffusion coefficient re- 
sults obtained [88,90]. Diffusion cooling has also 
been observed via measurements of the decrease in 
radiation temperature of the electrons [95,96]. Un- 
fortunately, the density dependence of the apparent 
ambipolar diffusion coefficient caused by diffusion 
cooling is qualitatively similar to that which would 
be expected if the ions were being converted from 
an ionic species with a low diffusion coefficient to a 
species with a high diffusion coefficient [77]. This 
possibility illustrates the need for mass spectromet- 
ric identification of the ions in such experiments. 

2D,N 

-.    D,N 

N 

Figure 14. Schematic of electron energy distributions and data 
in diffusion cooling experiment. 

We note that the phenomenon of electron mo- 
tion from one portion of the plasma to another in 
times which are fast compared to energy relaxation 
times, which is responsible for diffusion cooling, is 
also responsible for excess ionization in the center 
of the discharge in the steady-state "active" dis- 
charge to be discussed in section 4.1.2. 

4.   Applications of Models of Ambipolar 
Diffusion 

We now turn to applications of the models of 
ambipolar diffusion discussed in sections 2 and 3 to 
the interpretations of several gas discharge sys- 
tems. Firstly, we consider the maintenance of 
steady-state dc and microwave discharges at low, 
moderate, and high pressures. Secondly, we sum- 
marize the effects of magnetic fields on the diffu- 
sive loss of charged particles from discharges. We 
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then briefly discuss the role of diffusion in transient 
discharges at high pressures. 

4.1   Steady-State Discharge Maintenance 

In this section we apply the models developed in 
sections 2 and 3 to the prediction of the applied 
electric fields, gas densities, etc. required to main- 
tain a low power, low pressure electrical discharge 
in which the ionization is by single-step electron 
impact excitation of ground state atoms or 
molecules. In most models of steady-state dis- 
charges the ambipolar electric fields E^ are perpen- 
dicular to the applied electric field E^ and the 
effects of the ambipolar fields on the electron en- 
ergy distribution function, the excitation and ion- 
ization rate coefficients, and transport in the 
direction of the applied field are neglected. In sec- 
tion 4.1.2 we will, however, summarize work on 
the effects of ambipolar electric fields on the elec- 
tron energy distribution functions and the resultant 
changes in applied fields necessary to maintain the 
discharge. 

4.1.1 Discharge Maintenance at Moderate Gas 
Densities: (AA+>>1, A/X„>>1, and 0<A/ 
XDC< OO) We now consider the application of the 
theory developed for the effective diffusion coeffi- 
cient for electrons to the calculations of the proper- 
ties of an electric discharge. Equation (34) shows 
the balance between the production of electrons by 
electron impact ionization at the axis of the dis- 
charge and the loss of electrons by diffusion. This 
equation can be written as 

2A2- n^A 
D, 

(59) 

Rose and Brown [97] have applied eq (59) and the 
theory developed in section 3.3.5 to an analysis of 
steady-state microwave discharges in H2 and find 
generally good agreement between theory and ex- 
periment. Poor agreement with the simple theory 
represented by eq (59) is found for Ar at mi- 
crowave frequencies and at dc, presumably be- 
cause cumulative or multistep ionization processes 
are important for the rare gases [98]. Muller and 
Phelps [59] have applied the results discussed in 
section 3.3.5 for Ae/^e to an analysis of low cur- 
rent discharges in H2-He mixtures and find good 
agreement with experiment at their higher gas den- 
sities. Hydrogen and H2-He gas mixtures are suit- 
able for these comparisons because of the short 
lifetime of metastable H2 states  [99]  and rapid 

quenching of the He metastables through Penning 
ionization of the H2 [4]. 

In the analysis of the H2-He positive column dis- 
charge, eq (59) has been used to calculate the 
product nA using theoretical values of the ratio 
Ae/A and of nDJk;. The D^D^ values are given 
by the empirical expressions in eqs (40) and (41) 
involving the ratios Xoe/A, X+/A, and |/A. The 
ratios Xoe/A and X+/A are calculated using the 
equations 

Xpe     eDe/jLte  c c A W^ 
A'    ZirRyao   IA^ 

and 

A^ 
fmjJJ^V 3eA    1 

m+ 11^ n^ A 

(60) 

(61) 

where c is the ratio of the mean electron density to 
its peak value and A is the area of the discharge. 
Equation (60) is a reformulation of eq (24). Note 
that the second factor in eq (60) is the electron den- 
sity on the axis of the discharge. For a long cylin- 
drical discharge the radius cancels out of eq (60) 
and the ratio AVXpe^ is proportional to /. Keeping 
in mind that «Z)„ DJ\jb„ and k^ are functions of 
EJn, one sees that eqs (59)-(61) also show the ap- 
plicability of the experimental scaling parameters 
[4] «A, J/n^, and EJn, where J^I/A is the cur- 
rent density at the axis of the discharge. The defini- 
tion of the mean-free path of the positive ions in eq 
(61) is that given by Ingold [36] and involves the 
ion mass Af+, the ion mobility \i^, and the DJ\i^ 
value for electrons. The first factor on the right 
hand side of eq (61) is the square of the mean-free- 
time for ion-neutral collisions per atom evaluated 
from the ion mobility. The ion speed is evaluated at 
the effective temperature DJ)i^ for the electrons 
and is determined from theory or experiment by 
the EJn value for the given gas or gas mixture. 

Figure 15 shows the results of calculations of the 
ionization rate coefficient k^ as a function of EJn 
for the mixture of helium and hydrogen that was 
used in the experiments. These curves were calcu- 
lated using electron collision cross section sets for 
helium and hydrogen and taking into account the 
Penning ionization of the hydrogen. The character- 
istic electron energy DJii^ is a relatively slowly 
varying function of EJn and is not shown. 

Figure 16 shows the results of this analysis. In 
this figure the EJn values are plotted as a function 
of n for several different fractional concentrations 
of hydrogen in helium. The points are the experi- 
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Figure 15. lonization coefficients for H2-He mixtures. 
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Figure 16. Maintenance E/n for H2-He mixtures showing com- 
parison of experiment with predictions of transitional ambipolar 
diffusion theory. 

mental data and the smooth curves are the results 
of calculations. The dashed curve shows values of 
EJn predicted when the diffusion loss is assumed 
to be given by the ambipolar limit. The solid 
curves show the results when departures from am- 
bipolar diffusion are taken into account. The solid 

curves show good agreement with experiment at 
the higher values of n A. At the lower values of « A 
there is small but systematic disagreement between 
theory and experiment. The sign of this disagree- 
ment suggests that the theory has omitted a source 
of ionization. MuUer and Phelps [59] propose that 
the source of ionization is the motion of the elec- 
trons from the outer portion of the discharge to- 
ward the axis in the space charge potential as 
discussed in section 4.1.2. 

Many other comparisons have been made be- 
tween positive column models and experiment. In 
most of them the model is very complicated be- 
cause of the important ionization resulting from 
electron-metastable and metastable-metastable col- 
lisions [62,100-102]. Here we have cited only some 
of the more recent papers. 

4.1.2 Radial Nonequilibrium at Low Gas Densi- 
ties: (AA+>>1, A/>i„<l, and 0<A/X.De<oo) 
In this section we are concerned with the changes 
in the ionization rate coefficient k\ resulting from 
the motion of the electrons in the potential well 
created by the space charge electric field as com- 
pared to the ionization coefficient in the absence of 
such a field. This problem has been addressed for 
microwave discharges by Bernstein and Holstein 
[103] and for dc discharges by Blank [104], Her- 
rmann, Rutscher, and Pfau [105], and by Tsendin 
[106,107]. Radial energy nonequilibrium effects are 
very important in the low-pressure discharges used 
for rare gas, ion lasers [108-111]. 

The origin of the excess ionization is illustrated 
by considering electrons at large radii of the dis- 
charge which are accelerated in the axial direction 
to kinetic energies just below the ionization poten- 
tial and then move radially inward at constant total 
energy to reach kinetic energies above the ioniza- 
tion potential. These electrons are less likely to suf- 
fer inelastic collisions than those accelerated to the 
same final kinetic energy in a spatailly uniform 
electric field. After producing ionization these 
electrons may move radially outward at low ki- 
netic energies where, at least in the rare gases, en- 
ergy losses in inelastic collisions are small. In some 
models [112] the spatial change in the electron en- 
ergy distribution function is approximated by a ra- 
dially varying electron temperature. This process is 
one of "diffusion heating" and, in a sense, is the 
inverse of the diffusion cooling discussed in section 
3.5.3. 

Thus far, there appear to be no simple expres- 
sions that allow estimates of the magnitude of the 
increase in ionization resulting from this nonequi- 
librium effect. 
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The nonequilibrium effects caused by radial am- 
bipolar fields discussed in this section and in sec- 
tion 3.5.3 do not require the introduction of a third 
dimension for the map of figure 5. The importance 
of nonequilibrium is determined by the ratio A/\u, 
where Xu is an energy relaxation distance for elec- 
trons. We define X^ in terms of the energy ex- 
change collision frequency Vu/n used in some 
analyses of electron transport data [113]. Thus, for 

_1 (2eDA^ «_ / 2 Me V ..,^ 
^"-v, Ue IJiJ ~W,E[em Dj ' ^""''^ 

where W^ is the electron drift velocity at the dis- 
charge Eyn. Note that this relaxation distance is a 
property of the whole of the electron energy distri- 
bution and so may be only a rough measure of en- 
ergy relaxation for the high energy tail of the 
electron energy distribution which is of importance 
in the nonequilibrium ionization. Since the ratio Xy 
\+ is a constant for a given gas and EJn, the over- 
all scaling discussed in section 3.3.1 should be 
preserved. 

Measurements of radial ambipolar electric fields 
J?s in active discharges have been made by Baghuis 
et al. [114] and by Ganguly and Garscadden [115]. 
In the first case the data were obtained at rather 
high pressures and currents, i.e., AA+>>1, A/ 
Xu> > 1. and A/\De> > 1> and the agreement with 
predictions [101] is good. In the latter case no com- 
parison with discharge models was made. 

Note that ion energy relaxation effects have al- 
ready been included in the models of section 3. 

4.1.3 Diffusive Nonequilibrium in High Pressure 
Arcs The phenomenon of diffusive nonequi- 
librium in high pressure arcs leads to effects such as 
diffusive separation or demixing of components of 
the gas [116,117]. Ambipolar diffusion also plays an 
important role in departures from local thermody- 
namic equilibrium by depleting the ions through 
transport to the wall where they recombine with 
electrons to produce neutrals which flow toward 
the center of the discharge [118-122]. Because the 
analysis of such effects involves the competition 
between diffusion, ionization, and the nonlinear 
loss process of electron-ion recombination, we will 
not consider the models used to describe these ef- 
fects. Note that we have cited only some of the 
more recent references. 

4.2   Magnetic Field Effects 

The research on the effects of magnetic fields on 
space charge dominated plasmas is much too exten- 

sive to summarize in this paper. Therefore, we limit 
the discussion to applied electric fields parallel to 
the magnetic field, as in the case of magnetic field 
lines parallel to the axis of the positive column of a 
glow discharge; to quiescent ranges of plasma 
parameters; to weakly ionized plasmas; to no rela- 
tive motion of the magnetic field and the neutral 
gas; and to the ambipolar limit of XDe/A< < 1 [123- 
127]. The basic relations governing the transport of 
a single type of charged particles in the presence of 
a magnetic field are given by a number of authors 
[7,127] and are often expressed as modifications of 
the diffusion and mobility coefficients. For energy 
independent collision frequencies for electrons Vem 
and ions vin with the gas, the coefficients describing 
electron transport parallel to the electric field and 
transverse to the magnetic field are: 

;^eT=Y^ 
}X^ 

1       —2 > AT= 
A 

l-fft)|eV, 
-2 ■ 
em 

(63) 

In addition, the electron transport transverse to the 
magnetic field but perpendicular to the electric 
field is characterized by 

M=p= 
p,e OieB Vem 

'l + coLv, 2 ) 
em 

(64) 

while transport along the magnetic field is indepen- 
dent of B. Here cuB^^eB/m^ where B is the mag- 
netic field. Alternate derivations [124,128] of eqs 
(63) and (64) show that one can replace the wv 
products by the corresponding values of 
/3e=jLieB = cosyVem. The proper averaging of these 
expressions for gases in which the collision fre- 
quency varies with electron energy has been dis- 
cussed by various authors [7,127]. In the limit of 
low B/n the v's are much larger than the w's and 
one recovers the D^ and jHe values in the absence of 
a magnetic field. The corresponding equations for 
ions are obtained by replacing co^e/Vem by 0)^/ 
Vin,=]LiiB^i3i, where (jiBi=eB/M and M is the ion 
mass. The details of averaging of the mobility equa- 
tions for ions have been discussed by Shunk and 
Walker [129]. 

Because of the ease with which a magnetic field 
prevents the transport of electrons across field lines 
relative to their transport along the field lines, the 
predictions of the models of ambipolar diffusion in 
the presence of a magnetic field are very dependent 
on the geometry [123-132]. The models usually as- 
sume spatially uniform electron and ion tempera- 
tures, a single type of positive ion, and negligible 
electron-ion collisions. We first consider a steady- 
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state plasma in which the net flow of charge to any 
surface element is zero, as for a container with non- 
conducting surfaces, and for which jSe^> > 1 and ySi 
is of the order of unity. In this case the effective 
ambipolar diffusion coefficient D^ is given by 
[124,125,131,132]: 

A A 
l+JLl,jLli5' 

(65) 

On the other hand, when the surfaces (or a sec- 
ond plasma) at the "end" of the plasma or the use 
of a metallic container allow efficient transport of 
charge across magnetic field lines, the effective dif- 
fusion coefficient is given by [123,126,130,133] 

A A 
\+\iiB 2for)8e>>l. (66) 

Here the electrons move along the magnetic field 
lines until they reach the conducting end plates 
where they move radially. The length of the 
plasma in the direction of the magnetic field is as- 
sumed large enough so that ion loss in the direction 
of B is still small compared to that in the radial 
direction. The effects of sheaths at the conducting 
surfaces are generally neglected. 

The quantitative experimental verification of eqs 
(65) and (66) in active discharges appears to be 
lacking. Not only is it difficult to satisfy the condi- 
tions of either an insulating or a highly conducting 
"end plate," but other assumptions of the model are 
often not met. For conducting end walls, Simon 
[123,130] found agreement with the magnetic field 
dependence of eq (66), but found only rough agree- 
ment of the magnitudes of the diffusion rates with 
his experiments and the early results of Bohm et al. 
[134]. Experimental results with varying degrees of 
insulating walls have shown significant discrepan- 
cies with theory. For example, in several experi- 
ments with positive column discharges the 
apparent transverse diffusion coefficient initially in- 
creases with increasing magnetic field and then be- 
gins to decrease approximately as predicted by eq 
(65) [112,135,136]. One reason for this effect is that 
at zero magnetic field and at low enough gas densi- 
ties \u/A is large enough such that the electron 
energy distribution and "temperature" vary signifi- 
cantly with radius as discussed in section 4.1.2. 
When an axial magnetic field is raised such that 
/8e> 1 the effective energy relaxation length and the 
radial transport of electron energy are significantly 
decreased, the average ionization rate coefficient is 
reduced, and the axial EJn required to maintain 

the discharge increases. Models of the first maxi- 
mum in EJn have also included the effects of 
metastables [136]. The role of ionization waves has 
been debated [112,137]. A second and more dra- 
matic increase in the apparent transverse diffusion 
coefficient above the values predicted by eqs (65) 
and (66) at ySj values greater than about unity is 
attributed to the onset of plasma instabilities 
[12,135,138,139]. The discussion of this effect is be- 
yond the scope of this paper. 

An interesting and apparently unanswered ex- 
perimental question is whether the radial electric 
field £'s reverses sign as predicted [124] when eqs 
(63) and the corresponding equations for ions are 
substituted into eq (27) and when the magnetic 
field is such that AT=AT- Similar predictions have 
been made for the X+/A>>1 case [140]. There 
does not appear to be agreement as to whether con- 
ducting end walls are sufficient to short circuit the 
plasma [123,130] or whether a conducting outer 
cylinder is needed to avoid electron emission prob- 
lems at the walls [141]. When electron emission is 
required to return electrons to the plasma, a signifi- 
cant "cathode fall" voltage could occur at the end 
plate. 

The theory of section 3.3.4 has been extended to 
treat the diffusion of electrons and ions in a par- 
tially ionized gas subject to a magnetic field for 
\De/A<<l and variable X+/A [140-143]. There 
appear to be no quantitative comparisons of these 
models with experiment [144]. 

Afterglow plasmas have also been used in at- 
tempts to verify the effects of a magnetic field on 
ambipolar diffusion [125]. Here the comparison 
should be simpler because of the direct measure- 
ment of the deionization rate and the possibility of 
thermalizing the electrons through collisions with 
the gas so as to achieve equal electron and ion tem- 
peratures. However, there is considerable differ- 
ence among authors. Some experiments [145] show 
quantitative agreement with theory for magnetic 
fields below the onset of instabilities, while others 
[146-148] find varying degrees of agreement for 
containers with end walls of unknown effective 
conductivity. Theory [149] and experiments [150] 
show that the decay rate is highly sensitive to the 
alignment of the discharge tube with the magnetic 
field. 

4.3   Transient Discharges 

The onset of ambipolar diffusion plays an impor- 
tant role in the development of many pulsed dis- 
charges by limiting the diffusive loss of electrons 
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and leading to the development of a constricted, 
highly ionized region or channel. Here we will cite 
only a limited number of examples. 

Ambipolar diffusion is usually included or as- 
sumed in models of the development of highly 
conducting channels or sparks at moderate over- 
voltages [16,151,152]. The reduced loss of electrons 
due to space charge fields allows the build up of 
ionization to values that result in the onset of pro- 
cesses such as multistep ionization, electron detach- 
ment, and thermal gas expansion. 

The effects of radial electric fields caused by dif- 
fusive separation of charge appear to be small for 
the fast time scale and high voltages associated 
with the growth of the "streamer" which occurs in 
the later stages of electrical breakdown at high 
overvoltages in initially uniform and nonuniform 
electric fields [153]. 

Ambipolar diffusion has been suggested by Van 
Brunt and Kulkarni [154] to be important in deter- 
mining the minimum time between negative corona 
pulses. However, details of the calculations [155] 
have not been reported. 

One of the mechanisms leading to an increased 
growth of ionization in the later stages of laser 
breakdown is the reduction of electron loss by dif- 
fusion when the charged particle densities become 
large enough so that the screening length is com- 
parable with the dimension of the region illumi- 
nated by the laser [156]. 

5.    Discussion and Summary 

We have reviewed the models that have been 
developed to describe measurements of the loss of 
electrons and ions by diffusion from weakly ionized 
gas discharges or plasmas to the walls of a dis- 
charge vessel. Scaling parameters for the models 
discussed and for a given gas are X.+/A, X^JA., 
EgXe, and oiB/v-m when the plasma is subject to a dc 
applied electric field. Of course, any combination 
of these parameters leading to the same total num- 
ber of these parameters is also acceptable. When 
the discharge is excited by an ac electric field the 
parameter a/Vj must also be included. These model 
parameters translate into the experimental parame- 
ters of nA, J/n^, EJn, and B/n for the dc case in 
infinite cylindrical or parallel plane geometry, with 
oi/n added for the ac case. In the absence of a mag- 
netic field and at sufficiently high rf fields the mod- 
els are rather complete and have been tested 
against experiment. The predictions of these mod- 
els have been expressed as relatively simple empiri- 

cal relations covering the full range of A,+/A and 
XDC/A (or n A and J/n ^). When a magnetic field is 
present models of experiment are available for all 
\+/A and ois/Vm («A and B/n), but only for XJDJ 

A< < 1 (or small J/n}). With a magnetic field the 
experimental tests show a high sensitivity to 
boundary conditions and a propensity of the 
plasma to become unstable. Empirical relations 
connecting the magnetic field and other diffusion 
parameters have not been developed. 

In many practical applications it is necessary to 
include nonlinear processes such as electron-ex- 
cited state or electron-ion collisions in a complete 
plasma model. In such cases one expects degrada- 
tion of the accuracy of the empirical formulas used 
to represent the diffusion contribution. The error in 
such an approximation is usually small when calcu- 
lating the average rate of charge particle loss be- 
cause the contribution of diffusion is decreasing as 
the other processes become more important. How- 
ever, large errors can occur when these relations 
are used in the calculation of the flux of charged 
particles to the boundaries and when competing 
loss processes, such as electron-ion recombination, 
significantly alter the spatial distribution of the 
charged particles. 
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