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An extension to the theory of consensus 
values is presented. Consensus values 
are calculated from averages obtained 
from different sources of measurement. 
Each source may have its own variabil- 
ity. For each average a weighting factor 
is calculated, consisting of contributions 
from both the within- and the between- 
source variability. An iteration proce- 
dure is used and calculational details are 
presented. An outline of a proof for the 
convergence of the procedure is given. 

Consensus values are described for both 
the case of the weighted average and 
the weighted regression. 
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1.   Introduction 2.   Review 

The problem of computing consensus values 
when the errors of measurement involve both in- 
ternal (within group) and external (between group) 
components has been discussed in a number of pa- 
pers [1-4]. The present authors have studied the 
case of a simple weighted average, as well as that 
in which the measured quantity y '\s & hnear func- 
tion of a known variable x. 

In the present paper we extend our results to 
cases in which the error standard deviations are 
functions, of known form, of the x-variables. We 
also provide an outline of a proof for conver- 
gence of the iterative process described in refer- 
ence [1]. 

While our procedure is entirely reasonable, and 
results in acceptable values, we have no mathemat- 
ical proof that the weights, which we calculate 
from the data, are optimal in any well-defined theo- 
retical sense. The problem has been recognized in 
the literature [5], but we know of no attempt to 
provide the proof of optimality. 

If o), denotes the weight (reciprocal variance) of 
a quantity, %, then the general equation for a 
weighted average is: 

S c^. % 
Y = (1) 

X^' 
If Yi equals the average of n, results from group / 
(/ = 1 to m), then 

where 
Var(i^) = -f^-Fcri 

o-wj = the component of standard deviation 
within group i (the o-^j value can be 
estimated from the n, results within 
each group) 

o-b = the component of standard deviation 
between groups. 
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Then the weight &>/ of Y, is equal to: 

1 1 

or 

U)i 
Var(i<)     ^fi._^^,; 

(2) 

The weight equation, o),- = 1/Var( Y,), yields: 

w,Var(l^)=l 
or 

Var(V^ :^)=1. 

Generally, all o--values, and consequently the ca, 
values are unknown. The O-H- can be estimated (as 
5w;) from the replicate measurements. We derive an 
estimate for Ob and consequently for the 6), by us- 
ing the quantity 

^i^^it-Yf 
VarCVwi- 1^) = m-1 

which we equate to unity. Thus we have 

^<^,{%-Yy 

m-\ = 1. (3) 

Equation (3) is used in "reverse fashion" to esti- 
mate the Wj and Y from the sample data. This is 
possible if in eq (2), the cr„. are estimated from the 
within-group variability, so that the only unknown 
is o-fc. Note in eq (3) that or^ is embedded within 
each weight and therefore within Y. The esti- 
mated or^„. and (Tb can also be used to estimate the 
standard deviation of the weighted average, which 
is equal to l/v2cu,. Henceforth, we use the symbol 
e), for the sample estimate of o)/. 

The same general reasoning holds for the 
weighted regression case. The variance of a simple 
weighted average is replaced by the residual mean 
square from a weighted least squares regression. 
For a regression with m groups and p coefficients 
the analogue of eq. (3) is 

2a),(i^- Yf 

m—p (4) 

where W; is given by eq (2) and   % is the fitted 
value. 

We now describe the case of a weighted regres- 
sion with /?=2, The fitted value %, for the Jth 
group can be written as foUows: 

Y=a+^X, (5) 

t=Y^${Xt-X), (5') 

where ^ is a weighted average analogous to the 
weighted average described by eq (1), and d 
and $ are weighted least squares estimates of the 
coefficients, a and ^3. Again, the only unknown is 
o-b, which can now be estimated from sample data 
by use of eq (4). 

A direct solution for cTb in either eq (3) or (4) 
would be extremely complicated since &),, Y, 
and 1^ all contain cr^. The number of terms m, in 
both equations will vary depending on the number 
of groups in a particular sample data set. Further- 
more, for the regression case, the /§ and X also 
depend on o-b- Therefore an iterative solution was 
proposed in reference [1]. This iterative procedure 
is central to the practical solution of either eq (3) or 
(4). In order that this paper be self-contained, we 
briefly review the iterative procedure for the re- 
gression case using eq (4) withp =2. 

3.   Iteration Procedure 

We define the function: 

F{s^= 2w; ( Y - %f-(jn -2) . (6) 

In view of eqs (2) and (4), the estimate s^ of crl 
must be such that F(s^)=0. For ease of notation let 
Sb=v. Start with an initial value, Vo=;0, and calcu- 
late an initial set of weights and then evaluate eq 
(6). In general, F{Sti) will be different from zero. It 
is desired to find an adjustment, dv, such that 
F(vo-hdv)=0. Using a truncated Taylor series ex- 
pansion, one obtains: 

F(Vo+dv)~Fo+{^]dv=0 

andd.= -Fc/(-l, 

Evaluating the partial derivative in this equation, 
one obtains: 

du -'M c^K % - Y)' 

The adjusted (new) value for v is: 

New tJo=01d Uo+dv. 

(7) 

(8) 

This new value is now used and the procedure is 
iterated until dv is satisfactorily close to zero. 
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The iterative procedure is easily adapted to the 
computer. The programming steps are as follows: 

1. Evaluate the s^^ from the individual groups of 
data. 

2. Start the iteration process with a value of VQ just 
slightly over zero. 

3. Evaluate eq (2) to get estimates of o),. 
4. Fit eq (5) by a weighted least squares regression 

of Yi on Xi, and get estimates of the  Yj. 
5. Use eq (6) to evaluate FQ. If FO<0, then stop the 

iteration and set -u^O. If not, continue with 6. 
6. Use eq (7) to evaluate dv. 
7. If dv is positive and small enough to justify stop- 

ping, then stop. If it is positive, but is not small 
enough, repeat steps 3-7 [using the new Vo from 
eq (8)]. 

The consensus values are the final coefficients of 
the regression equation. One is also interested in 
the final v = Jb value since this is needed to charac- 
terize the imprecision of the fit. 

For the case of a weighted average [see eq (1)] 
the above iteration steps are the same, except that 
in place of step 4, Y is calculated by eq (1), and 
steps 5 and 6 use Y in place of Y, and imity is 
used for the p value. The authors have frequently 
used this procedure for the evaluation of Standard 
Reference Materials [6]. 

desired between-group component of variance is 
thus: 

si=v'{c+dX,f. (10) 

The weights estimated by eq (2) would then be: 

1 
ft), = 

(^-hv'(c-fdZ,)^) 

(2') 

This newly defined weight can be used in the itera- 
tion process. The iteration process proceeds as be- 
fore, but now the adjustable iteration parameter v' 
is the multiplier needed to make eq (4) true, that is, 
to make it consistent with the sample data sets. The 
denominator of eq (7) which is used in iteration 
step 6 for calculating dv, needs to be slightly modi- 
fied since the derivative of F with respect to v now 
contains the function described by eq (10). 

dv' Fo 

2o>Hc+dx,y{Y-fd' 

(7') 

All other steps in the iteration process are the 
same. The final between-group components of 
variance will be described by eq (10). 

4.   Theoretical Extensions 

Once one recognizes the between- as well as the 
within-group component of variance in the evalvia- 
tion of consensus values, one can begin to consider 
functional forms for these components. The within- 
group component can be of any form, and can be 
easily handled since the appropriate sample values 
of the component are simply substituted into the 
weights described by eq (2). Thereafter, this com- 
ponent does not affect the iteration procedure. See 
for example reference [7], where the within com- 
ponent of variance refers to a Poisson process. The 
between-group component, however, affects the it- 
eration procedure and must be handled more care- 
fully. As an example, consider the case where the 
between-group component of standard deviation is 
believed to be a Unear function of the level of X,: 

crb=;7 + 5X,- (9) 

Let us assume that we have preliminary esti- 
mates, c and d for the y and S coefficients. Suppose 
further that we wish to adjust the estimated value 
of the variance by a fixed scale factor, say v'. The 

5.   Example 

The iteration process will be used to fit the data 
of table 1 to a straight line. These are real data 
taken from a large interlaboratory study for the de- 
termination of oxygen in sUicon wafers. 

Table 1. Data used in example of iteration process 

X Y, ^2 ^3 

0.806 2.83 2.85 
1.429 4.62 5.35 5.01 
1.882 6.89 6.66 
2.140 7.56 7.67 
2.256 7.94 7.90 
2.279 8.42 8.12 
2.814 10.04 9.70 10.17 
2.957 10.34 10.05 
2.961 11.09 11.07 
3.108 11.63 11.69 
3.124 10.87 11.01 
3.403 12.40 12.22 
3.466 11.94 12.17 12.92 
3.530 12.63 12.41 
3.543 12.98 13.27 
3.724 12.95 12.56 
3.836 13.07 13.69 13.56 
3.902 14.54 14.19 
4.280 15.59 16.24 
4.770 16.62 16.59 
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A preliminary examination of the data indicates 
that the within error has a constant standard devia- 
tion and that the between error has a standard devi- 
ation proportional to X. Thus, the error structure 
for the example is given by the equation: 

ft), = 
1 

(^-0 
where v now stands for the product v'd^ of eq (2'). 

From the replicates, the pooled within standard 
deviation is readily calculated to be 0.265. The iter- 
ation process then yields the following results 

Yr- - 0.0833-f 3.6085 Z,- 

■^within    =      0.265 

■^between =        0.0827Jf,- . 

Figures la and lb show, respectively, the standard 
deviations within, and the residuals {% — Y'i), as 
functions of X,. 
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Figure 1. (a) Standard deviations within as a function of X 
(b) residuals of a function ofX. 

The figures support the assumpions made con- 
cerning the nature of the within and between 
errors. 

6.   Appendix 
6.1   Sketch of Proof of Convergence 

The general functional form of the F of eq (6) is 
as shown in figure 2a or 2b. It is because of the 
nature of these forms that convergence always oc- 
curs. 

F(S5) 

F(SB) 

Figure 2. (a) Fas a function of ib where Fhas a positive root for 
Sb(h)Fasa. function of .rl where i^" does not have a positive root 
for Sb. 

If the functional form of F is as shown in figure 
2a, the previously described iterative procedure is 
used to determine the s^ satisfying the equation 
F(5'b)=0. If an initial estimate of Jb is chosen that is 
very slightly above zero, then convergence of the 
iteration process always occurs. This is a result of 
the fact that the first derivative of the function F 
with respect to s^ is negative, and the second 
derivative is positive. This means that each itera- 
tion will undershoot, since the iteration process ex- 
trapolates the slope of the F curve at the current s^ 
estimate to the F=0 value. Since each new itera- 
tion estimate of .Jb is the abscissa value of the inter- 
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section of the tangent line with the F=0 horizontal 
line, the iteration process will never overshoot and 
convergence is obtained. 

If the form is that of figure 2b, then there will be 
no positive solutions for the s^ that is associated 
with the function F. This represents a situation 
where the variability between the sample groups is 
less than that expected from the variability within 
the sample groups. For this situation FQ is negative 
and 5b is set to zero (see iteration step 5). 

The proof regarding the signs of the first and 
second derivatives of F with respect to s^ follows. 
The simple regression case will be considered, with 
the Sb =v being constant. (The extension to the 
variable s^ case is straightforward.) 

6.2   Proof That the First Derivative of F 
is Negative 

An examination of eqs (1), (2), (5'), and (6) shows 
ct); and Yj to be functions of s^. Equation 5' also 
indicates that Y, X , and )3 are functions of 5b. 
We start with the first derivative of the F of eq (6) 

d(|co,(i^-3<)^-(m-2)) 
dF 
d-o dv 

The derivative of co, will frequently be encountered 
in the following material. At this point, it will be 
convenient to note its value: 

do), 
dv 

-at 

Continuing, and making use of eq (5'): 

-2(£(l^-;§Z))i:a,,.(l^-l^) 

-2(^)x«^.(i^-5^)-       (Ai) 

The last two terms of eq (Al) each contain summa- 
tions that are equal to zero, so these terms drop 
out. Next, an examination of the remaining term 
shows that each product is a positive square, and 
that the summation is preceded by a minus sign. 
Thus, the first derivative is negative. 

6.3   Proof That the Second Derivative of F 
is Positive 

The evaluation of the second derivative is in- 
volved and only an outline of the steps is presented. 

dv^     dv -2(^nz-zy 

^-    2Yo.^(Y     f^^^^-^> 

where 
+ 2^0)? (I;- Yi)\ (A2') 

d( t- Yd ^ _ d?      . dZ 
dv dv dv 

-iX-X)^. (A3) 

Evaluation of the first two derivatives on the r.h.s. 
of eq (A3) yields: 

dX 
dv 

CD- 
2-iy(.X-X)and 

where MP'=2 w,. 

Evaluation of the last derivative of eq (A3) yields: 

2a),(x,-je)i: 

d^ 
dv 

Xa.,(^,-X)^ 

dv 

2<o<iX,-X)Y, 

2oydX^-Xf 

dco, 
dft), 

' dv . (A5') 

where 
dX«,(x,-x)f; 

i 

do), 

d2w,(X,-X)^ 

dft), 

iX,-X)iY,- Y), 

= (x,-xy. 
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and 

2o>>(x,-xyi 

dct), 

(X,-XXY,-Z) 

2oi.(x-^y 

The first term on the r.h.s. is the "total" weighted 
sum of squares of Z. The second term is the 
weighted sum of squares for the regression of Z on 
X. Therefore the difference between the two terms 
is a "residual" sum of squares: 

= 2j^o>dZ<-Zd\ (A2) 

Reassembling eq (AS*): 

d^ 
dv 

•^oi^x.-xxZ-y^ 

Xco,(^,-^)' 

(A5) 

At this point the running index t can be conve- 
niently changed back to the index /. Finally, the 
substitution of eq (A5) into (A3), and then eq (A3) 
into (A2') yields: 

d^ 
dv 

1 = 2 

2oyKX-X)iYi- Y^ 
i 

•^ay>(x-xy 
(A2'') 

This second derivative eq (A2'') is a residual 
weighted sum of squares from regression. To see 
this, let 

Z,^ft),.( Y,-Yd (A6) 

and substitute into eq (A2''): 

d^ 
dv 

,2  =  2 

Xco<Z,-^)Z, 

2a>,(X,-Z)^ 

-^codz^-zy- 
2coiX,-X)Zi 

XMz,-je)^ 

where Z, is the fitted value of Z, in a weighted 
regression of Z on X. Thus, the second derivative 
is positive for *(),•> 0. The iteration process there- 
fore will never overshoot, and convergence is al- 
ways assured. 

6.4   Extensions 

The extension of the convergence proof to the 
variable si case is very similar to that given above. 
Two basic changes are needed. These changes, 
which introduce a function of Jf,, are in the deriva- 
tive of to, and in the definition of Z,. 

do, 
dv 

= - g(Z,) 0)? 

and 

Z,=a),g(X,)(i^- Yd. 

Equation (10) represents an example of a variable 
Sb. For that case, 

g{Xd = (c+dXdK 

The reader may note that the new Z, contains X/, 
and that Z, is regressed on X,. The argument does 
not require that this regression "make sense", only 
that the sum of squares can be partitioned by a re- 
gression process. Again, convergence is obtained. 

The weighted average is a special and simple ap- 
plication of the weighted regression case. 
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