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1.   Introduction 

To acctirately characterize imperfections of pre- 
cision coaxial air lines, skin effect and surface 
roughness need to be considered. Skin effect is now 
well documented [1] and conductor surface finish 
has been studied in detail by Rice [2] and Ament [3] 
through the use of Fourier series methods. While 
Karbowiak [4] points out that Fourier analysis re- 
veals useful knowledge of the spectral components 
which principally affect scattering parameters, it is 
also appropriate to examine local pointwise influ- 
ence along the axial (z) coordinate. In this connec- 
tion, Hill [5] developed perturbation expressions 
for the scattering parameters for a lossless circular 
air line. When the conductor surface exhibits trans- 
verse angular variation, Roimeliotes, Houssain and 
Fikioris report the effects of ellipticity and eccen- 
tricity on cutoff wave numbers [6]. 

The purpose of this paper is to develop numeri- 
cally accurate pointwise coaxial air-line scattering 
parameters that account for skin effect loss and 
conductor surface variations in the transverse an- 

gular and axial directions. Following Schelkunoff 
[7], Reiter [8], Solymar [9] and Gallawa [10], gener- 
alized telegraphist equations for the principal mode 
are derived in section 2 for a circular air line. 
Transformation to forward and backward wave 
differential equations enables general solutions for 
the scattering parameters in section 3. To allow for 
conductor surface measurements along the z-axis, 
cubic spline polynomials provide a starting point 
for establishing pointwise recursion formulas of 
forward and backward waves in section 4. In sec- 
tion 5, the Bergman's kernel technique is used to 
establish a conformal mapping for transforming 
noncircular conductors into equivalent circular 
conductors in correspondence to the principal 
mode. Computational results illustrating | S^ \ ver- 
sus air-line length are given in section 6. An error 
analysis of the computational algorithms for the ac- 
curacy resolution of the measurement system is de- 
veloped in section 7. 
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2.   Generalized Telegraphist Equations for 
the Principal Mode 

Consider the coaxial air line in figure 1. With 
inner radius a{z) and outer radius b(z) the field 
components of primary interest are radial electric 
field (Er), angular magnetic field (H^, and axial 
electric field {E^. We assume the fields E^ He, and 
E^ are composed of TEM and TM modes, and cou- 
pling of the modes is caused by skin effect with 
variations of the conductor surfaces. From Ap- 
pendix A boundary conditions for TM modes pos- 
sess the form 

E, = -Z, K{<^,(z)}He   at r=b{z), 

E, = +Zs K{<i>,(z)}Hg   at r=a(z), 

where for instance, 

(1.0) 

(1.1) 

(1.2) 

Appropriate Maxwell equations for determining 
transverse fields E^ and Hg in the air dielectric re- 
gion of the air line are [11] 

iEr . rr    ,   ^Ez 

dHg 

az = —jote Er. 

(1.3) 

(1.4) 

The parameters (a, jn, and e are defined as radian 
frequency, permeability and permittivity, respec- 
tively, In addition the fields are assumed to vary 
with time according to the complex exponential 
function e'"'. 

To find the generalized telegraphist equations it 
is convenient to assume the fields possess orthogo- 
nal expansions in r and 6. In view of TEM and TM 
modes together with impedance boundary condi- 

 -^^H 

?'^a(z) 

Figure 1. Coaxial air line. 

tions a set of orthogonal basis functions needs to be 
constructed from the Gram-Schmidt process. As- 
smning E^, He, and E^ possess continuous first and 
second derivatives implies their expansions are ab- 
solutely and uniformly convergent [12]. In Ap- 
pendix B these properties are used to rearrange the 
expansions into the form 

E,(ir,e,z)= 'x'   C (^) e^iU'-.^.^) 
(n,p)=(0,0) 

+ n^(2)eSU'-.M 

He(r,d,z)=  ^X^ /W(z)/i^!,^(r,0,z) 
{n,p)=(0,0) 

+mz)h^%(r,d,z) 

(1.5) 

(1.6) 

where the superscripts (1) and (2) represent even 
and odd modes, respectively. We have 

(1.7) 
&%{r,e,z)^^     1 (coske 

.eg> {r,6,z)rNj(i)^"'^^''''^\ sin kd 

In addition, 

Aeh^lp (r,e,z)=2i,X&r Q% (r,e,z) ; / = 1,2      (1.8) 

and N„p(z) denotes the norm offmpir^), that is, 

Nn,{z)= \ ' {frnp(r,zyU{r,z)y^Ar, (1.9) 

where ~ stands for the complex conjugate. In par- 
ticular for the TEM mode 

e^(r,z)= 1     1 
A^oo(z) r ' 

(1.10) 

iV.(z)=J2.1n^)". 

Higher order modes are usual linear combina- 
tions of the first derivative Bessel functions J'„ and 
Y' 

Following Reiter [8] by taking the inner product 
of eq (1.3) with the basis function e% yields 

J ^ e:%dS = -jo^x J afle ■ {ae^^'^, XaJdS 

\'-f^-^%^ (1-11) + 
5(2) 

where S{z) denotes the cross sectional air dielec- 
tric region between the conductors. The left side 
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calls for differentiation of a variable surface inte- 
gral and the second member of the right side inte- 
grates by parts.' Hence, eq (1.11) evolves into the 
form 

S(z) SCz) 

= §^tm{e,iz)}Ere%ds 

- ^^tan{(f),(z)}£, e%ds -jap,] He hi'^dS 
S(z) 

+ § ^ {Edb (z),e^] -E, [a (z),0,z]}e<^d5 

5(z) 

e9^dS. (1.12) 

To express E^ in terms of the constructed basis 
function (f„p), let the component otE^ correspond- 
ing to A:=0 (TMop modes) be expressed as 

-&zo=77-^ 6op(2)     fop(u)du. (1.13) 

From Maxwell's equations the (Op) mode relation 
between E^ and E^ is 

^r,o,pV>2)—       1,2 a_ 
kc.Op     ^f 

(1.14) 

where yop and k^Ap are the propagation constant and 
cutoff frequency numbers, respectively. Using eqs 
(1.5), (1.13), and (1.14) yields 

bopiz)=^N-;iz)n)iz). (1.15) 
/Op 

Now substituting basis function definitions eq 
(1.7) and calling for the principal mode yields 

dFoc 
dz 2- i CjM m^) 

p^O-) a(,z) ^^Op\Z) 

a joo(r^) r dr 
az iVoo(z) 

-ja>ij. m{z)-2^ Z, K[,^„(?){^^ biz). 

^-   ^^^^^    iVo,(z) p=0 

.2.Z^[4..(z)]^^.(z). 

' Since S(z) is differentiable and the field components are con- 
tinuous, interchange of differentiation and integration is justi- 
fied. 

Z/*'^^^    iVo,(z) Nooiz)^^yopNop(z)' 

/OP(M) da —/oo('-,z)/^ dr 

4-27r tan[<J)4(z)] ̂ gflK.)i^f|f^'« 

'" (116) 

To derive the companion generalized telegraphist 
equation from eq (1.4), the procedure is almost 
identical. Taking the inner product of eq (1.4) with 
hi)}g from eq (1.8) yields 

J ^ h% dS = -jo>€ J EeE,. a,Xa,e<i^ dS. 

S(2) 5(z) (1.17) 

For the left side 

\^h%dS=^I,,-2l,p [{a^Xa^e'l^}. 

^ [a,Xa^e^J^j dS -#^ tan {<|>,(z)}He h% AS 

+ #^ tan {<|),(z)> ^, ^y^, dS. (1.18) 

Since integration by parts obtains the relation 

J e%j^ e(i> d5 = -J e<J> ^ e<!l> dS,        (1.19) 
5(2) S(z) 

eq (1.17) takes on the form (setting k=q=G) 

^ = -70)6 V^iz)-2TT X Io,(z) r e<^^ e<i> dS 
''='' i) 

-l-6'(2) ^^ He hf^ dS -a'(z) §^ He hi% dS. 
(1.20) 

Substituting eqs (1.6) and (1.10) into eq (1.20) gives 

d^ 
dz + 27r i n^>(z) ftei ^^^ '^ dr 

fl(z) 

= -yoien8fr) 

(Z) 

Z)       ■ 
(1.21) 
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Examining eqs (1.16) and (1.21) reveals that con- 
tinuous mode coupling occurs through the voltage 
and current transfer coefficients (left side), respec- 
tively, a phenomenon observed by Schelkunoff [7]. 
Skin effect coupling on the conductor surfaces was 
also reported by Schelkunoff and Gallawa [10]. 
When the air line is operated at frequencies appro- 
priate to the principal mode, all TM modes attenu- 
ate rapidly below their cutoff frequencies. 
Consequently, dominant coupling occurs between 
the forward and backward waves of the principal 
mode.^ In this regard, eq (1.16) assumes the form 

dz M   ■ 
1 

L      ^(2) 

1   3 
1/2  

r dz 

iTTln 
b(z) 
a(z) 

1/2 r dr Voo(z)=-ioiiJ,Ioo(z) 

+ 

a{z) 

a(z) 

^)F.(Z),      (1.22) 
b\z) 

^Z;(z)ln^     b(z,...   .. 
a(z) a{z) 

where the superscript, (1), has been dropped since 
only one mode is involved. Rearranging terms pro- 
duces the expression 

^ + {/a>jLt-f Z, K(Z)}/OO= roo<%) Foo,        (1.23) 

where 

b{z) a{z)    JJJME) 
a{z) 

In 
a(z) 

The equation for current proceeds similarly. Equa- 
tion (1.20) yields 

^=_ya,eroo+mz)/oo (1.26) 

^ Higher order mode influence on the TEM mode will be re- 
ported in a later issue of this journal. 

where the current transfer coefficient is defined as 

^6(z)ln^     a(z)ln^J 

3. Conversion of Generalized Telegraphist 
Equations to Forward and Backward 
Wave Equations 

Following Solymar [9] we define the amplitudes 
of the forward and backward waves A ^ and A ^ 
from the relations 

V^=ko''^{A^+A^}, 

■'00=^0      \A 00 —.^ 00 J", 

where ko={i/€, the wave impedance. Substituting 
eq (2.1) into eqs (1.4) and (1.20) produces the ex- 
pression 

dz  +f^'    2ko  1 

ZsK(z)                 1, 
~   2/to   ^^ ~2' 

dAoo \fn,ZM^)] 
dz r'^ 2ko j 

ZjK (^)j,   1. 

Too(z)A^, 

Aoo=Too(z)Al 

(2.2) 

2t        °° ~1 ■^M(2) A 00, 

where ;8=ft)V jxe, 

Too(z)=-2imz)+mz)}- 

(2.3) 

(2.4) 

In view of eqs (1.25) and (1.27) the last expression 
possesses the form 

"^^~lnM5)U(^)~«(^)r ^^^ 
aiz) 

For a lossless airiine, voltage and current trans- 
fer coefficients assume the form. 

-m(z)=m(z)= 1   1 \b'(z)     a'(z) 

ail) 
[biz)      aiz) I 

(2.6) 
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Also, using Solymar's assumption that reflection of 
the principal mode does not affect forward propa- 
gation of the principal mode yields expressions 

dAi 
dz 

and 

dz 

+jPAio=0, 

-jpAoo=- 

(2.7a) 

1      1      {b'(z)_a'(z) 
2^b(z)\b(z)    a(z)]' 

a(z) 
(2.7b) 

which agree with Hill's results [5]. 
Returning to eqs (2.2) and (2.3) and retaining 

Solymar's assumption above leaves the terms Tooiz) 
A «). Since coupling in this sense is meaningless, we 
drop the terms Tooiz) A ^ and obtain' 

^4' ZsKJz) 
2ko 

ZsKJz) 
2 ko 

--0, (2.8) 

A 00 
iZMz) ,Too(z)] 

-j 2A:o  +    2    r^- 
(2.9) 

To incorporate appropriate boundary condi- 
tions, let the incident wave be A oo(P)=Ao with per- 
fect termination at z=L, that is AMiL)=0. 

At this point the forward wave solution yields 

T;-'^^\O<Z<L (2.10) 

and, at z=0, the reflected wave expression 

+IoMy2i!imAo^ (2.11) 

show general forms which remain to be useful for 
using conductor radii measurements. 

From eqs. (2.6) and (2.7) the scattering parame- 
ters Sii are Sji are defined as follows: 

5..=^andS.=^. 
Ao Ao 

(2.12) 

^ In the lossless air line 7'oo(z)=0 in view of the eqs (2.5) and 
(2.6). 

4.   Cubic Spline Fitting of Conductor 
Radius Measurements 

Underlying an accurate solution to A^ and A ^ 
are two critical items: (a) fitting conductor radii 
measurements with acceptable error bounds and 
(b) expansion of all known functions in a systematic 
manner to sufficient powers of r. 

To handle (a) consider cubic spline polynomials 
[13] for the inner (or outer) conductor measure- 
ments such that 

Ck-i(z)=Co,k-i+' • •+Q,4_]z' (3.1) 

where &jt_i(z) approximates a(z) or b(z), 
zic-i<z<,Zk such that k = l,- • ;N and Zi^=L. It is 
desirable to transform the cubic spline eq (3.1) over 
the interval [z*^_i,Z;t] into the representation" 

<^*-i(0=*^o,A-i+* • •+Q,/fe-i?, 

in such a way that the condition, 

d^Q_i(0    d^ ^ 

(3.2a) 

(3.2b) 

holds at z=zic-i and z=Zk where l^=Zk—zic_i. In 
addition we require 

Q_i(0)=&o,A-i, and 

Ck-i(zi;—Zk-i)=(^o,k-i-\ 1-C3,i_iz| (3.2c) 

such that Co,*_i represents the measurement of a(z) 
or b(z) at Z=ZA_I. 

To implement (b), recall that E„ Hg, and the sec- 
ond derivatives of Er and Hg are assumed to be 
analytic functions in r, 9, and z. Hence, the expan- 

sions of Ibiz) In^)-' and L(z) In^l"' can be 

rearranged in powers of z. In Appendix C the fol- 
lowing expressions are derived over the interval 

(3.3) 

and 

'' A cursory inspection of calculated splines C* over the entire 
length of the line reveals that £bt is not necessarily equal to the 
radial measurement at Zi_i. 
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2ko f^=X8a-.?*, (3.4) 

where 0<^<z—z„_i. 
To establish A^ and ^ob at each point z„ it is 

convenient to employ recursion relations. Inserting 
eq (3.3) into eq (2.6) and examining the interval 
Zi<z<Z2 yields 

^3;^)=^S,(0;z,)e-fC\i„<'^"''^> 

where 

(3.5) 

(3.6) 

is the forward wave emerging at z=Zi. 
For the interval z^_i<z<z eq (3.5) immediately 

generalizes to the recursion relation 

/fS,(O;z)=^S,(O;z^_0e-^C"-'i„«^'V-.£*''5>.   (3.7) 

Proceeding to the backward wave ^4 M by using 
eqs (3.3) and (3.4) in eq (2.7) for the interval 
Zi<z<Z2 produces the relation 

•e-^t^oi„*>^"''«>d7, (3.8) 

where the transformation r}=z—Zi introduces the 
term e"^"^'. Now eq (3.8) also generalizes to the 
recursion relation 

^M(0;zAr)=^5b(0;Ziv_i) 

-^oS(O;z^_0e-^^-'C-'''-^,i«?V-,.^> 

•{e-^!o'^"''-'b'}d7,. (3.9) 

From Appendix C eq (3.9) assumes the solution 

A UO;ZN)=A 5b(0;z^_i)-^ S)(0;z^_,)e-^''^^-' 

•i vi%_,sJ-\2jfi+f C^?^_il(z^-z^_ J, 
4=0 I     L «o J J 

(3.10) 

where 

Sk[a(zjv-ZN-i)] = e'"z''6z. (3.11) 

5.   Conductor Surface Variations in the 
Transverse Coordinates 

When the outer conductor is bored, circular 
cross sections are the exception rather than the 
rule. Most likely, an elliptical cross section evolves 
with some degree of rotation. Consequently, it is 
desirable to perform mechanical measurements of 
conductor radii in the transverse plane to charac- 
terize the deviation from circular cross sections. 
Since the principal mode is TEM in the transverse 
plane a direct conformal mapping of the measvure- 
ment contour into an equivalent circular contour 
eliminates any difficulty of solving Laplace's equa- 
tion for an irregular boundary. If an equivalent cir- 
cular contour is found for each transverse 
measurement plane on the air line, a corresponding 
set of scattering parameters represents the original 
air line of measurement contours. 

The solution of Laplace's equation for a TEM 
mode with the inner conductor potential held to VQ 

and the outer conductor potential set at 0 is 

■     „    ln{r/6(z)} 
'P-*^»ln{a(z)/6(z)} 

(4.1) 

We initially state that Riemann's mapping theo- 
rem assures a mapping from the contour L to the 
unit circle and a particular expression for mapping 
evolves from the Bergman kernel expansion [14]. 
Thus, for a contour L centered at ^o=8 e'*=0 the 
Bergman kernel is defined as 

5(0,0= X^v"(0) Pv(0. (4.2) 

The Szego polynomials Pv(.0 are constructed to be 
orthogonal on the contour L and ^ is a complex 
variable in the region bounded by L. Computing 
the inner (or outer) conductor radius requires the 
expression [15] 

c(z)= IM 1 
27r    5(0,0)' 

c(z)=a(z) or A(z),   (4.3) 

where / defines the contour length of L at the 
point z. To see how eq (4.3) is constructed consider 
the differential line element on L, 

which in p, Q coordinates becomes 

As^ p\e)+ \de^ (4.4) 
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Then the length of L is 

To find representations for the Szego polynomials, 
consider the following orthogonalization proce- 
dure. Let the matrix elements, 

+ [^]]"'e'^-')''d0, (4.6) 

be defined for/>>0 and q>0. Note hpg=hgp. Then 
following Kantorivich and Krylov [15] compute 
the determinant 

A=1,A = 
"00     "10 • • • "«0 

^On     hi„ •• -hnn 

Hence, the Szego polynomial is defined as 

(4.7) 

Pn{0 = 
1 

[D„-xD„f hoi.       flu h„i 

"0,n-l      "l.n-r ■ ■"«,«-! 
1 Z   ■   ■   ■  Z" 

(4.8) 

such that 

-j-j^Pna)h(Qdt=d„ (4.9a) 

Carrying out the above procedures yields the con- 
ductor radii accurate to third order, 

C = lo 1- 

(^10 ^2i—hn^io)ihioh2i—huh2o) 

where 

Di=hn-hoihm, 

and 

D2 = (huh22 — hi2h2l) — hio{hoih22-ho2h2l) 

+h2o(hoihi2-ho2hn)- 

(4.9b) 

(4.10) 

A convenient property of the Szego coefficients 
for symmetric contours is found from eq (4.6). We 
have 

Ap,=7;J"{i+(-ir'w{p'(e) 

For off diagonal elements 

hpg=0;p+q odd,p=^q. 

Hence, any asymmetry in the contour L is expected 
to be noticeable through the off-diagonal elements 

To find the equivalent circular conductor radius, 
integrals in eqs (4.5) and (4.6) need to be deter- 
mined from measurements of p and 6 on the con- 
tour L. Let the following cubic spline be defined 

p,_i(e)=2p,k-ie' (4.11a) 

such that Pk-iiQ) approximates a(d,z) or b(6,z) 
over the interval 6k-i<0<,dic for k = l,—, N, i.e., 
0^^ = 277. 

Following the same procedures as in the trans- 
formation from z to { in eqs (3.2a) to (3.2c) enables 
the cubic spline. 

Pk-ii<i>)=^(Pi.k-iW, (4.11b) 

to be constructed where ^=d—dk-i and po,*-! 
equals the measurement of a{d,z) or b{6,z) at 
e=dk-i. 

Equations (4.5) and (4.11) yield an expression for 
length using the binomial expansion: 

(4.12) fo=f'[p(0)+lp-\d) 

Appendix D, taking into account the spline coeffi- 
cients, produces 

N-l    re„+l-0„  f   3 7 1 

a=0 -' 0 U=0 /t=0 J 
(4.13) 

„=o <-k=o "• -r i 

+2A   '•^"       k + l 

k+l 

' k=0 

Expressions for the coefficients hp^ are developed 
also in Appendix D. 
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6.   Computation Results 

The amplitude of Sn has been computed from 
eqs (2.12) and (3.9) for a 7 mm air line approxi- 
mately 15.6 cm in length using the frequencies 6, 
12, and 18 GHz. In addition the number of conduc- 
tor dimensional measurements in three sections of 
air line with variable spacing is shown in figure 2 
and the results are illustrated in figures 2-5. Mean 
and standard deviation values of the conductor di- 
mensional measurements are as follows: 

Mean (meters) 
Standard deviation (meters) 

Inner radius 

0.1521X10-^ 
0.2481X10-' 

Outer radius 

0.350OX 10-^ 
0.6836x10-' 

Figure 2 illustrates that conductor radius measure- 
ments near either end are more volatile—particu- 
larly the outer conductor. Figures 3, 4, and 5 reveal 

that changes in conductor radii in the z-axis 
provide the dominant contribution to |5n| while 
skin effect loss amplifies the in-phase and out-of- 
phase behavior of the lossless air line (as shown in 
fig. 2). In addition, skin effect loss affects the most 
significant digit of \Su\ even for short lengths of 
line. On comparison of figures 3, 4, and 5 with 
Hill's results [5], the most noticeable feature is the 
overall difference in magnitudes of Sn, which 
evolves from a uniform inner conductor model and 
lossless boundary conditions in Hill's work. Con- 
formal mapping effects from elliptical measure- 
ment contours do not affect Su and ^21 unless the 
eccentricity is greater than 5x10"' meters. How- 
ever, if the inner conductor has an eccentric posi- 
tion with respect to the outer conductor, 
conformal mapping by Bergman's kernel reveals 
scattering parameters Sn and ^21 are noticeably af- 
fected.' 

o 
X 

m 

7 m  RIRLINE 

FREQUENCY- 6 GHZ 

Inner Conductor Radius 

Outer Conductor Radius 

1S1,| 

r 30.0 
•o 

- 25.0 

20.0 ^ 
-a 

h 15.0   °: 
u 
o 

-  10.0 o 

o 
=3       V) 
•o     S- 
C      OJ 

t - 5.0 
O      4J 
O      OJ 

O CO 

I - 0.0 

n
ce

s 

X 
1
0
" 

--5.0 <u 

• t   '^ 
—10.0 o    o 

• 
--15.0 c 

—20.0 3 

(0 
0) 

—25.0 
s: 

-30.0 
0.00      G.02 0.01 0,06 0.08 0.10 0.12 O.M 0.15 

Axial Position Z (Meters) 

Figure 2. \Su\ vs variable length of 7 mm lossless air line. 

' For additional computational results see Holt [17]. 
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o 
X 

m 

7 m  RIRLINE 

FREQUENCY- 6 GHZ 

Inner Conductor Radius 

Outer Conductor Radius 
|s„I 

0.00 0.06 0.00 0.10 0.12 

Axial Position Z (Meters) 

Figure 3. |5ii | vs variable length of 7 mm air line with skin effect loss at 6 GHz. 

7.   Error Analysis 
7.1   Error Sources 

Error sources that contribute to scattering 
parameters evolve from (a) spline interpolation 
with respect to z, (b) spline interpolation with re- 
spect to 6, (c) conforfflal mapping using the 
Bergman kernel, and (d) expressions for backward 
and forward waves. 

To examine (a) and (b) consider the error bound 
from cubic spline interpolation theory [13], 

\fix)-SA,(x) I <| [A| ii(f"ixy, I A, I)]. (6.1) 

where SAt(x) defines a cubic spline, ju, signifies the 
modulus of continuity,* /" denotes the second 
derivative of the function /, and A^ stands for the 
mesh size between arguments x^. An approxima- 

tion to the modulus of continuity is 

p[/-"(x);lA,l]=max 
h h 

Ih 
(6.2) 

where ff ] denotes the first order divided differ- 
ence of/. 

For a 7 mm air line with a mesh size (Ajt) equal 
to 1 mm, a value of ju, from observations of conduc- 
tor radii measurements as functions of z indicate 
;LI=0.1 is reasonable, and in the angular direction 
/A < 0.01.' Therefore, the total error from spline in- 
terpolation is (considering the errors as additive) 

Error,otai=Error2+Error«<2.8 X lO"'' m.     (6.3) 

' See Davis [16] for a suitable definition. 

' Since mechanical measurements for roundness are not avail- 
able, an ellipse of 38.1 X 10~' m was selected for determining the 
modulus of continuity. 
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|s„| 

0.00    o.o;? G.OO 

Axial Position Z (Meters) 

Figure 4. |5ii | vs variable length of 7 mm air line with skin effect loss at 12 GHz. 

The error source (c) from conformal mapping an 
elliptical measurement contour of eccentricity 
equal to 38.1x10"' m (150 ju. in) is illustrated be- 
low. 

First term of outer conductor equivalent 
(mapped radius) 3.4989 mm. 

Second term 2.32 X10"'^ mm. 
Third term -3.35x10-' mm. 
Keeping in mind that ellipses are symmetrical 

with respect to the origin reveals that even terms 
are effectively zero (on the order of 10"'^ in view 
of machine precision). Since the convergence 
above is very strong, the fifth term is likely on the 
order of 10"' mm. The erroe from source (d) de- 
pends on the number of expansion terms represent- 
ing the functions l/a(z), \/b{z), and ln{6(z)/fl(z)}. 

At this point accuracy considerations of the for- 
ward and backward wave eqs (3.7) and (3.10) in 
correspondence to the measurement system are in 
order. For instance, to examine A^a consider the 
measurements of a(z) and b(z) at z=0 and z=Zi. 
From eqs (3.7) and (3.10) we have the total differ- 
entials 

A^w(0;zi)=^o fr(co,6o,Z,)-[^C/2.,(floA) 

1 e-'^-o.fcoZjz, ^^^ (g 4) 

and 
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Figure 5. |5ii | vs variable length of 7 nun air line with skin effect loss at 18 GHz 

where Aro is the measurement precision common to 
Co and bo- In the expressions above 

^'--^^^.Az,+^o^{c.u(«oA)g-|] 

+- 
In 

1    [g. _ &.1| g-2(Koo,*o.Zb)Zi_i 

A'-o 

+Ao^{UUao,bo) 2ko 

in f^l 

— Ui2(ao,bo) 

l-s]h^-(''°*°) 
w 

ao'^bo\l\W(ao,bo,Zs) 

W(ao,boZ,yWiao,bo,Zy 
- Wt<to*O.Z>l A/-0 

(6.5) 

U^,k{ao,bo) =—7+T7 
"0       OQ In' 

(6.6) 

and 

W(ao,bo,Zs) =^ UrMA) + {f; - |) (6-7) 

where Oi and bi are the coefficients from differenti- 
ating the cubic spline representations of a{z) and 
b(z), respectively. 

In computing AAQO and AA^ for a 7 mm 
air line let the measurement precision be 
Az=Aro=2.8xlO~^ m for a frequency range of 
1-18 GHz. Using the measurements of a(z) and 
b(z) in figure 3, we select the maximvmi divided 
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difference magnitudes for Oi and bi to obtain the 
results 

|A^S)(0;z,)| =3.6X10-' at 1 GHz, 

= 1.1X10-* at 18 GHz, 

\AA^(0-^i)\ =4X 10-» at 1 GHz, 

= 1.5X10-'at 18 GHz. 

to a conductor surface measurement resolution of 
2.8X10-' m over frequencies appropriate to the 
principal mode for 7 mm air lines. 

(6.8)       9^   Acknowledgments 

(6.9) 

To examine the total uncertainty in ^ ^ over N 
measurements of a(zi) and b(zk) for k = l,—,N let 
AAffyhe represented as 

N 

A^ oo(0;zjv)= 2 f{a(zk),b(Z„)}AA ^(z,_„z„), 

(6.10) 

where/„ is on the order of A^(z„^i-^„). Since the 
computation of AAa)(Zn-il2„) proceeds in the same 
way as L4^(0;zi), in eq (6.5), the total imcertainty 
over all measurement positions is found when the 
individual uncertainties in z and /"o at each measure- 
ment position are known. 

7.2   Efficiency Improvements in Cubic Spline 
Approximation 

While fitting the surfaces of coaxial air line ge- 
ometries with products of cubic splines over the 
variables 6 and z successfully meets error bounds 
consistent with measurement precision, significant 
reductions in the number of measurements yields 
equivalent error bounds with Gordon's successive 
decomposition spline [18]. The number of measure- 
ments required for successive decomposition 
splines in comparison to usual spline products is 
generally less than 50 percent. 

8.   Summary 

Generalized telegraphist equations for the coax- 
ial air line have been derived under two assump- 
tions: (a) skin effect losses are present, and (b) 
conductor surface variations occur in the axial and 
transverse coordinates. Product cubic spline ex- 
pressions to accurately fit conductor surface mea- 
surements were employed to arrive at pointwise 
scattering parameter expressions. Error bounds 
from eqs (6.8) and (6.9) reveal at least four signifi- 
cant figures can be obtained to characterize the 
scattering parameters 52i and 5ii in correspondence 
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Appendix A.   Inner and Outer Conductor 
Boundary Conditions 

In reference to figure 6 the boundary condition is 

E^=zJ^ (A.l) 

where E^ is the electric field component, /„ is the 
current density component in the coordinate v, and 
Zj is the radial impedance at r=b[z). 

Also firom figures 1 and 6 

a„= I a^ I cos{<^ft(z)}a^ + I «u | sin{<f>i,(z)}(-n), 

a„=cos{<f)(, (z)}az—sin{(|)4 (z)}n. 
(A.2) 

where n is the unit outward normal vector. From 
the left side of eqs (A.l) and (A.2) 

E^^= IE^ I cos{<f>6(z)}a^ — I -Ev I sin{4)i,(z)}n, 

E^^=E^2L.^-\-Er9ir. 

Unit vector ai^is 
tangent to inner 
surface of outer 
conductor at 
(b (zl, z) 

Detail of coordinate system 

Proceeding with the right side of eq (A.l), yields 

/„a„=/^a^—/„n=a^-nXH—/„n. (A.4) 

To find an expression for /„ note that 

/„=n. J^=n-n<,,XH, (A.5) 

/„ =n • n^x{.HTaT+^„ n-fJ^^aJ, 

/„=n • n^x{.ffTaT+-ff«{-sm{^j(z)}a„ 

-fcos{<|)j(z)}nJ. (A.6) 

4-.ffz{cos{<{)A(z)}a^-t- sin{<f>i (z)}n^}, 

/„ = —sin{<f>4(z)}H^. 

Consolidating eqs (A.3), (A.4), and (A.6) yields 

E,=^ —Z,. 
l-f-sin{<|)f,(z)} 
l-|-tan{<|>i,(z)} 

H, (A.7) 

where the relation E^ tan<|>(z)=.E, has been em- 
ployed. 

The inner conductor boundary condition rela- 
tion is similarly derived as follows: We have 
Ev—Zs Jv and the left hand side is 

The right side becomes 

Now proceeding as before yields 

Jr = sm{<l>„(z)}Hg. 

(A.8) 

(A.9) 

(A. 10) 

(A.ll) 

Substituting Er=taa.{4>a(z)} E^ into eq (A.8) and 
using eq (A. 11) in (A.9) jaelds 

l+sm{4>a(z)} 
^^-^M+tan{«}>.(z)}^'' 

(A.12) 

Figure 6. Outer conductor coordinate systems for determining 
boundary conditions. 
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Appendix B.   Transformation of Basis 
Functions for the Field Components 

The transverse fields Er and He are represented 
as 

EXr,d,z)=2j:'^'.p(r^)<-K(^) cos(«0) 
n,p 

-|-n?(z)sin(n0)} 

He(r,e,z)=2 Yr ^npir^){T^K^) cos(«0) 
n,p 

+l<?(z)sin(n0)} 

(B.l) 

(B.2) 

where ^„p denotes the radial component of the nor- 
malized potential function at a point, z. The symbol 
" over V„p (or I„p) signifies an amplitude corre- 

sponding to the nonorthogonal function — <I>„^ and 

the superscripts (1) [and (2)] correspond to even 
and odd modes. We assume that Er and Hg have 
first and second derivatives in r and d which are 
continuous and bounded. Hence, the Fourier series 
eqs (B.l) and (B.2) are absolutely and uniformly 
convergent; that is the series can be rearranged. 

Suppose the kth even mode of eqs (B.l) and 
(B.2) is considered and let the Gram-Schmidt or- 
thogonalization be represented as 

y <^„p(r^)= j; a,.,_,,^ (z)f,, {r^)/N,,(z) (B.3) 
^=0 

3r 

wheiefk^(r,zyNk^iz) is the k /th orthogonal basis 
function. Now substituting eq (B.3), multiplying eq 
(B. 1) by cos(kd), and integrating over 9 yields 

Er(r,d^) cos(A;0)d0 
J 0 

= { fw(z) ak,ofliz)fko(r^)/Nio(z)} 

+n,WK,,.fe)^+»„.,&)-^} + • 

(B.4) 

By induction note that the basis function fM(r,z)/ 
Ni^(z), occurs in every term above. Hence, we set 

f1.'^(z)=X«*.Ao(2)P'*a^)- 

Proceeding to the m th term yields the expression 

H«(z)= X  a*.^.^(z) ^,^(z) (B.5) 

for the coefficient of the basis function fkm(r,z)/ 
Nkm{z). Now eq (B.4) from eq (B.5) becomes 

/•2:r 

Er(rA 
J 0 

,z) coskOdO 

p=0 
(B.6) 

for the kth even component of E^. The odd com- 
ponents of Er are obtained similarly. Hence, sum- 
ming all components of E^ obtains the desired 
result 

Er{r,e^)=v{n) X-%^ iV<»iz) cos(« 9) 
n,p ^^"py^) 

-FJ^J>.(z)sin(«9)} (B.7) 

where v(n)=2'n- if « =0 
='jTiin^Q 

The expansion for H^ is obtained in the same way, 
i.e., 

fnXr^) 
He{r,9^)=v(n) ^jfi^ Wp'C^) cos(« 9) 

n,p ^^"py^J 

+/^>(z)sm(«0)}. 

Appendix C 

(B.8) 

Beginning with the spline expressions eq (3.1), 
consider the reciprocal 

1       1 1 

Oo Do 

We define the coefficients 

Since the geometric series for small z, 

(C.1) 

(C.2) 

bo bo 
<ao<<l 
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converges uniformly and absolutely, eq (C.l) can 
be rearranged in powers of z. We have 

1       1 1 

Using the geometric expansion yields 

-r^~{l-BTz- ..-Bf^z'} + UBf>fz' 
0{Z)     Do 

+2BfB'^^z'+-}-[B\°^'z'—.}, (C.3a) 

and rearranging the above series into successive 
powers of z produces 

o{z)   bo 

where 

Df^= -Bf\ £>(g= -Bf+lB\y 

£)?^= -Bf^+2 Bf> 5f-{5fF. 

(C.3b) 

(C.4) 

To obtain an expression for ln{b(z)/a(z)} consider 
the expression 

In ^1 =ln ^+ln{l+B\% +..+Bfz'} 
a{z)\        Co 

-ln{l+A\°^z + -+A^^z'} 
(C.5) 

Taking the reciprocal of eq (C.5) and using the ge- 
ometric expansion yields 

'°(si)-={>"ai'-h^li'""+^f'^ 
+..]+ln[l+^',''>z4-]} 

+ (in^ -'{]n\l+Bf^z + -) 

-2 ln[l +5fz +•■] ln[l +Af^z + -] 

+ln^[l+^fz+ ..]}. (C.6) 

From the absolutely and uniformly convergent ex- 
pansion 

ln{l-t-ft)} = ft)-y-f-y-H- 

for |o)|<flo<<l 

the expansion eq (C.6) is rearranged in powers of z 
to obtain 

where the first four coefficients are defined as 

^V>=-{ln^)"W-G^>} 

^^»=-jln^}"W-GiP} 

m^^-l^ln^y {Gi^-Cm (C.8) 

-t-{in|p.{G|f'-2G^? Gii>-2G^> G<P-FGi?} 

-{ln^p{Gf-3Gg> Gii'+3G|i> Gig>+G2>} 

and the G coefficients for the outer conductor cue 

G^*>={M'"P;A: = 1,2,3. 

{Bf>y 
G|l>=5§» 2     ' 

Gif=2G<^^ G9>=25T'[5?)-M!}, (C.9) 

Gi^=Bf-B\°^Bf- [Bff 
3    • 

The G coefficients for the inner conductor are 
computed by replacing 5,^(0) with ^^(0). To obtain 
the expansion for K in eq (1.15) an expression for 
Ar[<f)(z)] needs to be found. From eqs (3.1) and (1.1) 

P,   , ,,    l+sin[<f>i,(z)] 

. l+b'(z)/{l+b'(zfy 

(CIO) 
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Using the binomial and geometric expansions, in 
the last expression, yields the following expression 
in terms of spline coefficients 

We now have from eqs (C.3), (C.7), and (CIO) the 
expression 

- 6 b,b2Z ] X ^?'z" i ^^^'^"=2 a)z* (C. 11) 
■I    0 0 0 

where C^j^ is the convolution of coefficients, i.e., 

C^l>=(l -| bjj{D<§m»+H^m'n 

-6bib2D<§^m^ (C.12) 

Ci^=(l-hi)2Di%m'-6b,b2 2 D{\HT 

ci^=(i-hi)2Dri,m'-6b,b2 ^ Di\m\ 
V        ^      /k=0 k=0 

Since the inner conductor expansion proceeds in 
the same way, the total expression is 

3 

k=0 

(C.13) 
k=0 

where 

C?> = Cii' + ai>. (C.14) 

The transfer coefficient eq (2.4) has the expansion 

Tooiz)=[bi+2b2Z + 3b^n 12 Difz'^ [^ m]>z^ 
4=0 k=0 

-[a,+2a2Z+3a^']-2 D^fz' f ^iM 

roo(2)=X^^''^ ?)rrl' (C.16) 

where 
n m 

m—\i(ji) k=0 

and ju.(«)=0 for n <3, 
= lfor«=3. (C.17) 

From eqs (2.3), (C.14), and (C.17) set 

S(i>=7;8+^C?' (C.18) 

S'P=^C?';^>1 (C.19) 

Sf=^C?'+^;A:>0. (C.20) 

The coefficients v'^]„_i in eq (3.14) are defined by 
selecting the coefficients of 17* and convoluting the 
series product. Let 

v^!L.=i 

va_,= -f6^!i^_, 

v!»:i,_,=-is^:>._,+i{8a-j 

v^;L,=f8^!i»-,s2.._, 

■52 T^^ Oi,m_i OJ,m_] 

V^:L-I= s^:>,_, •ijsa-.f 
Proceeding to vl^m-i 

where 

;xi(A:)=A:if 0<A:<3 
= 3 if 3<A:<8 

and 

3 

I 

(C.21) 

(C.22) 

(C.23) 

vgi,-i=   X   8^'lAm-iv(J?„_,if8<A:<ll. (C.24) 
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Appendix D 

Expression of the contour length /o in terms of 
the spline coefficients is initiated from the defini- 
tion 

/o^f^ [m+^~\e) de. (D.l) 

Using the spline coefficients for the interval [0„, 
6„+i] yields the representation 

^-.(i7)=i:^S''^'>O<r,<0„+, (D.2) 
k=0 

at «=0, P„(0)—Pi%„=the measurement of i, at 
d = d„. Then eq (D.l), in view of eq (D.2), yields 

n=0 •> 0 U=0 

m2ik+i)Piiu.e' 
k=0 

 ^- ]d0.(D.3) 

Let P^xn " be the convolution of the product 
P2<f;i''~'^ and i(k +1) P\%,,„y above. Then eq (D.5) 
yields 

/'p,=^ 2 «*--'>«"  2 i'l^r" {s,[(9„+i-0„) 

1  30+9+1) 

•{'S,[(0„+i-0„)(p-9)/]-5,(0)} 

where 5^ is defined in eq (3.11). 

(D.7) 

The denominator can be expanded into a geometric 
series such that the second term above yields 

*=0 U=0 J     l-^1.0,nj 

l_E^a ££L ,    1 (D.4) 

and eq (D.3) on substituting eq (D.4) yields the 
form eq (4.13). For other values ofp and q we have 

^ 0 n=0 Jo IS 

+9+1) ir 2 

t=0 J U=0 

+ 1/2 
r30)+«+l) 

•     h 

where 

(P+9) f   3 1P+? 

k=Q lit=0 J 

3(P+9) 

(D.5) 

(D.6) 
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