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A very sensitive microphone detector is 
used to study fast kinetic rate processes 
in the gas phase resulting in the genera­
tion of heat. The rate of heat evolution 
in turn produces a short duration pres­
sure pulse which drives the microphone. 
The frequency response of the micro­
phone is somewhat slower than required 
to record these pulses as they actually 
appear at the detector. The theory of 
the method used for the data reduction 
is presented. It is based upon the 
Green's Function method which ex­
presses the time dependent microphone 
signal, X, (t), as the convolution of the 
pressure pulse function, /(t), by the mi­
crophone's impulse response function, 

O(t). A Fourier analysis of X(t) and the 
two relevant functions, /(t) and G(t), at 
a single frequency, allows direct deter­
mination of the rate constant for the ki­
netic process under study. The method 
is demonstrated by applying it to the 
study of vibrational energy relaxation of 
pentafluorobenzene in argon buffer gas 
and gives results in agreement with 
other experimental methods. 
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1. Introduction 

Several direct methods have been used to study 
energy transfer (relaxation) processes from vibra­
tionally excited molecules in the gas phase. These 
methods can be distinguished by the way the vibra­
tionally excited molecules are produced and how 
they are detected. Production methods include i), 
electronic excitation via pulsed excimer lasers, fol­
lowed by rapid internal conversion into vibrational 
energy or ii), direct vibrational excitation using a 
pulsed CO2 laser. Detection methods involve real­
time measurement of the relaxation process through 
the use of a number of different energy detection 
probes: ultraviolet absorption, infrared absorption, 
infrared fluorescence, pressure wave detection (op­
to acoustics or interferometry), and broadening of 
Hg 254 nm absorption. Most of these energy detec­
tion methods are well suited to detecting relaxation 
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in pulsed CO2 laser experiments when the fluence 
of the laser is greater than about 0.25 J/cm2

• In ex­
periments using excimer laser excitation the fluence 
is usually considerably attenuated in order to mini­
mize photolysis by multi-photon absorption pro­
cesses, resulting in a poorer signal-to-noise ratio. 

Of all the detection methods employed, optoa­
coustic techniques (using microphones or piezo­
electric crystals) are probably the most sensitive. 
However, microphones used in such experiments 
generally have a limited frequency response 
thereby confining measurements to systems exhibit­
ing relatively slow energy relaxation [1]. The low 
pressure limit for performing such experiments is 
usually about 1 torr. Below this pressure the onset 
of dispersion (energy loss) due to diffusion and 
thermal conductivity results in a decreased signal. 



Volume 93, Number 6, November-December 1988 

Journal of Research of the National Institute of Standards and Technology 

The limitation of being able to measure only slow 
relaxation processes has recently been circum­
vented by Beck, Ringwelski, and Gordon (BRG) 
[2]. These workers employ a small surface area 
piezoelectric crystal detector with a high-fre­
quency response. Their method involves the direct 
monitoring of individual pressure pulses arriving at 
the detector as a result of the pulsed CO2 laser exci­
tation of a gas. The pressure pulse is characterized 
by both a condensation (compression) and a rar­
efaction portion and their relative magnitudes is 
determined by the rate of energy relaxation, the 
size of the irradiated zone, the radiation distribu­
tion within this zone, and the speed of sound in the 
gas medium. The important advantage of faster re­
sponse time has, however, incurred the disadvan­
tage of lower detection sensitivity. 

In this paper we explore the application of a very 
sensitive microphone detector to the measurement 
of relaxation rates that are somewhat faster than 
the angular frequency response of the detector. 
The measurements basically involve the sampling 
of amplitude information as well as some limited 
waveform information [3]. As in the BRG [2] ex­
periments, individual pressure pulses are moni­
tored. These pulses are not viewed as they actually 
appear at the detector but rather as the detector 
responds to them. The detector generally develops 
a damped ringing sine wave at a single angular fre­
quency, wo, termed the characteristic or natural fre­
quency. If Wo is much lower than the frequency of 
the pressure pulse then the pulse shape cannot be 
effectively extracted; however, amplitude and 
some waveform information remain so that it is still 
possible to measure accurate rate constants for vi­
brational relaxation processes faster than Wo. 

Thus, the measurable range of rate constants 
with the present method is about the same as with 
the BRG [2] method. This range is limited by the 
approximate condition coI(10ro)<k'P<3co/ro, 
where k' is the bimolecular rate constant for en­
ergy relaxation (torr s)-" P is the bath gas pressure 
(torr), Co is the speed of sound in the bath gas 
medium (cm/s), and ro (cm) is the radius of the 
cylindrical zone irradiated by the excitation laser 
beam. The upper limit for measurable k' P values is 
approximately the reciprocal of the time it takes for 
a pressure pulse to traverse the diameter of the irra­
diated zone; the lower limit comes about because 
late contributions to the developing pressure wave 
(due to slow relaxation) ultimately interfere with 
earlier contributions and the resultant pressure 
pulse is strongly attenuated (de-phased). 
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2. Theory of the Method 
2.1 Background 

We initially follow the procedure of Rothberg et 
al. [4] who described the use of microphones to 
perform photo acoustic calorimetry. Kinetic rate 
constants were not obtained by these workers, but 
an analysis was made on how very rapid or very 
slow kinetic processes (compared to wo) affect the 
microphone's sensitivity. In addition, their work 
dealt with pulsed laser excitation of liquid phase 
systems while here we concentrate entirely on the 
gas phase. 

For convenience, in the following discussion the 
symbol t is to be viewed as a retarded time. It is a 
measure of time that begins (t =0) when the pres­
sure pulse, originating from the laser irradiation 
zone, arrives at the detector. 

We first deal with a simple model of the detector 
which is taken to be that of a damped harmonic 
oscillator [5] and follows the differential equation, 

(1) 

where X is the displacement of the mechanical di­
aphragm from its equilibrium position, u is the di­
aphragm mass, v is a damping constant, and w is a 
spring constant. The functional form of a driving 
pressure pulse acting on the detector face as a func­
tion of time t, will here and in the rest of the text be 
given by the designation,/(t). We now employ the 
Green's function method [6] to obtain the detec­
tor's response to the driving pressure pulse. We 
take this to be equal to X(t) which is given by 

X(t)= 1: G(t,r)f(r) dr=G*f, (2) 

where 

G(t,r)=A sin(wo(t-r)) exp(-,8(t-r)) (3) 

is the suitable Green's function for the initial value 
problem given by the differential eq (1) (assuming 
that X = 0 and dX / dt = 0 at t = 0) and represents 
the impulse response function. Equation (3) de­
scribes an underdamped sine wave where A is an 
arbitrary amplitude constant and ,8 is the damping 
constant. The detector response, given by eq (2) is 
thus the convolution of the pressure wave pulse 
incident on the detector, given by I(r), by the im­
pulse response, G(t ,r) and the convolution is desig­
nated by (G*j). It is understood from the limits of 
integration in eq (2) that G(t ,r) is given by eq (3) 
for r < t but is zero for r> t. Thus, if both I and G 
are known, the signal given by the detector is 



Volume 93, Number 6, November-December 1988 

Journal of Research of the National Institute of Standards and Technology 

completely specified by eq (2). The problem, in 
fact, can be completely solved experimentally: if a 
known pressure signal f(t) is presented to the de­
tector and its response X(t) is measured, the func­
tion G can be determined through a deconvolution 
process. This is in principle possible through fast 
Fourier transform methods (FFT). Taking the 
Fourier transform of eq (2) gives, by the "Convolu­
tion Theorem," 

F[X(t)]=F[G(t)] . F[f(t)] , (4) 

that is, the Fourier transform of the convolution is 
the product of the individual Fourier transforms. It 
remains to divide F[X(t)] by F[f(t)] and then, tak­
ing the inverse transform to recover G(t). Once 
G (t) is known, we can, in principle, recover f(t) 
for any unknown pressure signal. However, we 
should point out that the duration of pressure wave 
f(t) (see below) is frequently less than half of the 
period of the detector's impulse response so that 
such a deconvolution would not be expected to 
cleanly recover the shape of f(t). This fact, cou­
pled with inherent noise in the data and the use of 
an imperfect representation for G(t) can frequently 
produce unsatisfactory results. For this reason we 
reduce our data in a somewhat different way which 
we develop in the succeeding sections. 

2.2 Development of Present Method 

It would be helpful if we could separate the 
quantities f and G out from within the integral in eq 
(2). This can be achieved by taking either a single­
frequency [7] Laplace or Fourier transform of eq 
(2). Subsequently, we will consider the latter trans­
form as a special case of the former. Taking the 
Laplace transform of the convolution function as 
the product of the individual Laplace transforms of 
G(t) and f(t), 

L[X(t)]=L[G(t)]. L[f(t)] , (5) 

results in 

J~ X(t)exp( -at)dt = 

J~ G(t)exp( -at)dt . f~f(t)exp( -at)dt. (6) 

Here a is an arbitrary real and positive constant. 
Using the function G, given by eq (3), the integral 
containing Gin eq (6) is given by 
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J~ G(t)exp( - at )dt = "'.;[( a + J:I)' + "'0'] . (7) 

We have thus achieved the desired separation of 
the two functions G andfin eq (2). For the special 
(but frequently encountered) case where the func­
tional form of G (t) remains unchanged over a 
range of experimental conditions, eq (6) becomes, 

f~ X(t)exp( -at)dt = 

constant· f~f(t)exp( -at)dt . (8) 

It then remains to reduce the actual data according 
to the first integral in eq (8) and calculate the sec­
ond integ~al from known representations of f(t). 
These representations will, as mentioned above, be 
a function of the irradiation geometry and the re­
laxation rate constant. 

The time-varying pressure, at an observation 
point somewhat distant from the cylindrical axis of 
a laser irradiated zone, as obtained from the solu­
tion of the linearized acoustic wave equation, has 
been given by Bailey et al. [8], with some general­
ization by BRG [2]. We present the results of these 
two papers here in a notation similar to that of 
BRG [2], 

J(i)=Qo I< f (1'+1<')-1 {-I< exp[ -1«(+8)] 

+ Isin[/(i + 8)] + kcos[/(i + 8)]} 

Jo(l Y;;) h (i)ld/. (9) 

At this point we will be dealing with dimensionless 
quantities; the advantage of doing so will become 
clearer as we proceed. Also, for the sake of clarity 
a bar will be placed over all dimensionless quanti­
ties. In eq (9), dimensionless time is defined as 
t= tcolro; dimensionless probe position is defined as 
rp=rp/ro; dimensionless pseudo-first-order rate con­
stant k is given by k=krolco. The dimensional 
quantities consist of ro and Co, defined earlier; rp, the 
probe position which is the distance of the micro­
phone from the axis of laser beam, always ;>ro; k, 
the pseudo-first-ordered rate constant for energy 
relaxation (S-I). This form allows us to arrive at 
any set of solutions regardless of the irradiation ge­
ometry and sound speed. The delay between the 
laser pulse and the arrival of the pressure wave at 
the detector is given by, 8 = (rp-ro)lro. In ,eq (9), 
h (i) =]1 (i)11 characterizes a uniformly irradiated 
"tophat" geometry [9], Jo and J1 the zero and first 
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order Bessel functions, respectively, and Qo is a 
constant. Two examples of calculated pressure 
waves obtained under rapid relaxation and sl<;>w re­
laxation conditions are shown in figure 1. 

17.0 

Figure 1. Two representative waveforms (in dimensionless 
units) of the pressure wave calculated from eq (9)-one for 
rapid relaxation, k= 13, and one for slower relaxation, k-0.65. 
These two curves show approximately the full time span of the 
waveforms encountered under fast and relatively slow relax­
ation conditions. Curves are scaled by the factors indicated. The 
duration of one cycle of the microphone's damped impulse re­
sponse function, G(t) is shown for reference as 27T/Wo. 

2.3 Calculation of Calibration Curves 

It remains to determine the integral on the right­
hand side of eq (8) as a function of a variable relax­
ation rate constant. This integral, expressed in 
terms of dimensionless time, t; dimensionless rate 
constant, k, and dimensionless alpha, defined as 
o.=aro!co, is given by, 

L [t(t,k)] = J~/(t,k)eXp( - a. t)dt (10) 

Several curves were evaluated by numerically 
solving eq (10) using the expression for I(t) given 
by eq (9), as a function of k, for several values of a.. 
There is some small error involved in the numeri­
cal integration. Within this minor limitation we fit 
these curves (normalized to unity for the fastest re­
laxation rate constant) to the following empirical 
expression, 

L [t(t,k)] ex: 1-exp( -ii k 0.75) • (11) 

For reference, these curves are presented in figure 
2. It should be noted that there may be no physical 
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significance to the functional form given by eq (11), 
except that it best fits the results of the numerical 
integration of eq (10). Replacing the 0.75 exponent 
by unity results in a poorer fit. The significance of 
a. should be addressed at this point. It could first of 
all be viewed as a mathematical convenience al­
lowing separation of the two terms,/ and G, within 
the integral in eq (2). Alternatively the factor 
exp( -at) in eq (10) could be'viewed as a "time 
window" used to crudely sample the shape of the 
pulse (waveform) in the chosen time domain. It is 
ultimately expected to distinguish between differ­
ent waveforms with an accuracy sufficient to re­
turn meaningful kinetic results. As we discuss 
below it mayor may not be adequate for the prob­
lem at hand. 

1.2 .---------------------, 
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Figure 2. Several fits of L [(/)1 eq (10) to the functional form of 
eq (11) for different values of a. 

, a=0.8122, a=0.85 
__ , a=0.4060, a= 1.00 
-. -. - , a=0.0812, a=0.65 
..... , a =0.0406, a=0.50 

The results of figure 2 show that, while a varies 
by about a factor of 20, the calibration factor, ii, 
varies by only a factor of two. In order to apply 
this methodology it is important to note that what­
ever the value of a. used to process the actual data, 
the same value for a. must be used to calculate the 
appropriate calibration curve. 

2.4 Analysis of Experimental Waveforms 

We ultimately perform experiments in which a 
pseudo-first-order relaxation rate constant is varied 
linearly through a change of the bath gas pressure. 
The experimental signal curve is processed accord­
ing to the left-hand side of eq (8), 

L[X(l,k)l= J: X (t,k)exp( -a. t)dt. 
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These results must also fit the functional form (nor­
malized to unity) of eq (11), 

L [x(i,k)] 0:.: l-exp( _ApO.75) . (12) 

The experimental parameter, A, is thus derived 
from the experimental data. If the functional form 
of G(i) remains constant, eqs (11) and (12) can sim­
ply be related according to eq (8) resulting in 

1-exp( _ii(k'p)O.75) = 1-exp( _ApO.75) , (13) 

where k' = k/ P is the dimensionless rate constant 
per unit pressure (bimolecular rate constant). If the 
functional form of G(t) varies, eq (13) is still appli­
cable, as discussed in section 4. However, the left­
hand side of eq (12) must be replaced by 
L(X)/L(G). That is, the variation of L(G) must be 
taken into proper account. From eq (13), we arrive 
at 

k' = (A/ii)1I0.75 . (14) 

Equation (14) thus involves the experimental 
parameter, A, and the appropriate calibration fac­
tor, ii. The dimensional rate constant per unit pres­
sure, k' , is related to the dimensionless rate 
constant per unit pressure, k', according to 

(15) 

We have evaluated f(i) assuming that the micro­
phone is a point detector. It actually occupies a 
finite width, do, in the radial direction of the propa­
gating pressure wave. Thus the function, f(i), 
should be convolved using the suitable rectangular 
slit function (function of do=do/co). However, we 
here make the ad hoc assumption that the convolv­
ing effect of do on f(t) is quite analogous to the 
effect onf(t) produced by a simple increase in the 
diameter of the laser beam, 2ro, which should be a 
good approximation if do<.2ro. Equation (15) is then 
modified to its final form, 

(16) 

where an effective ro is calculated as indicated. 

2.5 Fourier Transform Method 

An entirely analogous treatment can be applied 
to the case of a Fourier transform viewed as a spe­
cial case of a Laplace transform. Then for a = - i Ct), 

where i =V -1, Ct) being an arbitrary positive fre­
quency, we refer back to eq (4), where it is under-
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stood here that we are transforming only at a single 
frequency, that in evaluating F(X), F(G) or F(j) 
the integration over time extends from zero to in­
finity, and that the transformed result is in the com­
plex plane. 

When a = i Cl) eq (4) becomes 

F*(X)=F*(G)F. F*(j). (17) 

The product of eqs (4) and (17) returns a result 
which is a real number 

F(X). F*(X)=F(G)· F*(G)· F(j). F*(j). (18) 

Equation (18) is entirely rigorous whether G(t) re­
mains constant or not. However, if G(t) is constant 
then the Fourier transform of X(t) multiplied by its 
complex conjugate is simply proportional to the 
Fourier transform of the functionf(t) multiplied by 
its complex conjugate. 

We now develop a set of calibration curves by 
calculating F(j) . F*(j) which are the Fourier ana­
logues of the Laplace calibrations depicted in fig­
ure 2. These are presented in figure 3 for reference. 
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- --: .. ..: .... 
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Figure 3. Numerical calculations F(j). F*(j), eq (18), for the 
conditions 00 = 1.256 and 

- - - , 0.500 
-. -. - , 2.000 
••.•• , 4.000 
__ , LOw as fit to eq (19) with a=0.46. 

While a number of curves for variable a can be fit 
to the functional form of eq (11) for the Laplace 
transform case, here for the case of the Fourier 
transform multiplied by its complex conjugate, 
only a range of w values can be accurately fit by 
the following simple functional form, 

F(j). F*(j)= 1-exp( -ii k). (19) 
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In all other respects the treatment given above ap­
plies to the present case, with the one exception 
that wherever the exponent 0.75 appears in an 
equation it is to be replaced by unity. Also, eq (19) 
should be used only for values of w around 1.0; for 
other values of W, the other curves shown in figure 
3 should be cast in suitable functional forms and 
counterpart experimental results analyzed in the 
same way. 

2.6 Method Summary 

The procedure outlined above involves taking 
suitable transforms, i) of the pressure wave as a 
function of the pseudo-fIrst-order relaxation rate 
constant, ii) of G(t), if its functional form varies 
over the range of experimental conditions and fi­
nally, iii) of the experimental data as a function of 
the bath gas pressure. The processed results, when 
expressed in terms of the appropriate analytical 
functional form, allow simple extraction of the en­
ergy relaxation rate constant. Each operation in­
volves taking a single-value transform. This 
accurately samples the amplitude and also samples 
the waveform in sufficient detail to produce accu­
rate kinetic results. 

The alternative procedure using FFT methods, 
as mentioned earlier, is subject to failure under the 

CO2 

TEA Laser 

Microphone 

e = Length = B.2mm 

w = Width = 5.5mm 
t= Thickness= 2.0mm 

do= Aperture ~ 2.5mm 

Gas 
Handling 
System 

present conditions (at least with respect to recover­
ing a precise waveform) and further requires the 
tedious task of making additional waveform com­
parisons in order to finally extract a relaxation rate 
constant. 

3. Experimental Procedure 

The essential features of the experiment are pre­
sented schematically in figure 4. A CO2 TEA laser 
delivering about 0.5 J/cm2 per pulse of about 200 
ns duration is directed into the spherical absorption 
chamber through a variable iris as a quasi-parallel 
beam. The diameter of the laser beam is adjustable 
from about 2 to 10 mm. A Knowles microphone 
BT-1759 was used in the present work [10]. The 
approximate dimensions, orientation and position 
of the microphone are given in figure 4. The device 
consists of a rectangular thin-metal diaphragm 
placed in close proximity to an electret disk behind 
which is positioned a ceramic printed circuit (PC) 
board containing an internal amplifier. This assem­
bly is potted within a thin metal casing, the face of 
which contains several rows of holes which allow 
the diaphragm to respond to pressure changes in 
the environment. An equivalent electrical circuit 
describing the microphone consists of a battery 

Gas Inlet 

• 
5 Liter Bulb 

Amplifier 

r 0 = Radius of Laser Beam 

Sig. A~erager 

Microprocessor 

rp = Microphone Distance from Axis 

Figure 4. Schematic diagram of apparatus showing microphone position and approximate dimen­
sions. The symbols D and R designate the direct (primary) and reflected pressure waves, respec­
tively. 
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connected in series with a variable capacitance (the 
diaphragm) which is connected to the PC amplifier 
assembly. The assembly is biased with an external 
1.35 V battery. The output of the microphone am­
plifier is connected with a short cable to an addi­
tional pre-amplifier which is used to reduce the 
output impedance of the microp~one from .abo~t 
3.5 kfl to 50 fl. The signal from thls pre-amplIfier IS 

then fed to a Tektronix Model AM502 high-gain 
differential amplifier, the frequency response of 
which is set for a low-frequency 3-db cut-off of 10 
KHz and a high-frequency 3-db cut-off of 1 MHz. 

The output of this high gain amplifier is then 
connected to a Biomation Model 8100 fast digitizer 
which transmits the signal through an interface to 
the microcomputer assembly. The fast digitizer is 
triggered by a trigger pulse generate~ at the beg~n­
ning of each CO2 laser pulse. The mIcrophone SIg­
nal to the fast digitizer is further retarded by a 
pre-set time delay equal to or less than the time 
required for the pressure wave to travel from the 
laser-irradiated zone to the microphone detector. 
Multiple laser shots could thus be accumulated (av­
eraged), viewed in real time, and fmally stored on 
disks for further data reduction. 

A typical set of experiments consists of i) prepar­
ing a dilute mixture (less than about one part per 
thousand) of an infrared absorbing gas in a non-ab­
sorbing diluent gas, in the 5-liter vessel containi~g 
the microphone assembly; ii) subjecting the mIX­
ture at some total pressure, P, to one or more CO2 

lase; pulses, simultaneously recording the micro­
phone signal response and then storing the resul­
tant waveform; iii) reducing the pressure of the 
mixture in stages, each followed by laser excitation 
and data aquisition, in order to follow the kinetics 
of the relaxation process. The resultant waveforms 
are finally processed according to the method pre­
sented in the previous section. Further details are 
given in section 4. 

The gas handling system could be evacuated to 
pressures less than 1 X 10-6 torr. The infrared ab­
sorbing gas used in the present work was pentaflu­
orobenzene (PFB) and the diluent gas was argon. 
Pressures were measured with a calibrated capaci­
tance manometer. Gas mixtures were introduced at 
pressures down to about 0.5 torr and could be mea­
sured to better than 0.01 torr with the pressure 
measuring head. 
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4. Results 
4.1 Microphone Response Function, G(t) 

Before analyzing a typical energy relaxation ex­
periment, we first describe several tests performed 
on the microphone assembly to determine its oper­
ating characteristics. These characteristics basi­
cally determine the functional form of G(t). 
Whatever the functional form of G (t), it is impor­
tant that it either remain constant under the vary­
ing conditions of a set experiments, or if it varies, 
that its transform be independently obtained. 

We first attempt to deduce an approximate func­
tional form of G (t) for the specific microphone de­
tector employed in these experiments and we then 
determine if G(t) varies under changing experi­
mental conditions. 

A tomputer algorithm was prepared to numeri­
cally perform the convolution given by eq (2). 
When we convolved G(t), given by eq (3), with a 
variety of simple pressure pulses, J(t), we obtained 
waveforms exhibiting the same characteristic fea­
ture: the first maximum was always significantly 
larger than the absolute value of the first minimum. 
The reverse effect was always observed for the ex­
perimental waveforms. Replacing eq (3) by 

G(t ,T)=A sin[wo (t -T)] {1-exp[ -'Y(t -T)]} 
exp[ -,8(t-T)] (20) 

resulted in a much better fit as can be seen in figure 
5. No attempt has been made to adjust the con­
stants, ,8 and 'Y to produce an optimum fit. In fact, 
it may not be possible to achieve a perfect fit to the 
data since the driving wave, J(t), used in the simu­
lation consisted of a single cycle sine wave with an 
angular frequency, 2wo, twice that of the detector. 
This idealized waveform for J(t) is only an approx­
imation to the actual pressure waveform as shown 
in figure 1 (fast relaxation case). The actual detec­
tor impulse response function may also contain mi­
nor contributions at frequencies other than Wo 

which are not considered here. Approximate val­
ues obtained for the parameters in eq (20) are listed 
in the caption of figure 5. 

The following two speculative interpretations of 
the functional form of eq (20) are given: 1) the cir­
cuit contains an RC of about 60 J.Ls (value of T in 
caption of fig. 5), or 2) an initially excited micro­
phone vibrational mode trans.fers energy to. a. sec­
ond mode for which the mIcrophone exhIbIts a 
greater response. Both explanations can account 
for the slowly developing signal as represented by 
the {1-exp[ -'Y(t -T)]} term in eq (20). 
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We now consider how the microphone parame­
ters change with variation of bath gas pressure and 
also laser intensity. 

\'\ 
\\ -

~I\ (\ r 

\J \j \/:~/:-J-~~ 
, , 
v 

o~~~~ __ ~ __ ~ __ ~ __ ~~ __ ~ __ 
o 390 

Time in p.s 

Figure 5. Solid (appearing) line is experimental microphone sig­
nal, 780 digitized data point, for a 4.7/1000 mixture of PFB in 
argon at a total pressure of 20 torr, time base extends from 0 to 
390!-'S- Dashed curve is a numerical calculation of X(t) using eq (2) 
for the function G(t)=A sin(wot). [l-exp( -')'t)] . exp(-f3t), 
where A is arbitrary, wo=0.097 (J.Ls)-', 1=0.017 (J.Ls)-', {3= 
0.014 (fLS)-', and the function/(t) is taken as one cycle of a sine 
wave with an angular frequency of 2wo and arbitrary amplitude. 

4.2 Microphone Response to Laser Intensity 

At a fixed total pressure, for a particular mix­
ture, the laser light intensity was varied by a factor 
of about 100. This was effected by placing partially 
absorbing CaF 2 windows in front of the laser beam 
incident on the spherical chamber containing 
the absorbing gas and microphone. Each window 
was expected (from previous calibrations) to 
attenuate the laser beam by 65 percent. Figure 6 
displays results of the microphone signal, measured 
at the first maximum, as a function of a number 
of windows placed in the path of the laser. 
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Figure 6, Relative intensity (of the first positive peak of the 
microphone signal) as a function of the number of attenuating 
BaF2 windows. 
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The functional form which best fits the observed 
relative intensity is given by 

1 =10 (O.663)n, (21) 

where 10 is the incident laser intensity and I is the 
intensity after attenuation by n windows. The addi­
tion of a single window reduces the intensity by a 
factor of 0.663. Since the experiments are all at a 
constant pressure we expect that the microphone 
impulse function is strictly constant, and the pres­
sure wave impinging on the microphone also has a 
constant waveform. Because of the latter two con­
ditions it is necessary that the microphone produce 
a signal with a constant shape (waveform), regard­
less of magnitude. This allows us to use any part of 
the resultant waveform (for example, the first max­
imum) as a suitable measure of the laser intensity 
impinging on the gas mixture. In fact, a careful re­
view of the resultant waveforms showed that the 
scaled waveforms could always be precisely super­
posed for a two orders of magnitude change in the 
laser intensity. The good fit of the data to the func­
tional form of eq (21) provides equivalent informa­
tion. Figure 6 further verifies that the detector is 
linear over the range of excitation. Our experience 
has shown that pressure waves too intense can 
cause non-linearities in either the microphone or 
the amplifier or both. 

4.3 Fast Relaxation: Effect of Pressure on 
Microphone 

Experiments were performed by adding addi­
tional argon to a starting mixture of about 1/1000 
PFB in argon. The starting pressure was chosen 
high enough (20 torr) so that energy relaxation was 
very fast as determined from previous measure­
ments [11]. From a pressure of 20 torr and higher, 
the pressure waveform,!(t), is unchanged. Assum­
ing that the microphone impulse function, G(t), is 
also constant, the signal waveform must also re­
main unchanged. We measure the amplitude of the 
microphone signal at several convenient points (the 
first maximum, for example) and plot these in fig­
ure 7 as a function of the gas pressure. Clearly, the 
amplitudes are not constant showing that the func­
tional form of G(t) does indeed vary with pressure. 
We suggest that this comes about because the 
damping constant, {3 [eq (20)] changes with pres­
sure. On this basis the functional dependence of 
G(t) with pressure is obtained and given in the 
caption of figure 7. 
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Figure 7. Pressure effect on microphone response: Amplitude 
(arbitrary units) of microphone signal sampled at two time 
points (to) vs total gas pressure. First pressure consists of a 20 
torr mixture of 5/1000 PFB in argon. Additional pressures ob­
tained through consecutive additions of pure argon. Open 
circles (sampled at to=26.51p,s) fit to the expression 
1=10 exp[ -(1.18 X 1O-4p -0.78X 1O-7p2). t], solid circles 
(sampled at to=38.34p,s) fit to the expression 
1=10 exp[ -(1.22x 1O-4P -l.07X 10-7 p2) . t], with time, t, in 
p,s, the pressure, P, in torr, 10 the amplitude extrapolated to 
P=O, and I the amplitude at pressure P. 

It is interesting to see from figure 7 that the sig­
nal decay is not a linear function of pressure. There 
are, in fact, at least two decay rates, one consider­
ably faster than the other, suggesting at least two 
microphone characteristic frequencies. We tenta­
tively describe the fast decay to energy dissipation 
from a higher frequency mode of the microphone 
and the slow decay from a lower frequency mode. 
We cannot at this time quantitatively assess pres­
sure changes in 1 [eq (20)] and for present purposes 
assume it to be a constant. 

The analysis of our experiments would be simpli­
fied if G(t) were constant with pressure. Since this 
is not the case, the data of figures 5 and 7 allow us 
to arrive at G(t) as a function of pressure through 
the use of eq (20) and the following derived 
parameters 

wo=O.097 (J.LS)-l, 1=0.017 (JlS)-1 

~=(0.01 + 1.2x 10-4 P -l.OX 10-7 p 2)(J.Ls)-1, (20a) 

where the unit of time in eq (20a) is Jls and the 
pressure P is in torr. 

4.4 Analysis of Simulated Data 

Before analyzing laboratory data we describe 
simulated experiments in which the computer al­
gorithm, described above, numerically calculates 
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the convolution given by eq (2). The algorithm 
also numerically calculates Laplace and Fourier 
transforms of X(t), G(t) and f(t) performed at a 
single frequency, a or w. Equations (6) and (18) 
were shown to be valid for a wide variety of arbi­
trary pressure waveforms as well as values for the 
parameters a and w. That is, the transform of the 
"signal" was found to be equal to the product of 
the transform of the "pressure pulse" and the trans­
form of G (t) as expected. 

Using the above computer algorithm we were in 
a position to evaluate the effect of "noise" on the 
results of data transformed at a single frequency. 
Thus, we performed simulations in which random 
as well as systematic "noise" was added to the "sig­
nal data" to determine the effect on its transform. 
From these limited simulations we found (qualita­
tively) that introduction of systematic noise in the 
form of baseline shifts (which we have observed 
experimentally to be caused by stray electrostatic 
signals from the laser) as well as random noise gave 
results in poor agreement for the Laplace trans­
form and in good agreement for the Fourier trans­
form as compared with the respective noise-free 
results. 

4.5 Analysis of Relaxation Data 

In agreement with the above simulations we 
found that the experimental data transformed using 
the Laplace method were considerably more scat­
tered than data using the Fourier analogue. Typical 
Fourier data transforms as a function of bath gas 
pressure are given in figure 8. By contrast, because 
of the poor quality of the Laplace results, we did 
not analyse the data by that method. However, we 
should point out that base line shifts in our data 
which we have shown to yield poor results by the 
Laplace method can in principle be subtracted out. 
This was not attempted here; however, doing so in 
the future may permit more effective use of the 
Laplace method. 

We now describe the analysis of the data of fig­
ure 8 in order to obtain the rate constant for vibra­
tional relaxation of PFB in argon. As expected, we 
found that the Fourier transform returns the largest 
numerical value when the transform is performed 
at Wo and the results of figure 8 were so obtained. 
However, performing the transform at other 
frequencies is also possible. 
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Figure 8. Data, X(t) transformed according to eq (18) and pre­
sented as the solid points. The similar transform of G(t) is calcu­
lated from eq (20) using the parameters listed in eq (20a). The 
results are displayed using the solid line. 

For these experiments the laser beam dimension 
ro was set at 0.42 cm. The value for Co, the sound 
velocity in argon, is 3.216X 104 cm/s, and the fre­
quency used for the transform, w, is 0.097 (J-LS)-l. 
These values result in cJJ = 1.256, chosen to corre­
spond to the simple exponential calibration curve 
in figure 3 (ii=0.46). The experimental data, X(t) 
were transformed according to eq (18) and are pre­
sented as points in figure 8. Data up to about 20 
torr mainly show the effect of vibrational relax­
ation while data at higher pressures show predomi­
nantly variation of the microphone's impulse 
response function, G (t), with pressure. While pres­
sure data as presented in figure 7, on cursory exam­
ination, suggest a moderate change of the function 
G(t), it is seen that the operation F(G). F*(G) 
produces a much larger variation. However, eq 
(18) is entirely rigorous and is capable of handling 
variations in G(t) and F(G) . F*(G) as long as they 
can be quantitatively described. 

There are two ways to characterize the variation 
of G(t) with pressure. The simplest procedure is to 
curve fit the transformed high pressure data in fig­
ure 8 and then assume that a short extrapolation to 
the low pressure regime gives the proper transform 
of G(t). Instead, we calculated F(G) . F*(G) from 
eqs (20) and (20a), resulting in the solid line of 
figure 8 [12]. This calculated curve fits the experi­
mental points reasonably well at high pressures 
(where it should fit the data), and serves as a means 
for calculating F(G). F*(G) for the low pressure 
points with an accuracy quite adequate for our 
purposes. 

Finally, according to eq (18), dividing 
F(X) . F*(X) obtained at each pressure by the cal­
culated F( G) . F*( G) at that pressure yields 
F(j) . F*(j), the quantity of interest. The resultant 
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curve is presented in figure 9 where the data are fit 
to the functional form of eq (12) (replacing the 0.75 
power by unity, for this case). The best fit yields 
for the parameter, A, the value, 0.25. According to 
eq (14) (again replacing 0.75 by unity) and using for 
ii the value 0.46 results in k' =0.54. From eq (16), 
using ro=0.40 cm and co=3.078 X 10-2 cm/J-Ls, we 
derive k =0.042 (J-Ls • torr)-l. This value is in good 
agreement with k'=0.0428±0.0092 (J.Ls, torr)-l 
and k'=0.053+0.014 (J.Ls. torr)-l obtained from a 
previous study employing two different methods 
[13]. 
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Figure 9. Each transformed data point at a given pressure (from 
fig. 8) divided by the transform of G(t) at the corresponding 
pressure (taken from the solid curve of fig. 8) yields, according 
to eq (18), the quantity of interest, F(f) . F*(f), and is presented 
as a solid point in this figure. These values, as a function of 
pressure, are best fit to the eq F(f) . F*(f)= l-exp( -0.25· P), 
shown as the solid line. 

4.6 Amplitude Method 

For comparison, the amplitude of the first maxi­
mum of the microphone signal was plotted as a 
function of pressure in figure 10 and the functional 
form [1-exp( _0.4pO.75)] was found to be a good fit 
to the data. The scatter in this data is somewhat 
greater than in the transformed data presented in 
figure 8. It is interesting that the amplitude plot of 
figure 10 is so similar to the plot of figure 9. There 
is nothing in the treatment presented above that 
would suggest that the amplitude method should 
give results roughly equivalent to those obtained 
from the transform method. 

The experimental observation that amplitude 
data can be used in an alternative method to derive 
rate constants suggests that changes in the pressure 
pulse waveform have perhaps less influence on the 
overall microphone response than changes in the 
magnitude of the pressure pulse, at least for the 
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present experimental conditions. In fact, we do ob­
serve that the microphone signal waveforms do not 
change markedly, particularly around the first 
maximum [14]. However, if the amplitude method 
is used, then the calibration constant, 11 in eq (14), 
must be derived through separate means, i.e., 11 can­
not be obtained absolutely. That need not necessar­
ily be a limitation if calibrations can be developed 
from mixtures possessing known relaxation rate 
constants or if the method described in the previ­
ous section provides the absolute standard. The 
amplitude method is simple and could be quite use­
ful and worthy of further investigation. 
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Figure 10. Amplitude data: Plot of the first positive peak of the 
microphone signal as a function of pressure (low pressure do­
main). Solid line is a fit of the data to the functional form, 
Signal = l-exp( -A . pO.7S), where A =0.40. 

5. Concluding Remarks 

The method requires few assumptions; these can 
be directly examined or verified through the use of 
independent methods. The assumptions include: i), 
the function G (t) exists and ii), the signal can be 
represented by the simple convolution of G(t) by 
f(t) when terms involving the signal and its deriva­
tive at t =0 are equal to zero; iii), the variation of 
G(t) (or its transform) with pressure can be prop­
erly dealt with; and finally, iv), the representation 
of f(t) suitably describes the relaxation-induced 
pressure pulse. Assumptions i-ii have been evalu­
ated experimentally and found to be valid; assump­
tion iii can result in an additional source of 
uncertainty in the kinetic analysis if the variation of 
G(t) through the use of an extrapolation procedure 
or the use of an analytic expression is inaccurate. 
Other detectors may show less variation of G(t) 
with pressure and we plan to examine a number of 
these. Assumption iv can be assessed indepen-
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dently. For example, the functional form off(t) has 
been investigated in detail by Beck and Gordon 
[15] and found to be an excellent representation of 
the experimentally derived pressure pulse. In the 
derivation of J(t) the additional assumption was 
made that first order relaxation kinetics apply. The 
adequacy of this assumption has been indepen­
dently demonstrated for certain systems [16]. It can 
always be checked by simply performing kinetic 
measurements as a function of varying energy flu­
ence and demonstrating the constancy of the 
derived "rate constant." 

In the present work we employed the Fourier 
transform method using a single frequency coinci­
dent with the characteristic frequency of the detec­
tor. Analysis at other frequencies are of course 
possible and the quality of the results obtained as a 
function of frequency should be addressed in more 
detail in future work. Additionally we plan to use 
the Laplace transform method in experiments that 
are more noise-free. 

The kinetic application presented here involves 
the measurement of the rate of energy transfer. 
There are other kinetic measurements which use 
optoacoustic detection and involve chemical reac­
tions. Such reactions usually generate heat and the 
rate of heat liberation is a measure of the rate of 
reaction. Recently a number of such studies have 
been described in the literature [4,17,18]. So far 
they have dealt entirely with the characterization 
of the extent of reaction through a procedure in­
volving amplitude analysis which has been aptly 
termed photoacoustic calorimetry. The method 
presented here should be of value to this important 
new area of research since it could provide the 
means of performing a temporal analysis from 
which reaction rate constants could be derived. A 
microphone exhibiting very high sensitivity such as 
the one used here would be required. We anticipate 
initiating experiments of this kind. 
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