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Introduction

The most frequently used method of analysis of
trace organic pollutants in ambient air is gas chro-
matography-mass spectrometry (GC-MS). Present-
ly, target compounds in air monitoring samples are
identified from gas chromatographic retention

times and a combined forward-reverse search of
mass spectral reference spectra. The primary ob-
jective of this study is to develop computational
pattern recognition procedures for the identifica-
tion of chemical classes and, if possible, individual
compounds from routine GC-MS data files. The
additional information on nontarget compounds
would supplement compound identifications ob-
tained from the target list. The target set of com-
pounds investigated consisted of 78 substituted
benzenes, haloalkanes and haloalkenes.

Methods
SIMCA Pattern Recognition

SIMCA pattern recognition was developed by
Wold and coworkers [1] for application to classifi-
cation problems in chemistry. The technique is
based on the modeling of chemical classes by dis-
joint principal component models. Once the class
models have been determined, objects are classified
by fitting their data to the class models. A standard
deviation for each model is calculated from the
residuals which represents a class tolerance level
around the model in measurement space.

Data Analysis

In this study an IBM PC-XT microcomputer
with 640K memory was used. A modified version
of the SIMCA program was used for the majority
of the pattern recognition calculations. The low
resolution mass spectra of 78 compounds were ob-
tained from the EPA-NIH Mass Spectral Library
on an INCOS data system (see table 1). The GC-
MS data files were from routine calibration and
analysis performed by the Environmental Monitor-
ing Systems Laboratory, U.S. Environmental Pro-
tection Agency, Research Triangle Park, NC.

The data were preprocessed by taking the auto-
correlation transform of the mass spectra for mass
lags less than 100. In the initial stages of class mod-
eling, the autocorrelation transformed spectra for
the 78 training compounds were examined for class
separation with two and three dimensional princi-
pal components projections of the training data.
Three different groups were found: nonhalo-
genated benzenes; chloroaromatics, chloroalkanes,
chloroalkenes; and bromocarbons.

Principal components models were then derived
for each class [2]. None of the class models
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Table 1. Compounds included in this pattern recognition study

Compound Class' Compound Class'

p-Xylene
1,3,5-Trinethylbenzene
Isopropylbenzene
n -butylbenzene
I-Methyl-4-isopropylbenzene
o-Dichlorobenzene
p-Dichlorobenzene
I-Chloro-2-methylbenzene
1-Chloro-4-methylbenzene
p-Chlorostyrene
l,l-Dichloroethane
1,1, 1,2-Tetrachloroethane
1,2,3-Trichloropropane
3-Chloro- I-propene
2-Chlorobutane
1,3-Dichlorobutane
1,4-Dichlorobutame
1,4-Dichloro-2-butene (cis)
3,4-Dichlorobut- I-ene
1,4-Dioxane
I-Chloro-2,3-epoxypropane
2-Chloroethoxyethene
Acetophenone
Benzonitrile
Benzene
Toluene
o-Xylene
m -Xylene
Ethylbenzene
Styrene
Chlorobenzene
Bromobenzene
mn-Dichlorobenzene
I-Chloro-3-methylbenzene
Chloroform
Carbon tetrachloride
Bromochloromethane
Bromotrichloromethane

Dibromomethane
Bromoform
I ,2-Dichioroethane
1,1,1-Trichloroethame
1,1,2-Trichloroethane
1,1,2,2-Tetrachloroethane
Pentachloroethane
1, 1-Dichloroethane
Trichloroethene
Tetrachloroethene
Bromoethane
I ,2-Dibromoethane
1-Chloropropane
2-Chloropropane
1,2-Dichloropropane
I ,3-Dichloropropane
I -Bromo-3-chloropropane
I ,2-Dibromopropane
2,3-Dichlorobutane
Tetrahydrofuran
Benzaldehyde
1-Bromo-l-chloroethane
2,2-Dibromopropane
2-Bromopropene
2-Bromopropane
3-Bromopropene
I-Bromopropane
I-Chlorobutane
1-Bromo-2-chloroethane
Bromodichloromethane
1-Bromobutane
2,2-Dichlorobutane
Dibromochloromethane
1, I,2-Trichloropropane
1,3-Dibromopropane
1, 1,1,2-Tetrachloropropane
I ,2,2,3-Tetrachloropropane
1,3-Dibromobutane
1, 1,2,3-Tetrachloropropane
1,4-Dibromobutane

2
2
2
2
2
2
2
2
2
2
2
2
2
2
0
2
2

2

2
2
2
2
3
3

*Class I=nonhaloaromatics; class 2=chlorocarbons including aromatics and aliphatics; class

3 =bromo- and bromochlorocarbons; class O=internal standards and dioxane and tetrahydrofuran.

required more than three principal components.
The largest number of autocorrelation coefficients
relevant to a specific class was 40 in class 3.
Eighty-six percent of the training set compounds
were assigned to their correct class as a first choice
and were within two standard deviations of the
models.

Hierarchical Classification Scheme [2]

Once a class assignment is made, further identifi-
cation of each spectrum can be made. This is done

by calculating the distance, using the entire spec-
trum in autocorrelation space, of each compound
to its three nearest neighbors in its assigned class.
To obtain a specific structural assignment, the nor-
malized correlation coefficient of the unknown
mass spectrum with that of each of its three nearest
neighbors is obtained. If the unknown is not identi-
fied as one of the three nearest neighbors in the
first class assignment, the correlation coefficients of

the three nearest neighbors in the second SIMCA
class assignment are compared.
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Results
GC-MS Calibration Samples

Three direct injection calibration samples, which
contained all but one of the training set com-
pounds, were analyzed [2]. Of the 77 compounds
observed in the calibration runs, 84% were correct-
ly identified. Of the 13 compounds not identified,
three were correctly assigned by chemical class.

GC-MS Field Samples

The GC-MS data files for three field samples
were also analyzed [3]. The identities of the target
compounds were determined by using both GC re-
tention times and a combination of forward and re-
verse spectral matching techniques with stringent
matching parameters. The identification of other
compounds not on the target list was based on a
Finnigan search technique. The application of the
pattern recognition scheme to the transformed data
for the target compounds resulted in 88% correct
classification. The compound identification results
were 85% accurate.

There were 75 different nontarget compounds
identified in 120 occurrences in the three samples.
The classification results agreed very well for the
two class I and class 2 spectra. However, a very
large number of alkanes and alkenes were incorrect-
ly classified as chlorocompounds. Further details
of this study are given in references [2], [3], and [4].

Although the research described in this article
has been funded by the U.S. Environmental Pro-
tection Agency under Cooperative Agreement
CR-811617 with the University of Illinois at
Chicago, it has not been subjected to Agency re-
view. The mention of commercial products does not
constitute endorsement or recommendation for use.
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Annular Denuders and Filter Packs
Designed to Measure Ambient Levels

of Acidic and Basic Air Pollutants

Robert K. Stevens

U.S. Environmental Protection Agency
Research Triangle Park, NC 27711

Measurements of acidic (e.g., SO2, HNO3 ) and
basic gases (e.g., NH3 ) that coexist with fine parti-
cles (<2.5 Am) are used in models to assist in deter-
mining the origin and age of aerosols. Bias associ-
ated with each measurement method used to obtain
this air quality data can degrade the real correla-
tion between species. In addition, the sensitivity of
most instrumental methods to measure SO2 , NH3,
HNO3 or HNO2 is limited to measurements at con-
centration levels above 2-5 ppb. Measurement of
HNO 3 has also proven to be more difficult due to
losses of HNO 3 in the sampling inlets used in some
of the measurement procedures. Difficulties in dif-
ferentiating atmospheric HNO3 from HNO 3 pro-
duced by the dissociation of NH4NO 3 during sam-
pling, further complicates monitoring procedures.

Possanzini et al. [1] described the development
of an annular denuder system which removes reac-
tive gases (e.g., HNO3 , S0 2 ) from air samples an
order of magnitude more efficiently per unit length
and at lower Reynolds number than open tubular
denuder designs. Recently we developed an im-
proved version of the annular denuder that incor-
porates several important features to minimize
losses of key species during sampling and reduce
the possibility of leaks in the components that join
the various parts of the system.

To demonstrate the applicability of this im-
proved design of the annular denuder, a series of
field studies were conducted in Research Triangle
Park, NC during the fall of 1986 and winter of
1987. An annular denuder system (fig. 1) is com-
posed of four components: an inlet (to remove
large particles), coated denuders (to collect the
acidic and basic gases), filter pack (to collect fine
particles and HNO3 that may evaporate from the
filter), and a flow controller-pump assembly. In
this study a new glass Teflon-coated impactor inlet
was designed with a short tube extending below
the impactor to prevent large particles and rain
droplets from entering the impactor. With the ex-
ception of the impactor surface, the entire inlet is
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