
Volume 93, Number 3. May-June 1988

Journal of Research of the National Bureau of Standards

Accuracy in Trace Analysis

COURSE OF OPTIMIZATION

INPUT: . AND WEIGHTING OF COMPONENTS
#, RANGE AND STEPPING WIDTH OF VARIABLES
# INITIAL EXPERIMENTS
DESIRED OPTIMIZATION CRITERION
EXPERIMENTAL k VALUES

SYSTEATICNC COMPUTER CONSTRUCTION OF
OPTIMIZATION HYPERSURFACE

YES
GOOD ENOUGH ~STOP 

lCHOSE NEXT EXPERIMRENTA POINT lr

=DO CHRMATOGRAPHY I

I INPUT, NEXT EXPERIMENTAL k"-WALUES

[13] Lohninger, H., and Varmuza, K., Anal. Chem. 59, 236
(1987).

[14] Wold, S., Wold, H., Dunn, W. J., 111, and Rube, A., Umea
University, Report UMINF-83.80, 1982.

[15] Martens, H., Multivariate Calibration: Combining Har-
monies from an Orchestra of Instruments into Reliable Pre-
dictions of Chemical Composition, 46th Session of the
Intern. Statistical Institute, Tokyo (1987).

[16] Hellberg, S., A Multivariate Approach to QSAR, Re-
search Group for Chemometrics, Umea University (1986).

[171 Wold, S., Sjoestroem, M., Carlson, R., Lundstedt, T.,
Hellberg, S., Skagerberg, B., Wikstroem, C., and Oehman.
J., Anal. Chim. Acta 191, 17 (1986).

[181 Bandemer, H., and Otto, M., Mikrochim. Acta 1986 11, 93.
[191 Blaffert, T., Anal. Chim. Acta 161, 135 (1984).
[20] Otto, M., and Bandemer, H., Anal. Chim. Acta 184, 21

(1986).
[21] Otto, M., and Bandemer, H., Chemom. Intell. Lab. Syst. 1,

71 (1986).
[22] Kateman, G., J. Res. Natl. Bur. Stand. (U.S.) 93, 217 (1988).
[23] Schostack, K., Parekh, P., Patel, S., and Malinowski, E. R.,

J. Res. Nati. Bur. Stand. (U.S.) 93, 256 (1988).
[24] Janssens, K., Van Borm, W., and Van Espen, P., J. Res.

Natl. Bur. Stand. (U.S.) 93, 260 (1988).
[25] Derde, M. P., and Massart, D. L., Anal. Chim Acta 191, 1

(1986).

Figure 1. Flow chart for using the "moving least-squares" al-
gorithm [81.

References

[1] Frank, 1. E., and Kowalski, B. R., Chemometrics, Anal.
Chem. 54, 232R (1982).

[21 Eckschlager, K., and Stepanek, V., Information Theory as
Applied to Chemical Analysis, Wiley, New York (1979).

[31 Eckschlager, K., and Stepanek, V., Anal. Chem. 54, 1115A
(1982).

[41 Eckschlager, K., and Stepanek, V., Analytical measure-
ments and Information, Research Studies Press, Letch-
worth (1985).

[5] Eckschlager, K., and Stepanek, V., Chemom. Intell. Lab.
Syst. 1, 273 (1987).

[6] Martin, M., Herman, D. P., and Guiochon, G., Anal.
Chem. 58, 2200 (1986).

[7] Schoenmakers, P. J., Chromat. Lib. 35, Elsevier Science
Publishers, Amsterdam (1986).

[8] Lankmayr, E. P., and Wegscheider, W., Automated Opti-
mization of HPLC Separation Methods, Pittsburgh Con-
ference and Exposition, New Orleans, 1985.

[9] Criss, J. W., NRLXRF, A Fortran Program for X-ray Flu-
orescence Analysis, distrib. through COSMIC. Suite 112
Barrow Hall, Athens, GA (1977).

[10] Otto, M., Wegscheider, W., and Lankmayr, E. P., A Fuzzy
Approach to Peak Tracking in Chromatographic Separa-
tions, submitted (1987).

[11] Otto, M., and Wegscheider, W., Anal. Chim. Acta 180, 445
(1986).

[121 Jochum, C., Jochum, P., and Kowalski, B. R., Anal. Chem.
53, 85 (1981).

Increased Accuracy in the Automated
Interpretation of Large EPMA Data
Sets by the Use of an Expert System

K. Janssens, W. Van Borm,
and P. Van Espen

Department of Chemistry
University of Antwerp (UIA)

Universiteitsplein I

B-2610 Wilrijk/Antwerp, Belgium

1. Introduction

Characterization of particulate material is one of
the major applications of Electron Probe Micro
Analysis (EPMA). This involves the collection of
an energy dispersive x-ray spectrum for each parti-
cle to determine its chemical composition. Since
for each aerosol sample typically 1000 particles are
measured, very large data sets are obtained. Be-
cause of limitations in computer time and mass
storage capacity, these spectra are not stored but
are processed on-line, i.e., they are converted into
tables of peak energies and intensities, permitting
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the characterization of 1000 particles in 4 hours of
instrument time without operator intervention, The
off-line data processing consists of the interpreta-
tion of the peak table associated with each particle
in terms of their chemical constituents. By using
the Ka or La lines of each element, a particle vs
elemental x-ray intensity matrix is built which is
issued as input for multivartate classification tech-
niques.

Since almost all detailed spectral information is
lost in the initial data reduction process, qualitative
interpretation by a conventional computer pro-
gram produces erroneous results when peak over-
lap occurs. However, as human interpreters can
obtain better results based on the same limited in-
formation, it was decided to capture the additional
interpretation knowledge used by the chemist into
an expert system, implemented in the OPS5-lan-
guage [1]. Before the expert system starts an inter-
pretation session, the peak tables generated during
the on-line data reduction phase (see table la) are
converted into a representation which is more suit-
able for the expert system. For each peak, a library
of principal x-ray lines is searched. Since each peak
can be associated with several types of x-ray lines
of different elements (e.g., a peak at 1.479 keV cor-
responds to Al-K or Br-La), a (sparse) matrix of
possible identifications is obtained (see table lb).
These matrices are read directly by the expert
system.

2. The Expert System

Inside the expert system's data base, the data
present in each row of an identification matrix are
stored into an OPS5 working memory element
(WME) of type "PEAK." WME's are complex
data structures having several distinct fields. The
structure of a peak-WME is represented in figure
la. As in the identification matrices, each peak can
be associated with seven elements. A probability
value (e.g., PK, Pxt, ...) corresponds with every as-
sociation. X-ray data pertaining specifically to a
chemical element is stored into WME's of type
"ELEMENT" (see fig. lb).

Schematically, the functioning of the expert sys-
tem is represented in figure 2. The systems produc-
tion rules are organized in several modules (e.g.,
CLEAN, ANALYZE, OVERLAP, ...) each deal-
ing with a particular phase of the interpretation.
Interaction between the modules is handled by
meta-rules. Table 2a lists a meta-rule and its OPS5-

equivalent. At present, the knowledge base contains
about 80 chemical knowledge rules. Table 2b lists a
rule from the CLEAN module. By using these
rules, the system decreases/increases the probabil-
ity values of a peak as more evidence is found that
the associated chemical element is absent/present.
The functioning of the expert system is described
in more detail elsewhere [2].

Table ia. Peak table

Peak Intensitv x-ray energy
Number (counts) (keV)

1 167 1.244
2 212 1.479
3 1147 1.742
4 379 3.682
5 1724 4.511
6 301 4.928
7 289 5.894
8 12873 6.392
9 1666 7.043

Table lb. Identification matrix obtained after data reduction of
a spectrum collected from a Mg, Al, Si, Al, Ti, Mn and Fe
containing particle

Possible Identifications
Ka KB La Lfil Lfi2 Ly Ma

Mg '' As ** **
Al * D Br *
Si ** *8 *8 **

Ca tt in Sn ** So
Ti Ba ** *' *'
V Ti at *. . *. ..
Mn Cr ** ** *T *. ,,
Fe ** *. *. .. ..

Fe " "

3. Results and Discussion

The performance of the expert system (method
A) was evaluated by comparing the expert system
results with those obtained by manual interpreta-
tion (method B) and by a conventional FORTRAN
interpretation program (method C), using aerosol
samples collected in a suburban area [3]. The con-
ventional program operates by summing all peak
tables of a data set, yielding a summary spectrum.
A set of windows is constructed in which the peak
intensities are accumulated while the window posi-
tions and widths are continuously adjusted during
the summing process. After the summation, each
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window is associated with a chemical element by
comparing its mean energy with energies of princi-
pal x-ray line energies after which the elements
associated with each individual particle are deter-
mined. Thus, a particle vs elemental x-ray intensity
matrix is obtained.

Table 2a. Example of one of the expert systems meta-rules

Rule Go back to "CLEAN" phase after "INTENS"
If the current interpretation phase is "INTENSE one or

more "INTENS"-rules has beet, used
Then modify the interpretation phase to "CLEAN'

set the number of used 'CLEANt-rules to zero.

OPS5-form:
(p intens::control:back-to-clean

{<PHASE> (phase name intens iintenscount > 0))
(modify <PHASE> 'name cleat 'cleancount 0))

Table 2b. Example of one of the rules from the CLEAN mod-
ule, which removes KB-entries for a given element if no Ka-
entry is found in the data base

Rule Remove isolated K)3-entries from the database
If the current interpretation session is 'CLEAN

a peak is found corresponding to the KB3-line of at
element
no peak is found which corresponds to the Ka-lbae
of this element

Then remove the K/3-entry from the data base.

OPS5-form:
(p clean::k:kb-no-ka

<PHASE> (phase 'name clean 'cleatcount <nt>)}
{<KB-PEAK> (peak 'kb (<el> <> *})}
-- (peak 'ko <el>)
(modify <KB-PEAK> ^kb **)
(modify <PHASE> 'cleancouni (compute <..> + I)))

As an illustration, the fine fraction of a data set
of 1000 particles is considered below. After per-
forming the qualitative interpretation of the data
set in three different ways, the composition of each
particle was calculated using a standardless ZAF
correction procedure [4]. The resulting three data
matrices were subsequently used as input to hierar-
chical cluster analysis (using Ward's errors sum
strategy) to extract information on the different
types of particles present in the sample. The result-
ing dendrograms are shown in figure 3. Although
at first glance dendrogram C differs greatly from
dendrograms A and B, roughly the same groups of
particles can be distinguished. When the soil dust
(Si,Al) or gypsum (Ca,S) groups are compared
among the three dendrograms, approximately the
same mean composition is obtained. However,

when the particles containing heavy metals are
considered, significant differences appear:
* in all dendrograms the Pb group consists of two
subgroups. In A and B, the first subgroup mainly
contains Pb (70%) and Br (24%), the second al-
most pure Pb (93%). In dendrogram C, however,
both groups also contain S, with mean composi-
tions of 60%Pb, 20%Br, 8%S and 82%Pb, Il%S
respectively. Clearly, method C could not distin-
guish between S-Ka and Pb-Ma while method A
could.
* Similarly, in the Zn containing particles, Na is
found in all cases by method C since Na-K over-
laps with Zn-La while no Na is found by either the
manual or expert system interpretation methods.
* In the V,Ni group, two subgroups also appear,
one contains soil dust elements and the other does
not (methods A and B). In dendrogram C how-
ever, because the interpretation program found Cr
in some of these particles, two other groups (con-
taining Cr and not containing Cr) were formed. In
this case, the interpretation errors not only yield
incorrect particle compositions but have the more
important effect of influencing the way particles
are clustered together by introducing non-existent
correlations.
* In dendrograms A and B, a number of particles
of miscellaneous composition is present which do
not belong to any of the larger groups. Among
them is a group of five Ti particles and one Ba par-
ticle. Also pure As and Se particles are present and
were identified by both the expert system and the
human interpreter. In dendrogram C, however, the
As particle belongs to the Pb group while a cluster
of six Ba particles is present. Although the signifi-
cance of these few particles in the entire data set is
very small, this shows that the expert system is also
capable of handling exotic particles correctly while
the conventional program is clearly not.

A significant drawback in the use of the expert
system is the considerable amount of computer
memory and time it requires. While the conven-
tional program takes about 5 min CPU-time to in-
terpret a data set of 1000 particles. the expert
system takes approximately 30 min, depending on
the number of peaks in each spectrum.

Conclusion

In this work, an expert system, implemented in
the language OPS5, for the automated interpreta-
tion of large EPMA data sets is discussed. The
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interpretation results were evaluated by comparing
them with those obtained from a manual interpreta-
tion method and from a conventional interpretation
program using a windowing technique. This com-
parison shows that the results produced by the ex-
pert system are in good accordance with the results
obtained by manual interpretation since the expert
system is able to deal with the frequently occurring
case of spectral overlap and retains only physically
realistic identification possibilities.

A

Figure 2. Schematic overview of the interaction between the
rule modules present in the expert system's knowledge base.

B

Figure 1. Structure of the PEAK and ELEMENT-type of data
objects used by the expert system to store peak- and element-
specific information.
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Figure 3. Dendrograms obtained by applying hierarchical clus-
ter analysis to the same data set using different interpretation
methods: (a) expert system, (b) manual interpretation, (c) con-
ventional program.
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Many instrumental analytical techniques exhibit
a definable relationship between instrument re-
sponse and analyte concentration over wide con-
centration ranges. This response is usually fit to an
accepted model during the calibration phase of the
measurement process. Often the calibrated concen-
tration range (x values) is such that the measured
response (y values) exhibits non-constant variance.
The use of weighted regression techniques to prop-
erly estimate model parameters for this case has
been described for a number of analytical applica-
tions. An inherent, if not stated, assumption in
these treatments is that negligible error resides in
the concentrations of the calibration standards.

A separate issue regarding calibration is the de-
sire to minimize bias in the analysis by using cali-
bration standards that are matched to the sample to
be analyzed. It has been suggested that analyzed
reference materials (ARMs) of a chemical matrix
similar to that of the sample be used as calibration
standards. Since the concentrations of analytes in
these materials are estimates from measurements
with error, using ARMs as calibration standards
leads to errors in both x and y values for fitting the
model. Therefore, the standard regression assump-
tions are not valid. A number of schemes have been
developed for treating the calibration problem
where both x and y have errors. However, when
this problem is combined with heteroscedastic cali-
bration, appropriate procedures are more complex.

We have recently reported an approach to het-
eroscedastic calibration that yields multiple-use
calibration estimates and confidence intervals [1].
The first step is to obtain calibration data from

264




