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to recalculate the concentration profiles. This pro-
cess (truncation, normalization and pseudoinverse
followed by pseudoinverse) was repeated until no
further refinement occurred.

The concentration profiles and spectra of the
three unknown components of stearyl alcohol in
carbon tetrachloride obtained in this manner were
found to make chemical sense.

This EFA procedure, unlike others, was success-
ful in extracting concentration profiles from situa-
tions where one component profile was completely
encompassed underneath another component
profile.
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Chemometrics is a very international branch of
science, perhaps more so than chemistry at large,
and it is therefore appropriate to question the suit-
ability of the topic to be presented. It is, however,
the author's opinion that the profile of European
chemometric research has a couple of distinct fea-
tures that may originate more in the structure of
the educational system than in the actual research
topics. The profile as it will be presented is the one
perceived by the author, and therefore comprises a
very subjective selection of individual contribu-

tions to the field. Obviously, this is not the place to
offer a review on chemometrics, let alone one that
is restricted to a continent.

The definition of chemometrics [I] comprises
three distinct areas characterized by the key words
"optimal measurements," "maximum chemical in-
formation" and, for analytical chemistry something
that sounds like the synopsis of the other two: "op-
timal way [to obtain] relevant information."

Information Theory

Eckschlager and Stepanek [2-5] pioneered the
adaption and application of information theory in
analytical chemistry. One of their important results
gives the information gain of a quantitative deter-
mination [5]

I toII )= n(X2 -xl) \/nAI (q 1p)=lIn SV2xR-en (I)

where q and p are the prior and posterior distribu-
tion of the analyte concentration for the specific
cases of a rectangular prior distribution in (x,,x2)
and a Gaussian posterior with a standard deviation
s determined from /A independent results. The
penalty for an inaccurate analysis is considerable
and can be expressed as

(2)I (r;q,p)= I (q 11P)_nA

with d the difference between obtained value and
the true value of x. The concept has also been ex-
tended to multicomponent analysis and multi-
method characterization. In the latter case,
correlations between the information provided by
the different methods need to be accounted for.
Given the cost of and time needed for an analysis,
information efficiency can be deduced in a straight-
forward manner [2]. Recently, work was published
[5] suggesting the incorporation of various rele-
vance coefficients; this, indeed, is a very important
step since it provides a way to single out the infor-
mation that is judged to be relevant for a given
problem. It also opens up the possibility to draw on
information theory for defining objective functions
in computer-aided optimization of laboratory pro-
cedures and instruments.
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Optimization of Chromatographic
Separations

In the area of optimization, significant activity is
spotted in chromatography since systematic strate-
gies for tuning the selectivity are badly needed.
Due to the randomness of elution, a hypothesis
supported recently by Martin et al. [6], peak over-
lap is the rule rather than the exception even for
systems with high peak capacity. Assuming
equiprobable elution volumes for all analytes, the
authors [6] have derived from standard probability
theory an expression for the probability that all an-
alytes are separated. An evaluation of eq (9) in
reference [6]

P.nmn() (1 -I (3)

(m the number of components, n the peak capacity
of the system and Pm,(m) the probability that all
components are separated) is provided in table I
and shows that the absence of overlap is really
very improbable except in cases of an extremely
high ratio of peak capacity/number of components.
The necessity of a separate optimization for each
mixture of compounds is thus the rule and not an
exception.

Chromatographic optimization cannot be reli-
ably accomplished, however, by direct search tech-
niques like the SIMPLEX, since each change of
elution order corresponds to a minimum in the ob-
jective function. For multimodal surfaces, tech-
niques that model the retention behaviour of each
analyte separately and subsequently assemble a re-
sponse function for a grid-like pattern in the space
of experimental variables seem to be most promis-
ing [7]. Lankmayr and Wegscheider [8] have sug-
gested to use a "moving least-squares" algorithm
known from the interpolation part of the X-ray flu-
orescence program NRLXRF [9] for modelling
elution. This results in an efficient optimization that
is not stranded on secondary maxima of the re-
sponse surface. A flow chart of this procedure is
provided in figure 1. The efficiency stems mainly
from three things: (i) a first estimate of the opti-
mum can be made from only two chromatographic
runs under different conditions; (ii) additional data
can be incorporated to update the model of the re-
sponse surface as they become available; and (iii) if
required, additional experimental variables can be
entered in the optimization at any stage. A draw-

back of this and all similar approaches is that an
assignment of the peaks to the analytes is required
at each stage. Currently, experimental work is un-
der way to evaluate fuzzy peak tracking based on
peak area and mean elution order [10].

Selectivity and Multicomponent Analysis

In spite of the great advances in the development
of methods at trace levels, neither current separa-
tion techniques nor the detection principles are suf-
ficiently selective. An attempt was recently made
to redefine selectivity in chemometric terms, since
Kaiser's well received proposal on this subject fails
in two ways [11]. First, it does not give a clear
account of the interrelationship between selectiv-
ity, accuracy and precision, and second it gives a
value of infinity for full selectivity, a somewhat
fuzzy result. By Taylor expansion, any multicom-
ponent calibration system can be assessed for its
selectivity by the condition number of the sensitiv-
ity matrix, cond(K); the condition number assumes
the value of one for full selectivity and grows as
the mutual dependence of the columns of K in-
creases. Since the condition number can also be
shown to relate to the analytical error, it was
termed "error amplification" factor [12]. It can
thus be regarded a prime concern in multicompo-
nent analysis to find suitable means to minimize the
condition number.

Recently, a chemometric approach was sug-
gested by Lohninger and Varmuza [13], who
derived a linear discriminator to serve as a selec-
tive detector for PAH in GC-MS. This was accom-
plished by selecting the best of 40 proposed
features both in terms of discriminatory power
against NOT-PAHs and by a rigorous sensitivity
analysis to discard those that are unreliable in the
presence of experimental error. The authors claim
a recognition rate of 99%. Surely the concept is in
its infancy, but the chemometric detector may well
have potential in other areas, as well.

Partial Least Squares and Multivariate
Design

Relating sets of measurements to each other is
frequently done by least squares techniques.
Among those, the partial least squares (PLS) al-
gorithm as developed by Wold et al. (14] is most
popular among chemometricians. As opposed to
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principal component regression, another remedy in
case of collinearity, PLS enhances relatively small
variance structures if they are relevant for predic-
tions of Y from X. This is done by using eigenvec-
tors of X'YY'X instead of X'X as done in principal
components analysis [15]. The most recent applica-
tion of PLS are in quantitative structure activity
relation (QSAR) studies of various classes of com-
pounds.

Examples are contained in reference [16] and
briefly outlined in reference [17]. For a series of
bradykinin-potentiating pentapeptides, a model
was derived to predict the biological activity of
another set of peptides by describing the amino
acid sequence from principal properties of single
amino acids. These principal properties were de-
duced from 29 parameters by principal components
analysis. These same principal properties can be
used to design an approximate fractional factorial
function with 16 different structures that effec-
tively spans the space in terms of the 29 parameters
initially judged useful for the description of the re-
lation between structure and biological activity.
This gives a guideline for the synthesis of good
candidate peptides. As pointed out by Wold and
coworkers [17], current advice in peptide design is
to change the amino acid in only one position at a
time, in clear contrast to what has been shown to
be efficient screening of design variables.

Table 1. Probability that all components in a mixture are sepa-
rated

Peak capacity number of components probability

50 5 0.77
10 0.20
20 IE -4

100 5 0.88
20 0.02
50 5E-15

ooo 5 0.99
50 0.09

i00 4E -5

duced in analytical chemistry [18]. Its basic notion
is that crisp sets and numbers are replaced by their
fuzzy analogues, to allow for variability on a non-
probabilistic basis. The type of variability is defined
in a so-called membership function that can be con-
structed from supplemental knowledge or subjec-
tive judgement by an expert in the field. By doing
this, each number manipulated also carries informa-
tion on its spread. Important applications of fuzzy
theory so far have been library searching [19], pat-
tern classification [20J, and calibration with linear
and non-linear signal/analyte dependencies in the
presence of errors in x and y [21]. In the future, the
incorporation of fuzzy information in expert sys-
tems will undoubtedly play a major role.

Conclusions

As pointed out at the beginning, this is only a
subset in terms of volume of work done in chemo-
metrics in Europe today. It is hoped that the reader
finds this useful since it is regarded as typical.
Other papers in this volume will cover calibration
I22J, evolving factor analysis j23], and expert sys-
tems in analytical chemistry [24], all being subjects
of intense study in European laboratories. More
traditional fields. for example, cluster analysis and
pattern recognition, although very actively pur-
sued, have not been included in this abstract [25].

Fuzzy Theory in Analytical Chemistry

An important strength of chemometrics as ap-
plied in analytical chemistry must be to utilize the
wealth of statistical, numerical, computational
methods available and choose the appropriate one
in each instance. Recently, fuzzy theory was intro-
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Figure 1. Flow chart for using the "moving least-squares" al-
gorithm [81.
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1. Introduction

Characterization of particulate material is one of
the major applications of Electron Probe Micro
Analysis (EPMA). This involves the collection of
an energy dispersive x-ray spectrum for each parti-
cle to determine its chemical composition. Since
for each aerosol sample typically 1000 particles are
measured, very large data sets are obtained. Be-
cause of limitations in computer time and mass
storage capacity, these spectra are not stored but
are processed on-line, i.e., they are converted into
tables of peak energies and intensities, permitting
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