
Volume 93, Number 3, May-June 1988

Journal of Research of the National Bureau of Standards

Accuracy in Trace Analysis

z0
F-

N

F:

U)
Cl)

0
a-

100

80

60

40

20

0
5 10 15 20 25

FREQUENCY OF ERRORS (f, %)

Figure 1. Comparison of quality (defect rate) and productivity
(test yield) for a batch analytical process using a multi-rule con-
trol procedure with N=2 and N=4. From reference [1].
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Figure 3. Comparison of quality (defect rate) and productivity
(test yield) for a batch analytical process with different control
rules and different N's. From reference [1].
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Figure 2. Comparison of quality (defect rate) and productivity
(test yield) for a batch analytical process with different control
rules all using N=2 (2 control measurements per run). From
reference [1].

1. Introduction

It is well known that there are important factors
affecting accuracy in trace analysis, such as han-
dling loss, contamination and purity of reagents.
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The contention of this paper is that the statistical
model for analytical error is another important fac-
tor, that currently is receiving much attention. A
normal distribution is the model upon which the
statistical procedures used in laboratory quality
control (QC) customarily are based. However, ex-
aminations of certain analytical procedures and re-
sults of trace analyses reveal features that are
inconsistent with normality.

2. Alternate Models

The three models to be discussed are the normal
distribution, the lognormal distribution, and no dis-
tribution. There are good reasons for expecting one
of these models to be appropriate in many circum-
stances.

The normal distribution is symmetric, bell-
shaped, and of unbounded range. It is character-
ized by two independent parameters, its mean (jg)
and standard deviation (a-), which can be directly
associated with analytical bias and precision. One
reason for the widespread applicability of this
model is the Central Limit Theorem, the practical
result of which is that sums of random variables
tend to be normally distributed under mild condi-
tions. Based on the Central Limit Theorem, it has
been said that "in the case of a well devised analyt-
ical system of measurement and a properly per-
formed analysis . .. analytical results will be
normally distributed or, at least, almost so" [1].
This statement assumes that analytical errors are
additive.

The lognormal distribution [2] is asymmetric,
bounded below by zero, and is defined by the func-
tion

f(x)= exp[- (log(x) - a)2/2 82]/(27r82x)12

The distribution takes its name from the fact that
if x is lognormally distributed, log(x) is normally
distributed. The mean and standard deviation of
the distribution are gL=exp(a+ 1/282) and
a-=g.(exp(8 2 )- 1)1/2; thus the coefficient of varia-
tion (CV) is constant with respect to the mean. For
QC use one can reparameterize the model to make
the mean and coefficient of variation the basic
parameters (by defining 82 =log[l +(CV/100) 2 ] and
a=log(p)-8 2 /2). In addition, the model can be
generalized to shift its origin from zero to y by
taking log (x + y) to be normally distributed.

Figure 1 illustrates how the skewness of the dis-
tribution increases as the CV increases. For CVs of
less than 10%, the model differs very little in shape
from the normal distribution. (This is another rea-
son for the usefulness of the normal model.)

Based on the Central Limit Theorem and the
fact that the logarithm of a product of random
variables equals the sum of the logarithms of the
random variables, the lognormal model tends to be
appropriate for multiplicative processes. Figure 2
shows how rapidly the distribution of a product of
random variables can approach the lognormal dis-
tribution as the number of factors (n) increases.

The third alternative, no distribution, is the most
likely model in the absence of effective quality con-
trol. The first job before applying statistical models
and procedures is to get a distribution. "Stability,
or the existence of a system, is seldom a natural
state. It is an achievement..." [3]. Producing a
consistent distribution requires serious effort from
design (method development) through production
(routine analysis).

3. Choosing the Right Model

One way to decide what statistical model to use
is to turn to the technical literature for guidance.
However, many sources do not address the subject
explicitly (e.g., see the ACS Principles of Environ-
mental Analysis [4]), and others give conflicting
advice. For example, the Statistical Manual of the
AOAC [5] says: "It is understood that random er-
rors are equally likely to be positive or negative
and to vary in size in a manner that is adequately
described by the normal law of errors."
Eckschlager and Stepanek [6] say that a shifted
lognormal distribution is appropriate for concen-
trations above the determination limit. Thompson
and Howarth [7] claim to make the "case against"
the lognormal distribution.

A second approach to choosing a model is to
look at data. Unfortunately, there is seldom enough
data to reach a conclusion [7], or the data is messy
(contains blunders and outliers and is censored be-
low the limit of quantitation). Nevertheless, one
can find clues in QC data; for example, appropri-
ateness of CV and percent recovery as summary
statistics hint at a multiplicative process and log-
normality. The work of Horwitz and colleagues in
relating analytical precision to concentration
across many analytical methods is interesting in
this regard: it shows the widespread usefulness of
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the CV as a measure of imprecision, and shows
how the total CV increases as the level of appli-
cability of methods decreases [8]. At the ppb level,
the Horwitz model gives a CV of about 45%.

The third and best method of choosing a model
is to combine whatever knowledge can be obtained
from data with what can be deduced from the na-
ture of the measurement process. Is the process ad-
ditive or multiplicative? There are certain common
steps in sample preparation, such as concentration,
dilution and extraction, that are multiplicative in
nature [9,10]. An example of an analytical method
with a multiplicative quantitation process is the
GC/MS method for wastewater analysis [11]: the
test result is a product or quotient of response fac-
tor, concentration of internal standard, peak areas,
and volume of original sample. Coupled with the
fact that CVs for this method are as high as 50%,
there is good reason to expect the lognormal model
to be appropriate.

4. Impact of the Lognormal Model

A legitimate concern with the lognormal model
is how it will affect traditional concepts and proce-
dures of analytical QC. The answer is that the
impact ranges from negligible to serious depending
on the procedure involved. Consider these
examples:

(1) Repeatability interval. The distribution of
the difference of two identically distributed log-
normal random variables is well approximated by
the normal distribution. Therefore, the impact of
lognormality on this concept is negligible.

(2) Control charts. It is not necessary to work
with log-transformed data to control either bias or
precision. For example, bias can be monitored with
a percent recovery control chart [12], and within-
laboratory precision by a chart for the ratio of du-
plicate measurements. It becomes more important
to base control limits on the lognormal rather than
the normal model the farther the CV gets above
10%.

(3) Youden two-sample chart. Figure 3 shows
the type of patterns to expect from lognormal data
for two different degrees of between-laboratory
variation. One should expect fan-shaped patterns
with points concentrated in the first quadrant,
rather than the more balanced elliptical patterns
characteristic of the normal distribution [5].

(4) Outlier tests. The commonly used outlier
tests are based on the normal distribution, which is

symmetric, so applying such tests to lognormal
data tends to give erroneous results. For example,
when Grubbs test is applied to untransformed log-
normal data, there is a tendency to miss real lower-
tail outliers and to find too many upper-tail
"outliers." The problem grows as the CVincreases,
but it is easily cured by applying the test to log-
transformed data.

In conclusion, the lognormal distribution appears
to be the appropriate model for some methods of
trace analysis. As the CV increases, it becomes
more important to use this model when it is appro-
priate; its use does not require unmanageable
changes in analytical QC practices.
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Figure 1. Lognormal distributions.
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rectangular distribution.
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Introduction

The Reactor Laboratory carries out analytical
service by using neutron activation analysis. Alto-
gether 50 elements are analyzed within a wide
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