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where c(K)=predicted state (e.g., concentration)
at time K, i(K-1)=the estimation of x at K-1,
F=the transition function, and w(K)=the vari-
ance of noise.

The next step is to do a new measurement z(K).

i(K)=*(K) + G(K)[.t(K)-H(K)z(K)],

where H(K) =calibration factor.
The estimate x(K) is the best estimate that is

possible. The weighting factor

G(K)=P(K)[P(K)+R (K)]-'

depends on the fluctuations in the system, ex-
pressed as covariance P(K) and the measuring
error R (K).

A Kalman filter enables the on-line estimation of
calibration parameters, intercept, sensitivity and
drift (of both intercept and sensitivity). The filter
requires a model of the system, including system
noise and measurement noise. When a good model
is available, the filter can predict future values or
estimate best values of the changing parameters.
These figures may be used to determine when a
recalibration is required.

Making a number of assumptions, the usual
Kalman filter algorithms can be used resulting in
[4,5,6]

x(K)=F(K)x(K-1)
P(K)=F(K)P(K- I)F'(K)+Q(K- 1)
i(K)=*(K)+ G (K){z(K)-h '(K)*(K)}
A(K) =AiK) - G(K)h '(K)A(K)
G(K) =P(K)h (K){h'(K)P(K)h (K) + R (K)l'.

The quality performance of the system is con-
trolled on-line by comparison with a predefined
criterion. The decision to re-calibrate is followed
by optimization of the concentration standards
available. The example given treats drift as a deter-
ministic phenomenon. Poulisse [7,8] indicated an-
other approach, considering drift as a stochastic
phenomenon. A novel approach aiming at the elim-
ination of the human factor in calibration is the use
of expert systems. An expert system allows the ob-
jective use of a large knowledge base. This knowl-
edge base consists of facts and rules, the results of
long experience. A so-called inference machine
searches for the right solution given a set of start-
ing parameters or states the starting parameters
when the goal has been stated. Since the computer
will not be annoyed when repeatedly asked for the
conditions for a good calibration and can deliver

calibration correction factors for each situation, it
can be expected that this approach will give better
calibration results. However, no conclusive results
have been reported so far.
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Introduction

In clinical laboratories, the major production
processes are analytical processes. Quality manage-
ment strategies must include approaches for
optimizing the cost-effectiveness of analytical pro-
cesses. "Cost-effective QC," in this context, is con-
cerned with selecting or designing a quality control
procedure that maximizes both the quality and pro-
ductivity of an analytical process [1]. There are
many factors that need to be considered, including
the medically required quality for the analyte being
measured, the characteristics of the measurement
procedure (type of process or system, precision,
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accuracy, drift stability, and frequency of occur-
rence of errors), the type and structure of the er-
rors occurring (random or systematic, intermittent
or persistent), and the error detection and false re-
jection characteristics of the control procedure it-
self (probabilities for rejection, average run
lengths).

To assess the possible interactions of these many
factors, it is necessary to have a "design tool" such
as a quality-productivity model, which is based on
the industrial concept of quality-costs. With the aid
of such models, the effects of these many factors
can be predicted, facilitating the planning of ana-
lytical processes that will provide cost-effective
operation.

Quality-Productivity Models

The industrial concept of "quality costs" was de-
scribed by Feigenbaum in 1956 [2]. Quality costs
include components of prevention costs, appraisal
costs, and failure costs, including both internal and
external failure costs. When costs are restricted to
process costs in terms of samples analyzed or re-
peated, prevention costs are losses of samples for
calibration, and appraisal costs are losses for ana-
lyzing control samples, both of which can be esti-
mated from knowledge of the physical variables of
the analytical system and process. Failure costs are
losses for repeat runs and repeat requests, which
can be predicted from performance characteristics
of the measurement and control procedures. These
losses, described in terms of the process variables
and characteristics, provide an estimate of process
waste. Test yield, or productivity, is estimated by
the difference between the maximum output and
the process waste (I -[average quality costs or
losses]).

Table I provides an example quality-productiv-
ity model for a batch analytical process subject to
intermittent errors.

Table 1. A quality-productivity model for describing the quality
and productivity of a batch analytlcal process subject to inter-
mittent analytical errors

Measure of quality is "defect rate"
Defect Rate=f(tl-Pd)

Measure of productivity is "test yield"

Test Yield=I- C+N -Sp lRtS +Rr,(l-f)Pr,

+RrJ(I -Pea)+RtT( IR-P,)(l -9)(1 -Pr,)]

where the terms are characteristics of the measurement and con-
trol procedures, and laboratory policies for repeat runs

f is the frequency of occurrence of errors
POD is the probability fox error detection
PA, is the probability for false rejection
C is the number of calibrators
N is the number of control measurements per run
Sp is the number of patient specimens
T is the total samples in a run (C+N+Sp)
R terms are rerun factors for true reject, false reject, false

accept, and true accept runs

Example Application

Let us assume a batch process having 30 samples
per batch that is calibrated once a week, requiring
six calibrators (C) be analyzed in duplicate. As-
sume a workload requiring one run per day for 6
days in a week, thus (C) averages one per run for
this example. We then postulate a design for a con-
trol procedure, enter the number of control mea-
surements per run (N), and the probabilities for
false rejection and error detection (for medically
important errors), as determined from power func-
tion graphs obtained by a computer simulation pro-
gram [3]. Complete details of this example are
found elsewhere [1].

Figure I shows the performance of a multi-rule
procedure [4] for N=2 and N=4. For an unstable
measurement procedure having a frequency of er-
rors of 0.10 (or 10%), doing more quality control
actually provides higher quality and higher pro-
ductivity. Doubling the number of controls per run
actually reduces the cost. For a stable measurement
procedure, with a frequency of errors of 0.01
(or 1%), higher productivity is achieved with
N=2.

Figure 2 compares the performance of three dif-
ferent control procedures having N=2. For a sta-
ble measurement procedure, the use of 3s control
limits (13, control rule) or a multi-rule control pro-
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cedure [3] provides high quality (low defect rate)
and high productivity (high test yield). For an un-
stable measurement procedure, say a frequency of
errors of 0.20 (or 20%), the use of 2s control limits
(1Ž, control rule) provides better quality and higher
productivity.

Figure 3 shows a comparison of three different
control procedures, with different rules and with
different N's, all giving nearly the same quality or
defect rates. Multi-rule with N = 4 or 12, with N = 2
provide more cost-effective operation than 13, with
N=8.

Implications for Selecting and Designing
QC Procedures

Given the practical limitations of two to four
control measurements per run due to short runs for
fast turnaround of results, it is impossible to have
an ideal control procedure with both high error de-
tection and low false rejection. However, a labora-
tory can have either high error detection or low
false rejection if it knows which is more important
for the particular application.

Because the performance of an analytical process
depends on its stability, i.e., its frequency of errors
(f), the control procedure can be tailored to fit that
frequency of errors. For measurement procedures
having a low frequency of errors, the QC proce-
dure should be selected or designed primarily for a
low probability of false rejection, with secondary
concern for error detection ("low-f design"). When
there is a high frequency of errors, the QC proce-
dure should be selected or designed for high error
detection, with little regard for its probability for
false rejection ("high-f design").

One useful strategy is to change control proce-
dures depending on the recent history of the mea-
surement procedure, switching from "low-f' to
"high-f" designs, as necessary. Whenever the ana-
lyst is suspicious that performance is deteriorating,
the "high-f' design can be used. When the process
is running smoothly, the "low-f' design can be
used.

Another strategy is to systematically switch
from one design to another as the analytical pro-
cess goes through its normal operational cycle. For
example, at the beginning of the day, test the pro-
cess carefully using a "start-up" design having high
error detection; following successful completion of
that testing, switch to a "monitoring" design hav-
ing very low false rejection; and, over the course

of the day, use a "prospective" design to analyze
the accumulated control measurements and trigger
preventive maintenance procedures prior to tomor-
row's run. Such "multi-stage" designs provide a
systematic tailoring of the control procedure to fit
the changing operation conditions of the measure-
ment procedure.

Doing "cost-effective QC" in clinical laborato-
ries means using individualized designs of QC pro-
cedures that fit the measurement procedures to be
monitored. A comprehensive design tool would be
useful to help users study and plan their analytical
processes. It should provide a wide variety of con-
trol rules, incorporate computer simulation to
provide the performance characteristics of the se-
lected QC procedure, utilize more realistic error
distributions to represent stable and unstable per-
formance, offer choices of intermittent and/or per-
sistent error conditions, and permit input of
information on the factors and variables needed to
customize the quality-productivity model to fit in-
dividual analytical systems.

Routine implementation of such individualized
QC designs also would be aided by more advanced
QC programs in laboratory information systems.
The programs should permit analysts to choose the
control rules and the number of control measure-
ments, to select how the rules are applied across
materials and/or runs, to specify whether the con-
trol signal is a rejection or warning for preventive
maintenance, and to define two or more QC proce-
dures that could be employed on a single measure-
ment procedure.
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Figure 1. Comparison of quality (defect rate) and productivity
(test yield) for a batch analytical process using a multi-rule con-
trol procedure with N=2 and N=4. From reference [1].
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Figure 3. Comparison of quality (defect rate) and productivity
(test yield) for a batch analytical process with different control
rules and different N's. From reference [1].
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Figure 2. Comparison of quality (defect rate) and productivity
(test yield) for a batch analytical process with different control
rules all using N=2 (2 control measurements per run). From
reference [1].

1. Introduction

It is well known that there are important factors
affecting accuracy in trace analysis, such as han-
dling loss, contamination and purity of reagents.
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