
Volume 93, Number 3, May-June 1988

Journal of Research of the National Bureau of Standards

Accuracy in Trace Analysis

II. Considerations of the Measurement Process

Quality Assurance and Reference Materials for Trace Analysis

Accuracy in Trace Analysis

G. Kateman
Laboratory for Analytical Chemistry

Faculty of Sciences, Catholic University
of Nijmegen, Toernooiveld,

6525 ED Nijmegen, The Netherlands

Most analytical measurements are not absolute
but depend on the correlation between physical
phenomena and some intrinsic property, e.g., con-
centration. Therefore, calibration is an indispens-
able part of analytical chemistry. Unfortunately,
calibrations are not free from interference by the
environment. This disturbing environment can be
the micro-environment, components in the sample
that influence the calibration line. As a rule this
interference is usually constant, though not always
(e.g., separation processes).

The macro-environment, however, changes con-
tinuously. Temperature, pressure, chemicals, and
man are stationary only during a short time. These
influences will be seen as random fluctuations or,
when autocorrelated, as drift. One approach is to
monitor the properties of the calibration system in-
ternally by incorporating a calibration system and a
measuring system. By monitoring the calibration
system, the results of the unknown can be cor-
rected. Kalivas and Kowalski [1] described the so-
lution for the multicomponent situation, using the
generalized standard addition method (GSAM). By
treating drift as a time dependent component they
obtain the equation

I
Aqm, = ANm.,wKs i +(Vmtn - oto)K,

where q.,,= the volume corrected response
nm,s=the total number of moles of compo-

nent s
K,,=linear response constant for the 1-th

sensor to the s-th component
m=m=number of additions of analyte
tm=time elapsed from initial measurement

up to the ni-th addition
Vm =volume after m -th addition

Smit, Mars, and Kraak [2] developed a method
to calibrate during a chromatographic run by ap-
plying correlation chromatography. In this tech-
nique a sample is introduced into a chromato-
graphic column not as a single pulse, but accord-
ing to a "Pseudo Random Binary Sequence"
(PRBS). Smit et al. proved that it is possible to
introduce more samples simultaneously, though at
the expense of lengthening the PRBS sequence.
Any disturbance of the system during the determi-
nation acts immediately on the calibration sample,
giving a calibration factor that is obtained under
ideal circumstances. Other techniques depend on
prediction of the behavior of the calibration sys-
tem. In this case a model is required. Assuming that
drift in a calibration can be modelled as an autocor-
related random variation with known correlation
constant, Tx, the future values can be predicted
according to

i(K + r) = caCx (K)

where x(K) is the normalized value of the calibra-
tion factor.

Predicting k(K + T) over a time span r is feasible
only when the predicted values do not deviate
more than a preset value, Tr. Miiskens [3] derived
that

r=-Tx in{Tr x(K)+N[x(K)2

-q(Tr2-N2)]2[x(K)2+qN2l}-

where q =(cr +cr)a-Q, and ar- =the standard de-
viation of a measurement.

A powerful method which uses all available in-
formation is "state estimation" or Kalman filtering.
Information from the past, or when starting the
measurement from an educated guess, is used to
predict the situation in the present.

x(K)=F t(K- 1)-w(K- 1),
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where c(K)=predicted state (e.g., concentration)
at time K, i(K-1)=the estimation of x at K-1,
F=the transition function, and w(K)=the vari-
ance of noise.

The next step is to do a new measurement z(K).

i(K)=*(K) + G(K)[.t(K)-H(K)z(K)],

where H(K) =calibration factor.
The estimate x(K) is the best estimate that is

possible. The weighting factor

G(K)=P(K)[P(K)+R (K)]-'

depends on the fluctuations in the system, ex-
pressed as covariance P(K) and the measuring
error R (K).

A Kalman filter enables the on-line estimation of
calibration parameters, intercept, sensitivity and
drift (of both intercept and sensitivity). The filter
requires a model of the system, including system
noise and measurement noise. When a good model
is available, the filter can predict future values or
estimate best values of the changing parameters.
These figures may be used to determine when a
recalibration is required.

Making a number of assumptions, the usual
Kalman filter algorithms can be used resulting in
[4,5,6]

x(K)=F(K)x(K-1)
P(K)=F(K)P(K- I)F'(K)+Q(K- 1)
i(K)=*(K)+ G (K){z(K)-h '(K)*(K)}
A(K) =AiK) - G(K)h '(K)A(K)
G(K) =P(K)h (K){h'(K)P(K)h (K) + R (K)l'.

The quality performance of the system is con-
trolled on-line by comparison with a predefined
criterion. The decision to re-calibrate is followed
by optimization of the concentration standards
available. The example given treats drift as a deter-
ministic phenomenon. Poulisse [7,8] indicated an-
other approach, considering drift as a stochastic
phenomenon. A novel approach aiming at the elim-
ination of the human factor in calibration is the use
of expert systems. An expert system allows the ob-
jective use of a large knowledge base. This knowl-
edge base consists of facts and rules, the results of
long experience. A so-called inference machine
searches for the right solution given a set of start-
ing parameters or states the starting parameters
when the goal has been stated. Since the computer
will not be annoyed when repeatedly asked for the
conditions for a good calibration and can deliver

calibration correction factors for each situation, it
can be expected that this approach will give better
calibration results. However, no conclusive results
have been reported so far.
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Introduction

In clinical laboratories, the major production
processes are analytical processes. Quality manage-
ment strategies must include approaches for
optimizing the cost-effectiveness of analytical pro-
cesses. "Cost-effective QC," in this context, is con-
cerned with selecting or designing a quality control
procedure that maximizes both the quality and pro-
ductivity of an analytical process [1]. There are
many factors that need to be considered, including
the medically required quality for the analyte being
measured, the characteristics of the measurement
procedure (type of process or system, precision,
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