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1. Introduction

Standards are central to the achievement and
mainfenance of accuracy in trace analysis. This fact
is well-known and well-accepted in the interna-
tional analytical chemical community, where
“standards™ are generally considered to be Stan-
dard Reference Materials (SRMs) or Certified Refer-
ence Materials (CRMs). The term, standards,
however, is multivalued, as noted recently by a for-
mer Director of the National Bureau of Standards
[1]. That is, even in our more conventional view of
trace analysis, we must consider in addition to stan-
dard materials: standard procedures (protocols),
standard data (reference data), standard units (SI),
standard nomenclature, standard (certified) instru-
ments, and standard tolerances {regulatory stan-
dards, specifications, norms}) [2]. It is interesiing, in
light of these several types of “standards™ which
have some bearing on accuracy in trace analysis, to
consider the possible significance of standards in
and for Chemometrics.

To pursue this objective, we first must have a
common understanding of the meaning of the term,
chemometrics, and what significance it may have
for accurate trace analysis. A concise definition is
given by the subtitle of the volume which resulted
from the first NATOC Advanced Study Institute on
Chemometrics, i.e., *Mathematics and Statistics in
Chemistry” [3). Implications for accuracy, espe-
cially accuracy in trace analysis, are immediately
evident, That is, wherever mathematical or statisti-
cal operations contribute to the experimental de-
sign, data evaluation, assumption testing, or quality
control for accurate chemical analysis, “chemomet-
ric standards™ are at least implicitly relevant.

The major part of this paper will be devoted to
an explicit discussion of such chemometric stan-
dards, including case studies drawn from recent re-
search at the National Bureau of Standards. The
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discussion will be placed in the framework of the
Analytical System, or Chemical Measurement Pro-
cess (CMP), for such a perspective makes it possi-
ble to consider logically a “theory of analytical
chemistry™; and certainly chemometrics is a very
important part of such a theory [4,5]. To set the
stage, the next section will include a brief view of
the current comtent of Chemometrics, together
with a summary of its history and literature. This
article will conclude with a glimpse at the future of
chemometrics, with spscial emphasis on means to
achieve increased accuracy in our chemical mea-
surements and increased understanding of the ex-
ternal (physical, biological, geochemical) systems
which provide the driving forces for analytical
chemistry.

2, A Brief History

The content of Chemometrics, as viewed by the
“Working Party on Chemometrics” of the Union
of Pure and Applied Chemistry (IUPAC), is given
in table 1 [6]. Included in the second, major portion
of the table are titles for some 30 chapters which
comprise an overview document being prepared
for IUPAC. Two points are evident from the list of
titles: (1) the scope of chemometrics is very broad
indeed, encompassing significant portions of ap-
plied mathematics; (2} as implied by the name, ma-
jor emphasis is given to measurement, specifically
chemical measurement. In a narrower sense,
chemometrics is sometimes viewed as the intersec-
tion of statistics and analytical chemistry, as seen
by the emphasis on experimental design, control,
and the analysis of signals and analytical data. The
several chapters an signal and data analysis include
such topics as filtering, deconvolution, time series
analysis, exploratory data analysis, clustering, pat-
tern recognition, factor analysis, and (multivariate)
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regression. Standards and analytical accuracy have
special relevance to the chapters on terminology,
precision and accuracy, performance characteris-
tics, calibration, analysis, and quality control.

Table 1. What is chemometrics?

1. NATO Advanced Study Institute (1983)
“Chemometrics: Mathematics and Statistics in Chemistry™

2. ITUPAC—Working Group on Chemometrics (1987)
Scope
Producing Chem. Information Notation & Terminology
Precision & Accuracy:
intralab, interfab

Relating Chemical &
Non-Chemical Data

Calibration: univariate,
multivariate

Information Theory Performance Characteristics

Optimization & Exptl. Design:
sequential, simultaneous

Signal Analysis: 4 chapters Data Analysis: 8 chapters
Expert Systems: custom

made, knowledge

engineering tools

Operations Research Graph Theory

Robotics
Computational Techniques

(future strategies)
Chemical Image Analysis Sampling Strategies

Quality Control Systems Theory

A brief, chronologica! history of chemometrics
is presented in table 2. To convey information on
bath the history and the literature of this discipline,
we have indicated milestones in the form of se-
lected references, to the extent possible. Impres-
sive, recent growth is scen by the fact that the first
two textbooks and the first two journals, specifi-
cally devoted to chemometrics, were published
within the last 2 years. Looking to the beginning of
this history (bottom of table 2), we find the name of
Jack Youden, certainly one of the earliest and most
notable chemometricians, whose excellent guide to
chemometrics was published some 20 years prior to
the invention of the term. (Youden, incidentally,
was a proper chemometrician, in that he began his
career as a chemist, and then went on to become a
distinguished statistician.) The journal Analyptical
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Chemistry has long served chemometrics well,
through its biennial fundamental reviews of the
subject, starting well before the term was known.
As indicated in table 2, the term “chemometrics™
was conceived by Svante Wold, in January 1971,
The reader’s attention is called to the interesting
paragraph by Wold, in reference [7], which details
the beginnings of chemometrics, including the start
of the Chemometrics Society by Wold and Kowal-
ski, in Seattle on 10 June 1974, The intervening
decade, culminating in the forementioned NATO
Advanced Study Institute, saw rapid growth in
chemomeitrics education and research, much of it
promulgated by the Chemometrics Society and
published in journals such as Analytical Chemistry
and Analytical Chimica Acta. Also, there appeared
several notable texts which were largely chemo-
metric in content, if not in title [8-13].

Table 2. A brief history

Report on Chemometrics (D.L.

IUPAC (1987):
. Massart, M. Otto)

“Chemometrics: a textbook™
(1987, Elsevier)
(Massart, Vandeginste, Deming,
Michotte, Kaufman)

“Chemometrics” (1986, Wiley)
(Sharaf, Illman, Kowalski)

Two textbooks:

Journal of Chemometrics (Jan.
1987} (Ed. Kowalski, Wiley)

Two Journals:

Chemometrics and Intelligent
Laboratory Systems (Nov. 1986)
{Ed. Massart; Elsevier)

Chemometrics Conference: (NBS, May 1985)—dedicated to
W. J. Youden (Spiegleman,
Sacks, Watters; NBS J.
Research 90 [6])

NATO Advanced Study Institute on Chemometrics:
{Cosenza, Sept. 1983)
(Kowalski}

“Chemometrics: Theory and Application” (1977)
(Ed. Kowalski; ACS Sympos
52)

Chemometrics Society founded (Seattle, 1974) (S. Wold,
B. Kowalski)

CONCEPTION—S. Wold (1971) (J. Chemometrics, V.1, No.
1, p. 1, Jan. 1987)

Analytical Chemistry (ACS),
Reviews on statistics . . . mathematics . , . chemometrics (even

years)

W. J. Youden, “Statistical Methods for Chemists” (1951, Wiley)
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To complete this brief look at the content, his-
tory and literature of chemometrics, it is fitting to
refer to the Chemometrics Conference held at NBS
just 3 years ago. It was a special meeting in many
respects, for it epitomized the interdisciplinary na-
ture and increasing scope of chemometrics; and it
was “probably the first (such meeting) in the
United States by that title” [14]. The meeting was
jointly planned by an interdisciplinary team, con-
sisting of a chemist and two statisticians. It was
jointly sponsored by two national chemical and
two national mathematical societies. Finally, it con-
tained an extremely effective and balanced blend of
experts from the two disciplines: mathematicians
(and statisticians) providing critiques of chemomet-
rics presentations by chemists, and chemists
providing critiques of the presentations by mathe-
maticians, The synergism resulting from this ap-
proach is evident from examining the proceedings
[14]. It is appropriate to conclude with reference to
this volume, for it was dedicated to W. J. Youden,
our first chemometrician in table 2.

3. Chemometric Standards and
the Analytical System
3.1 Standards

The agenda for chemometrics, from the perspec-
tive of standards, is outlined in table 3. First, we
must deal with the issue of nomenclature. Because
of the relatively recent formal emergence of
chemometrics, and because of its interdisciplinary
character, this is a very important matter for our
early attention. Nomenclature, in this context,
refers to much more than terminology. That is, it
includes basic meaning and explicit formulation of
concepts falling within the scope of mathematics
and chemistry. The efforts of IUPAC, both in the
Commission on Analytical Nomenclature [15] and
as outlined in table 1 [6] , will be extremely helpful
in this fundamental task for chemometrics—to as-
sure that chemists and mathematicians “speak the
same language” where that language maintains as
much self consistency as possible with the slightly
diverse languages of the separate disciplines. (To
some extent, we shall have to accept a bilingual
dictionary. For example, “efficiency,” “consis-
tency,” and “sample,” have somewhat different im-
plications in statistics and analytical chemistry.)
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Table 3, Chemometric standards

Nomenclature (terminclogy, concepts, formulation)
Standards for accuracy {entire chemical measurement process)

detection, identification, estimation, uncertainties,
assumptions

evaluation of chemometric techniques, software, algorithms
validation through “standard™ data; interlaboratory exercises

design to meet external needs for adequate, accurate chemical
information

Advance the state of the art; stimulate multidisciplinary
cooperation

Suppeorting standards for accuracy, for the entire
Chemical Measurement Process, is perhaps our
most important task. The primary components are
indicated under the second heading in table 3. Most
important is a rigorous approach to the specifica-
tion and evaluation of the fundamental characteris-
tics of analytical methods and analytical results,
such as detection, identification, and quantification
{estimates and uncertainties). A combination of
chemical knowledge (or “chemical intuition™) and
statistical expertise in this effort is the best means to
assure validity and control through the specifica-
tion and testing of assumptions. A second level of
control which represents a special responsibility
for chemometrics is the production and evaluation
of quality software and algorithms—a responsibil-
ity which is being met in both chemometrics jour-
nals. The logical extension of chemical software
standards is found in chemometric validation, or
Standard Test Data (STD), designed to guarantee
quality for the Evaluation step of the CMP. STD
thus parallel SRMs for accuracy assurance in both
intra- and interlaboratory environments {16]. It is
worth emphasizing that with the enormous pro-
gress in laboratory automation, and the substitution
of machine intelligence for human intelligence,
quality control of the mathematical or chemomet-
ric phase of the CMP becomes ever more urgent.
Direct instrument responses are increasingly un-
available for the expert scrutiny of the analyst, and
automatic results are produced with little indica-
tion of the assumptions involved or numerical
validity (and robustness to outliers) of the compu-
tational methods.
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The last “standard” indicated in table 3 relates to
design. Design of the sampling, measurement, and
data evaluation steps of the CMP to meet specified
needs, is really the first responsibility of chemomet-
rics. A careful blend of statistical expertise and
chemical knowledge once again is the best means
for meeting the accuracy or information require-
ments of the CMP. Inadequate attention to design
is perhaps the most serious fault in ordinary chemi-
cal analysis. Either inconclusive or inadequate
chemical results are obtained, using the samples
and methods at hand, or costs are needlessly high
in obtaining the relevant information. This area
constitutes one of the greatest opportunities for
chemometrics for attaining requisite accuracy at
minimal cost; appropriate methods include infor-
mation and decision theory, statistical design and
optimization techniques, and exploratory multivari-
ate approaches such as pattern recognition and
cluster analysis [3].

3.2 The Analytical System

A “systems perspective” for the CMP has been
promulgated by a number of eminent analytical
chemists over the past 2 decades. One of the earli-
est and most noteworthy efforts was made by the
Arbeitskreis “Automation in der Analyse” beginning
in the early 70s [4). The systems and information
theoretic view, which was pioneered by members
of this circle, such as Gottschalk, Kaiser, and
Malissa, is even more relevant today, and it offers
perhaps the best model for an integrated chemo-
metric approach to accuracy. Considering a simpli-
fied representation of the CMP or analytical system
presented for this purpose in reference [16] (fig. 2),
for example, it is clear that not only is there mate-
rial flow through the system, in terms of sampling,
sample preparation, and measurement, but there is
also the flow of information, and unfortunately
noise. Treating the CMP as an integrated system is
essential for the optimal application {(cost vs accu-
racy) of chemometric tools for design, control, cal-
ibration, and evaluation. Interfaces between the
several steps of the CMP must be astutely matched
to prevent information loss, and data evaluation
and reporting techniques must be recognized as
part of the overall measurement process, capable of
preserving or distorting information just like the
chemical and instrumental steps. The CMP or ana-
lytical system model can be especially helpful in
planning for accuracy through appropriate points
of introduction of SRMs and STD, and for explicit
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treatment of feedback, where initial resulis are uti-
lized for improved, on-line redesign (“learning”) of
the CMP.

Extended discussion of the analytical system is
beyond the scope of this paper, but its introduction
is essential for a meaningful consideration of the
relationship of chemometrics to accuracy and stan-
dards, as indicated above. The system view is obvi-
ously important for designing or investigating
overall performance characteristics, such as the
blank, recovery, specificity, and systematic and
random error—through propagation techniques
[17]. That is, if one wishes to achieve an overall
precision, or detection limit, or identification capa-
bility, then the design of an optimal system must
take into consideration the corresponding parame-
ters for each step of the CMP, from sampling
through data evaluation. Such an integrated ap-
proach to design, with the help of chemometric tech-
niques, is as relevant to the design of self-
contained automated and intelligent analytical instry-
ments, as it is to the design of an integrated analytical
approach of an entire organization (such as CAC) to a
broader analytical question, such as the selection and
certification of Standard Reference Materials [4,12].

3.3 Hypothesis Testing and the CMP

Fundamental questions to be addressed by mea-
surement science can often be posed as hypotheses,
to be tested or evaluated via analytical measure-
ments. The formation of meaningful hypotheses or
models of the external (environmental, biological)
system is the business of expert scientists within
that discipline. The testing of such hypotheses,
through analytical measurements, is the business of
expert analytical chemists. From this perspective it
is clear that hypothesis testing captures the essence
of the scientific method. It must therefore be a key
feature of any “theory of Analytical Chemistry.”
This is especially important for chemometrics, for
hypothesis testing forms one of the cornerstones of
modern statistics. By capitalizing on the elegant
statistical tools that have been developed for agri-
cultural or biological testing, for example, we can
generate an objective and optimal approach to the
design of the CMP. That is, by combining excellent
knowledge of chemistry with that of modern statis-
tics, we can construct CMPs which are guaranteed
to have sufficient (statistical) power to meet the
specified analytical needs. In this respect, we shall
be responding to a famous challenge by Kaiser [18],
that analytical chemists learn to match optimally
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the “space of analytical methods™ with the “space
of analytical problems.”

Some of the ways in which hypothesis testing
impacts analytical accuracy, in terms of the funda-
mental parameters of analytical chemistry, are pre-
sented in table 4. Figures 1 and 2 convey the
elements of this theory together with its applica-
tion to detection and univariate identification, re-
spectively [19]. Further details cannot be presented
here, but it should be noted that accuracy in trace
analysis demands quantitative chemometric ap-
proaches to detection, identification, and quantifi-
cation (uncertainty evaluation), plus model and
assumption validation. Inadeguate attention to this
matter, and imperfect understanding of the funda-
mental (&, 8 errors) limitations of hypothesis test-
ing, i.e., chemical measurement, continue to
produce very erroneous conclusions regarding the
results or power of our analytical techniques [19].
It is especially interesting and important to con-
sider this in terms of the final, data evaluation step
of the CMP, in view of the expanding use of “intel-
ligent” and automated instrumentation, which gen-
erally includes “black box” data evaluation.
Monitoring the accuracy of such internal al-
gorithins is clearly one of the critical tasks of
chemometrics in the near future, one for which
Standard Test Data (STD) may play an important
role. The need is exhibited in figure 3, where per-
fectly visible gamma ray peaks remain “unde-
tected” by a widely used instrumental gamma ray
analytical system [20].

Table 4. Analytical accuracy and hypothesis testing?

Hypothesis formation {external system model)

Design of the measurement process—external (x, I, 1}
~~internal (MP, EP)
Hypotheses to be tested:
model (simplest internal: y =8 4+A4x +¢,)
detection, discrimination (estimation)
no. of components (knowledge, “fit,”’ constraints)
identification (informing vartable; pattern)
error structure (stationary, white, cdf, variance, bias)

Some diagnostics—z, ¢, #', K-8, x?, ¥*', ¥, residual patterns, . ..

* Symbol explanation: x, {, t =sampling species, location(s),
time(s), MP, EP=measurement and evaluation steps of the
CMP, ', x*"=noncentral f and x* statistics; K-S=Kolmogorov-
Smirnov statistic,

Before leaving this survey of fundamentals, we
must emphasize the importance of the first syllable.
Chemometrics differs from statistics and mathe-

197

matics in that chemical intuition or expertise forms
an essential part of the activity. As mentioned
above, hypothesis formation, which is necessarily
the first step in designing a scientific experiment,
requires disciplinary expertise. Accuracy in data
evaluation or experiment control, for example, can
only be expected when the chemometric tech-
niques employed recognize the range of possible
alternative hypotheses (models or assumptions).
This is the crax of setting reliable bounds for sys-
tematic error, or in establishing “‘definitive’” analyt-
ical methods. Empirical rules or heuristic
techniques adapted to this purpose should be
viewed with some caution. Examples of problems
demanding chemical expertise for alternative hy-
potheses are identification, and the assessment of
blank and matrix effects [£7, 19 (ch. 16}]. In figure
2, for example, knowledge of the alternative was
essential to compute the identification power of the
test. In the more general case, where chemical spe-
cies are identified on the basis of spectral or chro-
matographic patterns, we must know the locations
and uncertainty characteristics of all “nearby” pat-
terns to assess the identification power for a given
mull pattern, or to design a measurement process
meeting prescribed identification capabilities. In
moving from the universe of all possible neighbor-
ing spectral patterns, to the universe of possible in-
terferences [21] or calibration models, for example,
chemometrics faces a considerable challenge.

4, Selected IHustrations

To illystrate the relevance of chemometrics to
the assurance of accuracy in trace analysis, we shall
examine three recent and continuing investigations
from our laboratory. The first has been selected as
an example where quantitative hypothesis testing
techniques have been applied to one of the funda-
mental elements of any analytical system: the
noise. The second relates to an exploratory re-
search study which seeks to relate patterns of laser
microprobe mass spectra to sources of combustion
particles (‘soot™) in the atmosphere. It illustrates
the importance of chemical information (or “intu-
ition”) to maintain accuracy in the application of
multivariate data analytical techniques. The third
illustration speaks to the need for STD, both for
monitoring accuracy in complex chemical data
evaluation, and as a stimulus for research for im-
proved chemometric techniques and understanding
of the data evaluation process.
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4,1 Counting Statistics—Are They Poisson?

The two fundamental model characteristics of
analytical signals are the functional relation, con-
necting the expected value of the signal to the ana-
Iyte concentration, and the error structure, as
indicated in table 4. Accurate measurements and
accurate assessment of method performance char-
acteristics demand knowledge of both. In this sec-
tion we describe an experiment designed to
investigate the statistical properties and the causal
characteristics of the noise component in counting
experiments. Such experiments, where individual
atoms, ions, or photons are counted, comprise
some of the most sensitive in analytical measure-
ment. In many such cases it is assumed that the
limiting counting noise is Poisson in nature. Since
the variance of the Poisson distribution is equal to
the mean, such an assumption leads to a simple er-
ror (standard deviation) estimate, and error propa-
gation techniques may then be used for estimating
uncertainties for net signals and analyte concentra-
tions.

The primary objective of our investigation of
noise was to test the validity of the Poisson hypoth-
esis for very low-level counting data, with special
emphasis on background counts. The validity of
the Poisson assumption has long been one of the
more intriguing questions in nuclear physics and
chemistry, and it has therefore been the subject of
some notable experiments {22]. Our experimental
system was uniquely designed to permit a much
more stringent test of this hypothesis, as it pro-
vided individual arrival times for more than a mil-
lion events. A second objective, if the Poisson
assumption proves valid, is to provide a physical
random number generator—a device operating by
the laws of physics, to generate random numbers
for use in numerical simulations, as an alternative
to numerical pseudo-random numbers.

A practical objective for investigating the low-
level counting noise distribution derives from our
physical knowledge of the measurement system,
i.e.,, our knowledge of potential alternative hy-
potheses. Perhaps the most important such alterna-
tive is the possibility of correlated events in the
radiation detector, which could have a profound
influence on the magnitude and wvariability of our
background noise. As indicated in figure 4, the ef-
fective background is reduced by about a factor of
100 through anticoincidence shielding. If, due to
wall or gas impurity effects, just 1% of the elec-
tronically canceled events were to produce a sec-
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ondary, time delayed event in the central detector,
the effective background would be doubled! Time
series and distributional analysis of the background
noise thus allows us to investigate this alternative
process. Knowledge of the statistical power of the
null (Poisson) hypothesis test against this particular
alternative is therefore vital both for the construc-
tion of valid uncertainty intervals, and for under-
standing the basic physics and chemistry of the
background events. One illustration of the distribu-
tional analysis is given in figure 5, where ¥? is used
to test deviations from the expected exponential
distribution of time intervals between events. Fur-
ther discussion of this investigation, including a
tabulation of six alternative hypotheses, is given in
reference [23]. Further investigation of sources of
background noise is currently underway, using
multivariate exploration of pulse shape characteris-
tics.

4.2 Multivariate Exploratory Analysis:
Origins of Atmospheric Soot Particles

Perhaps the best known applications of chemo-
metrics involve multivariate techniques such as
principal component analysis (PCA) and cluster
analysis. Such techniques have reached a high de-
gree of sophistication, as exploratory tools for the
classification of samples which may be character-
ized by multivariable patterns or “spectra.” An ex-
cellent introduction to the principles and methods
of the “soft” or empirical multivariate modeling
techniques is given in reference [24]. PCA and re-
lated techniques are especially useful for data ex-
ploration, in that they permit ready visualization of
sample relationships, provided there are not too
many independent components in the system under
investigation. Thus, a collection of mixtures of two
components having quite complex, yet different,
spectra or chemical patterns, can be represented by
a set of points in a plane, or on a line if the mixtures
are normalized. If the pure components are repre-
sented, they appear as the end points. Two dimen-
sional PCA plots thus allow us to display relations
among mixtures of three normalized components;
and three dimensions increases the display capabil-
ity to four components. Beyond exploratory dis-
play capability, several methods of multivariate
chemical analysis may be employed for quantita-
tive estimates for the number and identity of com-
ponents, and for the analysis of mixtures [25].
These are outgrowths of the seminal work of Law-
ton and Sylvestre [26].



Volume 93, Number 3, May-June 1988
Journal of Research of the National Bureau of Standards

Accuracy in Trace Analysis

The interplay between the multivariate display
techniques and chemical “intuition” (experience,
knowledge) is exhibited in our investigation of
laser microprobe mass spectra (LAMMS) of indi-
vidual soot particles formed from the combustion
of wood and fossil fuel. The scientific basis for our
interest in this problem derives from the potential
health effects of combustion particles, which often
carry mutagens, on the one hand, and the geo-
chemical and climatic implications, on the other.
The ability to infer combustion sources for individ-
ual soot particles could add greatly to our under-
standing of climatic perturbations and perhaps
even such phenomena as the Tertiary-Cretaceous
Extinction [27]. PCA data exploration was attrac-
tive for this study because the system was rela-
tively simple in terms of intrinsic structure (two
components), but relatively complex in terms of
both the graphitic soot formation and laser plume
ion formation processes. The work demonstrates
an extremely important point with respect to accu-
racy, however. That is, the importance of having
thoroughly reliable chemical information for vali-
dation of the exploratory techniqr-es. This is shown
in figure 6. The upper part of the figure shows the
successful classification of wood vs hydrocarbon
fuel soot particles on the basis of their positive ion
laser microprobe mass spectra. Application of this
model, which was developed for laboratory-gener-
ated particles, to soot particles collected in the field
(urban atmosphere), however, would lead to erro-
neous conclusions (misclassification). The failed
classification shown in the lower part of the figure
was discovered through the use of an independent
tracer of known accuracy, “C, for source discrimi-
nation [28]. Subsequent research on this very im-
portant basic and practical problem has led to some
understanding of the reason for the difference be-
tween laboratory and field particles, a basic issue
being sensitivity of certain species {(features) to de-
viations from the two-source, linear model. This
example illustrates one of the more important cau-
tions in the use of multivariate techniques, such as
PCA and factor (FA) analysis: namely, the influ-
ential character of outliers and departures from as-
sumptions.  Further  investigation of the
atmospheric particles has shown the utility and rel-
ative robustness of selected negative ion carbon
clusters for combustion source discrimination, as
shown in figure 7. Unlike PCA and FA approaches
to exploratory multivariate data analysis, the coor-
dinates of the “bi-plot” of figure 7 are not per-
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turbed by outliers. Also, they are often more readily
interpretable chemically than eigenvectors, though
clearly they do not possess the dimension reduction
efficiency of PCA.

4.3 Standard Test Data

A special task for chemometrics is guaranteeing
the accuracy of the data evaluation phase of the
chemical measurement process. An important ele-
ment in the task is the development of representa-
tive, reference data sets having known
characteristics, for testing the validity of data eval-
vation. Such “standard test data” (STD) thus play
the same role for data evaluation that SRMs do for
procedure evaluation. STD are likely to become
increasingly important as the data evaluation step
becomes more complex, and as it becomes less ac-
cessible to the user, as in automated analytical sys-
tems. The nature and importance of STD for
assessing interlaboratory precision and accuracy
have been well demonstrated by exercises based on
univariate gamma ray spectral data created by the
International Atomic Emergy Agency (IAEA) [29]
and multivariate atmospheric data created by NBS
[30]. The parallelism with SRMs has been further
established for the former STD through incorpora-
tion into the catalog of the [AEA’s Analytical
Quality Control Service Program [31]. A brief de-
scription of the objectives and outcome of the mul-
tivariate STD exercise follows. (A more extended
review of both exercises may be found in reference
[16].)

The objective of the multivariate STD exercise
was to evaluate the resolving power, and precision
and accuracy of all major mathematical techniques
employed for aerosol source apportionment, based
on linear models incorporating chemical “finger-
prints” or spectra. To adequately test these tech-
niques, which comprised wvarious forms of
multivariate factor or regression analysis, it was
necessary to generate data matrices which were re-
alistic simulations of the variations in source mixes
found in an urban airshed. Also important was a
realistic injection of random errors characterizing
pure source profiles as well as “measured’* ambient
samples. This was accomplished by means of the
linear equation given below, where the S, were
generated by applying a dispersion model incorpo-
rating real meteorological data to two urban (geo-
graphic) models. The STD generation scheme is
illustrated for one of these urban models in figure 8.
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Generating Equation

P -
2 [A—en—eul ySy-ten,

sampling period [1<z<40]

“observed” concentration of
species—i, period—¢
[1<i<N, N<20]

= true intensity (at receptor)
of source—yj [1<j <P, P<13]

“observed” source profile matrix
(element—i,j)

random measurement errors,
independent and normally
distributed

systematic source profile errors,
independent and normally
distributed (systematic, because
fixed over the 40 sampling
periods)

random source profile variation
errors, independent and
log-normally distributed

C£r=

where:

€m

€n

The outcome of the exercise was instructive.
Though results for the several techniques were
generally correlated, and agreement with the
“truth” was generally within a factor of two, some
important differences and discrepancies were ob-
served. For example, FA methods in contrast to
weighted least squares estimation (“‘chemical mass
balance™) could not provide estimates for all com-
ponents. They were limited to a collection of four
or five component classes. Also, presumably identi-
cal methods, operating on strictly identical data re-
sulted in differing component estimates as well as
different standard error (SE} estimates. Comparing
the actual distributions of residuals to the quoted
SEs, we found the latter to vary from gross under-
estimates to gross overestimates. It was clear from
this exercise that results depended heavily on “op-
erator judgment,” i.e., unique solutions could not
be obtained without the uvse of certain, often im-
plicit assumptions or decisions. It can be shown
that problems of this sort, and in fact a large frac-
tion of the multivariate problems in chemistry, are
underdetermined or heavily dependent on assump-
tions. This is a challenge to chemometrics. Chemi-
cal knowledge combined with astute design should
eliminate some of the inaccuracy connected with
model selection, error treatment, and incautious
use of criteria such as non-negativity.

Just as with SRMs, the above intercomparison
was not the last word with this data set. Rather it
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has served as a test bed for additional and newly-
developed methods of multivariate chemical data
analysis [16], the most recent of which involves a
new, more accurate representation of multivariate
data by “parallel coordinate” systems [33]. In the
future, we would expect STD to continue to serve
the mutiple purposes of chemometric quality con-
trol for both conventional and automated analyti-
cal systems, assessment of interlaboratory or
interalgorithmic accuracy, and as stimuli for
chemometric research on complex, multicompo-
nent systems.

5. Summary and Forecast

In conclusion, let us consider for 2 moment the
matter of forecast, as viewed from two perspec-
tives: (1) What may be forecast for the future of
chemometrics in relation to standards and accu-
racy? (2) What directions are envisioned if we are
to use chemometrics to improve our ability to un-
derstand and forecast the behavior of external sys-
tems, such as the environment? Key issues which
comprise the answer to the first question are:

¢ Nomenclature, including rigorous terminol-
ogy and formulation of the performance character-
istics of the CMP, plus standard nomenclature for
methods of CMP design, control and evaluation
derived from applied mathematics.

* Optimal design of the overall analytical system
to meet prescribed analytical needs and accuracy
limits, utilizing detailed chemical knowledge of the
characteristics of the individual CMP steps.

* Attention to the wvalidity of the analytical
model, both the functional relationship and the
noise models; specification of hypotheses and tests
having adequate power with respect chemically
significant alternative hypotheses.

* Assessment of the accuracy of mathematical
techniques as applied to chemical data, via al-
gorithm or software evaluation, or overall data re-
duction evaluation using STD.

* Development of new methods of increased ac-
curacy by iteratively linking CMP design, chemi-
cal separation, instrumental measurement and data
evaluation, to reduce dependence on unverified as-
sumptions, and to improve precision through inter-
ference reduction and application of expert
knowledge.

The second question relates to the fact that data-
based, empirical models cannot be relied upon to
provide information beyond their immediate do-
main. That is, if we wish to be in a position to make
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accurate forecasts, or even accurate interpolations,
for a given system, there is no substitute for a de-
tailed mechanistic understanding of the properties
{model) of that system. It iz in this area that chemo-
metrics, and analytical chemistry, have their great-
est promise for the future. This prospect is best
viewed in terms of a pair of interacting systems.
The first system represents the raison d'étre or driv-
ing force for analytical chemistry; it is the external
system which depends on chemical analyses for its
elucidation or control. The second system is the
analytical system or CMP. Chemometrics has long
recognized the linkage between these two systems,
but much of the work has been based on sampling
and measurements designed to establish empirical
patterns, or “‘soft modeling™ [34].

Soft modeling, which might be viewed as an out-
growth of empirical, statistical modeling, is ex-
tremely important for exploratory studies, and for
providing statistical descriptions of empirical rela-
tionships in complex chemical or biological sys-
tems. In contrast, “hard global models... have
great advantages both in their far-reaching predic-
tions and their interpretation in terms of fundamen-
tal quantities.” And, unlike soft models, “the
deviation between the hard model and the mea-
sured data must not be larger than the errors of
measurement” (Wold and Sjéstrom, pp. 243ff
[34]). Increased movement in chemometrics to-
ward hard modeling is clearly atiractive because of
the potential for increased basic understanding and
increased accuracy; it is realistic in view of the
enormous advances during the last decade in sam-
pling and measurement capabilities, and especially
in computational capacity.

The transition toward more accurate representa-
tion of the external physical, chemiczl or biological
systems which analytical chemistry must serve is
outlined in table 5. To complement Wold’s basic
categories, we present the “musical” classification
of Douglas Hofstadter [35], and the mechanistic
model categories often used to describe biological
or environmental systems {36]. Hofstadter’s de-
scriptors are apt. They convey succinctly the in-
creasing sophistication of models (“analogies™) in
an area of enormous intrinsic complexity—artificial
intelligence. The flow of models for the environ-
mental system brings us immediately back to ana-
lytical chemistry and chemometrics. That is, the
linear model, such as that described in section 4.3 is
our simplest representation for an envircnmental
system. Consistency and accuracy, governed by
measurement error alone, cannot be generally ex-
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pected with so simple 2 model. Improvements may
be gained through: (I} combined chemometric
techniques, such factor analysis followed by time
series analysis, to explore the dynamics of the sys-
tem [37]; and (2) “hybrid” modeling to take into
account certain non-linearities such as homoge-
neous and heterogeneous reactions [38]. Major pro-
gress in wunderstanding and monitoring an
environmental system comes when natural “com-
partments” may be defined, with differential equa-
tions describing transfers between compartments
[39]. When the compartmental description is inade-
guate, one must consider an even more detailed de-
scription of the system, generally by taking into
consideration its full dynamic space-time character
through the use of coupled equations representing
transport and reaction [40]. These last two cate-
gories of modeling and measurement are important
for assessing the potential impact of human activi-
ties on climate, in connection with the “CO,” prob-
lem, and the coupled reactive system CO-QH-CH,,
respectively [41].

Table 5. The transition from empirical to mechanistic modeling

Model classes

[empirical — mechanistic]

8. Wold® D. Hofstadter® Environ. system
“Muzak™ Linear®

“Soft” lz l hybrid!

l “Trz” Compartment®

“Hard” 1 l

“Classical Music” Full dynamic’

* See refzrence [34].

® See reference [35].

 Multivariate source apportionment (conservative tzacers) [32].
4 Particle—sulfate system apportionment {37,38],

¢ CO; system: troposphere-biosphere-ocean; biological systems
[36,39].

" CO-OH-CH, system (production, transport, reaction) [40,41].

We face very important opportunities to gain in-
creased fundamental knowledge of the nature
(mechanistic models) and state of external (envi-
ronmental, biological) systems through the use of
hard, or at least harder, models to guide the sam-
pling and measurement designs for these systems.
By working closely with expert theoretical geo-
chemists or biochemists, for example, chemometri-
cians have the opportunity to design the analytical
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measurement process to optimally test alternative
external models, to better estimate their parame-
ters, and to more accurately evaluate their present
state and future course [42].
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Figure 2. Hypothests testing formulation for identification in an-
alytical chemistry. Probability density functions are given for
the difference in composition (8¢} for particles emanating from
the same source vs two different sources [19].
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Figure 3, Clearly visible gamma ray peaks (*®Hg, *Cr), which
were not detected above a ®Co background in the IAEA practi-
cal examination of commercial software [20].
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Figure 5. Chi-square test of the empirical equal probability his-
togram for low-level counting data [23].
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[K* < Max. Loading — C3H *]
)]

Ambient

Figure 6. Isometric PCA projections of Lab and Ambient parti-
cle LAMMS positive ion spectra on the first three eigenvectors.
Soot particles from wood are denoted “W” and “C”; those from
hydrocarbon fuel are denoted *H” and “A.” Feature {mass) se-
lection on the basis of “characteristicity” preceded the principal
component analysis [28].
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Figure 7, Bi-plot showing negative ion carbon cluster discrimi-
nation of LAMMS spectra from ambient atmospheric soot
formed from the combustion of hydrocarbon fuel [“A™] and

wood [*C"].
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