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At NBS a data acquisition system for a
flow calorimeter which accommodates
large samples has been developed. The
system is based on an instrument con-
troller, scanners, and voltmeters, all
available commercially. Detectors for
temperature, gas flow rate, pressure, and
gas chemical composition provide data
on key operating parameters of the
calorimeter. A real-time, multi-tasking,
general-purpose, data acquisition pro-
gram is described. Computer science
concepts important to the design of the
program are explained. The software is
driven by tables of data loaded at the
start of the experiment. Thus, program
execution is changed by providing dif-
ferent tables of information for the data

channels desired, data display, and data
storage. Tasks for data acquisition, in-
strument control, data storage, calcula-
tions, data display, and run-time-
parameter entry are activated or deacti-
vated during the experiment by the op-
erator. Sample results are presented to
illustrate the use of the data acquisition
system. The software developed for this
system is well suited for the changing
experiments commonly encountered in
the research laboratory.
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Introduction

As experiments become more sophisticated, the
demand on data recording increases. This problem
is compounded in the research laboratory where
instrument development is occurring. As the in-
strument evolves, the data recording needs change,
which often requires hardware and software
changes in a computerized system. The following
text describes our approach to minimizing the
changes needed to cope with instrument modifica-
tions.

The National Bureau of Standards has developed
a large sample flow calorimeter for use in studies
on municipal solid waste [1,2]. This instrument has
been used in heats of combustion studies [3] and in
investigations on the fate of chlorine during com-

bustion [4,5]. Details of the design and operation of
the multi-kilogram capacity flow calorimeter used
in these studies can be found in the publication by
Churney and coworkers [6].

Calorimetric experiments have long been
recognized as being tedious, time consuming,
and suited for automation. Westrum [7] has dis-
cussed the benefits of automating calorimeters, de-
scribed the data acquisition system for his heat
capacity calorimeter, and listed other labora-
tories which have automated their experiments.
In certain respects our calorimeter is even more
demanding on the need for and requirements
of data acquisition. As a result, our flow calorime-
ter has been automated to assist in monitoring its
operation and help improve the integrity of the
data.
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As in any computer controlled experiment, it is
both the hardware and software which make the
system work. We have assembled a number of
hardware components from commercial vendors
resulting in a data acquisition system which has
proven to be powerful and adaptable. Since the
software is what really gives a computer system its
operating character, we have taken an interdisci-
plinary approach, one joining computer science
and physical chemistry, to produce a data acquisi-
tion system which is suited to our laboratory needs.
Our instrument is a research calorimeter and com-
bustor in which the experiments change regularly
as we acquire new detection instruments and new
insights into the problems being studied. If we are
to progress with the changing detector configura-
tions, a software design is needed which is well
structured and easy to modify.

In developing the software we resisted the temp-
tation to design a system which was unique to our
calorimeter. Rather, we strived to design a soft-
ware package which was based on the "generic"
character common to experiments in general. Only
the unique aspects of our calorimeter were treated
in a manner which deviated from the "generic"
software philosophy.

One of the authors is a computer scientist while
the other is a physical chemist. Since this paper is
most likely to be read by physical scientists with
limited backgrounds in computer science theory, a
portion of the following is a primer on concepts
important to structured and concurrent program-
ming related to our program. Other sections dis-
cuss calorimetry and combustion concerns, the
data acquisition hardware and software, and key
features of our data acquisition program.

Flow Calorimetry

The large sample flow calorimeter is unique and
has certain data requirements not found in other
calorimeters. One feature which is unusual is the
sample size which it accommodates. Unlike con-
ventional bomb calorimeters which use sample
sizes of one or two grams, our instrument was de-
signed for 2.5 kg samples and has been used with
samples weighing up to 5.0 kg. When burned, these
samples release on the order of 17 MJ/kg of energy
at an average power of up to 35 kW. If the combus-
tion proceeds too quickly, there is not enough heat
capacity in the combustor to prevent its tempera-
ture from rising to the melting point of stainless
steel. As one might guess, this is an undesirable sit-
uation. To prevent the possibility of the experi-

ment getting out of control, the combustor is in-
strumented with an array of thermocouples used to
monitor its temperature profile.

The size of the sample is the primary reason for
using the flow calorimeter design instead of the
conventional bomb design, because of the safety
problems associated with a large constant volume
system. Unlike the bomb calorimeter, where there
is no mass flow between the combustion zone and
the surrounding environment, the flow calorimeter
requires a substantial volume of gases to enter and
leave the combustor. The use of the flow combus-
tion technique for burning the sample necessitated
the use of certain detectors (to measure gas flow
rate, pressure, and composition) not found on a
bomb calorimeter.

Corrections to the observed temperature rise in a
bomb calorimeter are about 2% for heat exchange
with the surroundings and a total of 0.1% for the
difference between experimental and standard
states, ignition, and acid formation. The combined
corrections amount to about a 2.1% change in the
enthalpy of combustion computed from the ob-
served temperature rise alone.

In flow calorimetry, oxygen or air enriched with
oxygen enters the combustor and the product gas
leaves with varying amounts of oxygen, carbon
dioxide, water, and a small amount of carbon
monoxide. Thus, the composition and flow rate of
the gas must be monitored in real-time during the
burn. Corrections to the observed temperature rise
are about 4% for heat exchange with the surround-
ings. Tens of thousands of liters of gas flow
through the calorimeter. As a result, corrections
due to carbon monoxide formation, water evapora-
tion, and gas heating can be as high as 1.5%. The
combined corrections amount to about a 5.5%
change in the enthalpy of combustion obtained
from the temperature rise of the calorimeter fluid
[6].
Combustion Combustion experiments, as distinct
from flow calorimetric experiments, place a further
burden on the data acquisition system. In combus-
tion experiments, the important questions involve
quantitative accounting for the major components
and the production of trace amounts of unburned
hydrocarbons, chlorinated organic compounds,
carbon monoxide, and other species. Some of the
species, such as chlorinated organic compounds,
are in such small amounts that they must be
trapped so a detectable amount accumulates. Other
species, such as sulfur dioxide, are produced in

large enough quantities allowing them to be ob-
served using real-time standard spectroscopic
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techniques. The nature of the experiments and the
calorimeter/combustor requires many channels of
data to be recorded for extended periods of time.

Experiment Sequence

The calorimeter/combustor can be operated in
two different modes: either as a combustion
calorimeter or just as a combustor. When operated
as a calorimeter, the temperature of the calorimeter
water is most important. The compositions, tem-
peratures, and flow rates of the inlet and outlet
gases are of secondary importance. When used as a
combustor, the primary parameters are the sec-
ondary ones for the calorimeter plus the combustor
temperatures.

Table I lists the sequence of events during the
two modes of operation. After assembly, the
calorimeter is allowed to attain equilibrium heat ex-
change with its surroundings during the initial tem-
perature drift period. The combustion zone is then
purged of air with the oxidizing gas. The sample is
ignited, followed by the burn, then the combustion
zone is purged of product gases. The final drift pe-
riod, instrument calibration, and disassembly com-
plete the experiment. The sequence of events are
similar for combustion experiments differing by the
absence of drift periods before and after the burn
and the final purge. Due to the size of the calorime-
ter, the time needed to reach a final steady state
heat exchange with the surroundings is on the or-
der of 2 hours. As a result, a combustion experi-
ment requires less than half the time as a
calorimetric experiment. The similarities between
the two modes of operation compelled to us to de-
velop generic software.

Table 1. Comparison of the sequence of events
and combustion experiments

for calorimetry

Event Calorimetry Combustion

I) Assemble X X
2) Temperature drift X
3) Purge X X
4) Ignite X X
5) Burn X X
6) Purge X
7) Temperature drift X
8) Calibrate instruments X X
9) Dissassemble X X

Experimental Apparatus
Calorimeter Configuration

The large sample flow calorimeter is dia-
grammed in figure 1. There are three main parts to

the calorimeter: the gas inlet system, the combustor
and calorimeter, and the product gas analyzer sys-
tem. These sections are interfaced to a data acquisi-
tion system which records and displays the
incoming data in real-time.
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Figure 1. Block diagram of the large theple flow calorimeter
and its data system. The parameters recorded from each section
are indicated by a star (e). Unstarred items are specific data
taken under the parameter listed above them.

The volume and composition of the gas entering
the combustor is controlled by the gas inlet system.
The valving in the manifold allows one to control
the oxygen content of the oxidizing gas, monitor its
flow rate, and intercompare the flow meters.

The calorimeter and combustor section is made
up of a stainless steel combustion chamber with gas
preheaters and six tiers of inlet nozzles that direct
the oxidant gas at and around the sample. The sur-
rounding calorimeter contains a metric ton of wa-
ter which absorbs most of the heat of combustion.
This section of the instrument is equipped only
with temperature sensors.

The product gas analyzer has two sections. One
is a gas trap for collecting chlorinated organics
used during the fate of chlorine experiments. The
other, used in every experiment, is composed of a
group of instruments which measure the exhaust
gas characteristics. They consist of infrared detec-
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tors, pressure meters, temperature transducers, and
a dew point meter to mention a few of the instru-
ments involved.

Detectors and Sensors

Table 2 lists the various sensor types used to
monitor the operation of the calorimeter. There are
four classes of detectors and sensors used in our
experiments: temperature, gas flow rate, pressure,
and gas composition. The gas inlet system uses dif-
ferential mass flowmeters [8] and a rotameter [9] to
monitor the air and oxygen flow rates into the
combustor'. These meters generate analog voltages
with full scale readings corresponding to flow rates
of 15 to 500 liters per minute depending on the
meter. A ZrO2 EMF cell [10] monitors the inlet
oxygen content.

Table 2. Sensors and detectors on the calorimetet/combustor
used to measure various physical parameters. The detector
types are followed by their corresponding outputs

Sensor or detector Output

Temperature:
Thermocouples: Type T and Type K microvolts
Quartz crystal thermometers [l)] frequency

Gas flow rate:
Rotameters [9],[13] volts
Differential temperature mass flow meters [8] volts

Pressure:
Absolute manometer [11] volts
Differential manometers [18] volts

Gas composition:
Cooled-mirror humidity analyzer [14] volts
Fixed wavelength infrared spectrometers (16) millivolts
Scanning infrared spectrometer [15] characters
Flame ionization detector hydrocarbon

analyzer [12] millivolts
Zirconium dioxide EMF cell oxygen

analyzers [10],[19] volts

The calorimeter/combustor assembly is equipped
with temperature sensors of Type T and Type K
thermocouples. The Type T couples are used to
monitor temperatures near room temperature such
as the gases entering and leaving the calorimeter
while the Type K couples are used to measure high
temperatures such as those of the combustor walls.
Two quartz crystal thermometers [11] are used to
measure the temperature of the calorimeter and
surrounding jacket water.

' Company products are identified to adequately specify the ap-
partus. In no case does such identification imply recommenda-
tion or endorsement by the National Bureau of Standards, nor
does it imply that the products are necessarily the best available
for the purpose.

The product gas analyzer system involves sev-
eral detector types. The temperature of the gas at
various points is measured by Type T thermocou-
ples. The concentration of hydrocarbons on the
ppm level is monitored by a hydrocarbon analyzer
[12] whose flow rate is measured by a rotameter
[13]. Water vapor is measured by a cooled-mirror
humidity analyzer [14] while the CO2 and CO con-
centrations are determined by dedicated infrared
detectors [15]. Minor constituents, such as HCI and
SO,, are monitored by a scanning infrared detector
[16]. The gas pressure in the analyzer system is
measured at three points by using an absolute
manometer [17] and two differential manometers
[18]. A ZrO2 EMF cell [19] measures the product
gas oxygen content. The chlorinated organic trap
is instrumented with Type T thermocouples for
temperature monitoring.

These detectors have a variety of different out-
puts from microvolt level signal from the thermo-
couples, to five volt signals from the flowmeters, to
frequencies from the quartz crystal thermometers,
to serial data (ASCII characters) from the scanning
infrared spectrometer. In order to accommodate
this wide range of voltages and data types, a ver-
satile data acquisition system is needed.

Data Acquisition System

Until the purchase of our current instrument
control system, we used a microcomputer and a
minicomputer to record data from our experi-
ments. The limited memory sizes (64KB, kilobytes,
of RAM) and processing capabilities of these ma-
chines quickly became obstacles in our effort to ex-
pand the productivity of the data acquisition
system. The problems were further complicated by
the great differences between the operating sys-
tems, programming languages, and utilities of the
two computers. These limitations have been reme-
died by our current system which replaces the two
computers previously used.

A block diagram of the data acquisition system is
shown in figure 2. The system can be divided into
two parts: the acquisition instruments (top and left)
and the computer system (lower right corner). The
choice of the acquisition instruments allows for
flexibility in the handling of the various detectors
and sensors. Signals from most detectors arrive as
analog voltages at two scanners [20] which
provide, at present, a total of 80 channels of input.
Of the 80 pairs of switches making up the two scan-
ners, 20 have less than one microvolt thermal offset
while 50 are rated at less than two microvolts.
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These switches are used for measuring single ther-
mocouple voltages to obtain a temperature resolu-
tion of a tenth of a degree. The remaining 10 pairs
of switches are rated at 30 microvolts and are used
only for high level signals. These switches allow us
to handle a wide dynamic range in analog signal
input.

ACQUISITION INSTRUMENTS

0

00

0

'a

Figure 2. Diagram of the calorimeter/combustor data acquisi-
tion instruments and instrument control system.

The signals from the scanners are sent to one of
four high precision digital voltmeters (DVMs) [21]
to be digitized. The auto ranging feature of the
DVMs allow the recording of signals ranging from
a microvolt to a thousand volts. Two counters [22]
are used to measure the frequency of the quartz
crystal thermometers. The voltmeters, counters,
and scanners used are well suited for the research
laboratory by allowing one to measure ac/dc volts,
resistance, or frequency with wide dynamic range
and high precision.

The scanners and voltmeters are interfaced to
the computer system through an IEEE-488 com-
munications bus. The scanning infrared spectrome-
ter sends data to the computer system through an
RS-232 serial communications port.

The data acquisition system is controlled by an
instrument controller [23], a unit which has also
been used by Gallagher [24] in a system to acquire
data from calorimeters. This computer is designed
to service communication buses and ports in appli-
cations where the data acquisition instruments gen-
erate interrupts. The computer has 136KB of RAM
of which 64KB is available for the operating sys-
tem and user software. A high resolution
monochrome graphic display with a touch sensi-
tive overlay provides a convenient user interface.
Mass storage is provided by two 400KB floppy
disk drives, a lOMB (megabytes) hard disk drive,
and 512KB of RAM used as a disk. Hard copy of
text and graphics is provided by a dot-matrix
printer and a multi-pen color plotter. An IEEE-488
and four serial communications ports allow the
computer to access the instruments.

Software Tools

The Fluke instrument control system is furnished
with several software tools and language features.
Fluke's own disk operating system (FDOS) pro-
vides basic control of the hardware. A self test is
performed upon power up while a diagnostics
package aids in hardware trouble shooting. An edi-
tor, file manager, and other utility programs are
provided for system maintenance.

The computer can be programmed in any of four
languages: FORTRAN, Interpretive BASIC,
Compiled BASIC, and assembly language. A linker
allows limited combinations of the four languages,
such as subroutines written in FORTRAN can be
executed by a program written in Compiled BA-
SIC.

While Interpretive BASIC is useful for testing
new hardware devices and program segments,
Compiled BASIC is used for execution of our
calorimeter program due to its faster execution
speed. Other features, such as the use of true sub-
routines and flow control statements, help in soft-
ware development. Fluke's Compiled BASIC has
program flow control statements (EXTENDED
IF, WHILE, REPEAT, LOOP, LEAVE, and SE-
LECT-CASE) found in Pascal, a language de-
signed to teach programming as a systematic
discipline. Virtual arrays, arrays used as if in main
memory but reside on disk, greatly expand Fluke
BASIC's ability to handle large data sets. The pro-
gram also can be made much larger by making sec-
tions of the code into overlays which are stored on
disk and only loaded when needed. The instrument
control character of the computer is evident in the
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high level language structures provided for servic-
ing interrupts. Interrupts can be called by a serial
port, an IEEE-488 port, time of day and interval
clocks, an error, or a touch sensitive screen. These
and other features make the system very useful in a
real-time interrupt-driven environment.

Data Acquisition Software
Structured Programming

The demands of large sample flow calorimetry,
the idiosyncrasies of the hardware used, and the
flexibility needed in a research laboratory environ-
ment dictate a software package which is not triv-
ial. When developing complex software it is very
important to use a structured approach to program-
ming. This is especially true when working with
languages such as BASIC which have arbitrary
transfer of control statements (i.e., the GOTO
statement).

An unstructured approach may seem expedient,
since there will finally be a program that "gets the
job done," but in the long run this approach is un-
economical due to the time spent in later modifica-
tions of the software. Unstructured programs very
often turn out to be "logical spaghetti" which are
not easy to modify or debug. Computer scientists
such as Dijkstra [25] have discussed in detail struc-
tured programming and its relationship to effective
and reliable programs. Based on the advice of the
experts, we proceed with the structured approach
to programming.

Computer Science Concepts and Definitions

When developing a program, a design methodol-
ogy is needed. A very good and widely understood
method is the top-down approach. This means that
one first comes up with a general description of the
overall program structure, and then starts refining
the various parts until the actual program is gener-
ated. Starting with a mixture of natural language
type descriptors and formal control functions
(WHILE, REPEAT, etc.) refinements are made
until the detailed program statements are pro-
duced.

For the interested reader, more details concern-
ing these topics can be found elsewhere. The fol-
lowing lists some excellent papers dealing with
topics of interest: structured programming and cor-
rectness, hierarchical program structures, structur-
ing of data (which has a significant impact on
the program) [26], top-down programming [27],
managing of program development [28], and con-
current programming [29].

The introduction of the concept of modular pro-
gram code is very important when structuring a
program. Program modules introduce a separation
of concerns: different processes reside in different
modules. This concept can be applied at many lev-
els of abstraction [26,28]. Modular programming is
a great thinking and development aid and promotes
the design of a well structured system.

Processes

A sequential program specifies sequential execu-
tion of a list of statements; its execution is called a
process. A concurrent program specifies two of
more sequential programs that may be executed
concurrently as virtual parallel processes.

A concurrent program can be executed by al-
lowing processes to alternately share one proces-
sor. This approach is referred to as multi-
programming and is supported by an environment
that multiplexes the processes on the processor
[30]. The program operates as if each process is exe-
cuted on its own virtual variable-speed processor.

In order for processes to cooperate, concur-
rently executing processes must communicate and
synchronize with each other. Communication al-
lows execution of one process to influence the exe-
cution of another. Interprocess communication is
based on the use of shared variables (data that can
be referenced by more than one process).

Synchronization is often necessary. Since pro-
cesses are executed with unpredictable speeds, one
process may have to wait for certain actions to be
performed by another process before continuing its
execution. For example, imagine a process that is
acquiring data from an external source. Another
process, that performs an operation such as a calcu-
lation using the data from the former process, will
have to wait for this process to make the data avail-
able before it can do its computation.

Processes can be divided into two categories:
foreground and background. Background pro-
cesses are either active or passive (dormant). When
a process is activated, it is inserted into the back-
ground and executes until it becomes passivated.
More than one background process can be compet-
ing for the computer's resources at a given time.
Foreground processes are essential interrupt-
driven operations. They have priority over the
background processes, whose execution is pre-
empted to make processor time available for the
foreground process. Foreground processes cannot
preempt one another.

In order to multiplex the various processes on
one processor, the following scheduling mecha-
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nisms are provided. The foreground solution is
straight forward; the occurrence of an interrupt is
the scheduling entity and since only one interrupt
can be active at a given time, no other mechanism
has to be provided.

The background processes are scheduled by us-
ing the following continuous loop solution.

REPEAT
IF active(pl) THEN pl(interface list)
IF active(p2) THEN p2(interface list)

IF active(pn) THEN pn(interface list)
UNTIL False

The boolean variables used in the loop, active(pn),
are guards signalling the state of a process, pn, be-
ing either active or passive. When a process is acti-
vated, the subroutine for the process, pn(interface
list), is called. Thus, the processor time is divided
over the active processes. If there are no processes
active, then the computer waits in the loop until an
interrupt occurs at which time one of the processes
may be activated.

A scheduling mechanism should be fair to be ad-
equate, e.g., no process should be delayed forever.
The continuous loop described is bounded fair.
That is, a process waiting to get access to the pro-
cessor is delayed for at most the execution times of
the other active processes. Of course, the continu-
ous loop scheduling mechanism is fair only when
none of the other processes is executing indefi-
nitely. To insure this is so, it is desirable that the
execution time of a process at each call is "short."
The continuous loop scheduling mechanism will
then establish a good sharing of the processor time.
For a more complete discussion of fairness see the
article by Lehman [31].

When dealing with concurrent processes, it is
necessary to insure that no unwanted influence will
take place between two processes. There will be
some critical sections of code that have to be pro-
tected. This is partly provided by the BASIC lan-
guage used since it executes statements on one line
in an atomic matter; interrupts can only be serviced
before or after the statement is executed and never
during. The language also provides ENABLE and
DISABLE interrupt statements that can be used to
protect critical program segments from uninten-
tional changes. These entities give sufficient possi-
bilities for solving the unwanted influence
problems we faced.

The possibility of introducing a deadlock situa-
tion has to be considered. Deadlock is a state of
affairs in which two or more processes are waiting

for events which will never occur. More explicitly,
a processes will continue testing a certain variable
for change but will not see it (this is sometimes
called "spinning"), because the process that is sup-
posed to set this variable is blocked on a variable
that has to be set by the first process. This situation
has to be prevented from occurring by carefully
using the continuous loop scheduling mechanism.

The continuous loop scheduling mechanism pro-
hibits very long iterations or recursions in a process
using the WHILE or REPEAT Compiled BASIC
language commands. In order to iterate, the pro-
cess must save its variables upon completion of any
iteration step and continue on the next opportunity
through the scheduling loop. The mechanism used
for saving the state conditions and for holding the
shared variables used for synchronization is called
the interface list. It consists of variables that are
exchanged between the process and the main pro-
gram and used for the previously mentioned pur-
poses. The interface list is explored in more depth
in the following section.
Program Environment A process needs an envi-
ronment in which it can be executed. This environ-
ment consists of two parts: 1) a dynamic environ-
ment formed by the behavior of the active proces-
ses, 2) a static environment consisting of the data
structures that are used to enable the process to be
aware of the dynamic or changing environment.

The static environment can be viewed as a win-
dow to the state of the system at a particular mo-
ment. This window is provided by the parameter
lists of the processes. By examining the variables of
the parameter lists, the program determines what
the appropriate actions are under the given condi-
tions. Thus, this list is essentially an interface list
that couples the necessary global data to the pro-
cesses.

Using the static environment, it is possible to
synchronize the various processes by letting the in-
terface lists overlap, thus providing variables com-
mon to the interrelated processes. It should be
stated that, while this solution to the synchroniza-
tion problem is sufficient, it is not the best way to
solve the problem. It would be convenient to use
some more sophisticated primitives for scheduling
and synchronizing to give one more flexibility and
a better program structure. The P&V concept, the
cobegin [30], and the fork and join [32] are worth
mentioning in this context. The overlapping inter-
face list solution is considered the best possible,
given the limitations of Compiled BASIC, and pro-
vides a good and conceptually clean program
structure.
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Modules As previously stated, a modular ap-
proach is desired to control the complexity of the
system. It also provides a separation of concerns by
localizing entities to the processes where they are
used. Essentially, a module consists of what we call
a process and the local routines that support the
execution of that process. Since there are also the
global routines that make up the environment of a
process, the overall architecture can be pictured as
in figure 3. The main program, which manages the
scheduling of the processes, is coupled through in-
terface lists to the modules, which contain the com-
puter commands for the tasks discussed next.

Table 3. Tasks performed by our combustion calorimetry data
acquisition system and their execution modes

Task Foreground Background

tostrument control
Initialize devices X X
Select data input channels X
Trigger digitizers X

Data collection
Voltage input X
Frequency input X
Serial input X

Data recording
Store data on mass storage device X
Print data on hard copy device X

Data calculations
Convert data to physical quantities X
Derive quantities from the data X

Video display
Show raw data voltage readings X
Show calculated quantities X
Plot data as a function of time X
Show experiment control menus X

Parameter input
Reference temperature X
Burn starting time X
Scale values for plot routine X

Software initialization X

Error handling X

Figure 3. Diagram of the calorimeter program architecture
showing the creation of modules as subsections of the main pro-
gram.

Experiment Tasks The structure of our data ac-
quisition software is developed from the combus-
tion and calorimetric experiment task list. The tasks
identified as characteristic of a general purpose
combustion experiment are given in table 3. In or-
der to implement the program design, the inter-
rupt-driven tasks are identified as the foreground
processes. They involve the data collection, the
data channel selection, and error handling. The rest
of the tasks are implemented in the background
processes using the continuous loop scheduling
mechanism previously described. The processes to
be performed can easily be written in the form of
modules to complete the program structure.

Program Configuration

An important feature to support the flexibility of
our program is the program database. Since the
data acquisition sequence may be changed very of-
ten, the program has the opportunity to be tailored
to the required data channel selection scheme. The
data acquisition sequence is handled by a timetable
database which can be easily changed or gener-
ated. Therefore, a change in the acquisition se-
quence does not involve recoding but uses the
features of a database generator to create the de-
sired data structure. Also, the displays are of a gen-
eral character, driven by a display database
structure that also can be easily changed. Our pro-
gram for data acquisition is divided into three
parts: the program statements, database, and data-
base manipulator.

Figure 4 shows the overall architecture of the
cooperating processes which make up the data ac-
quisition program. Shown are not only the real
processes as they were derived from the initial task
recognition and analysis, but also how processes
are synchronized (indicated by the dashed lines)
relative to one another. As an example, the process
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displaying the results computed from the syn-
chronous data has to first wait for the data to be
acquired and computations completed. The inter-
face list driven processes are called from the con-
tinuous loop of the main program while the
interrupt driven processes are executed when an
interrupt occurs.

Loop |Main Program]
* Interrupt . .. * oreground 

5 rro -:--.- 50TSO Putse.t t Sywnc. t - Asy-- - -

L-~

Figur I4. Tota architectr of th calo..rimeer progra. Ao.|DTheoq|

I ~ F I I

| : r Task I |7yc Cm= Ayc 

manpoggigam 6g oprae in a Icontin ouslop Interrptsy forc

vaiosprcse,'e ps on erote n

interface lon o '.,

Data Acqui n Data | Data |Dta l
Loggr g lterJ|Dipay'! 

Figure 4. Total architecture of the calorimeter program. The
main program operates in a continuous loop. interrupts force
various processes to be performed, then pass on parameters in
an interface list to enable execution of other processes.

Data Acquisition

The data acquired can be separated into two dif-
ferent types: synchronous and asynchronous data.
The acquisition of synchronous data is controlled
by the clock and composes the majority of the data
recorded during our experiments. The asyn-
chronous data arrives at the computer at a pace
which is not dependent on operation of our data
acquisition program but only upon the instrument
transmitting the data.
Synchronous Data Acquisition The scheme we use
for the acquisition of synchronous data can be
viewed as an active foreground process. This pro-
cess is constantly executing a data logging loop in
which channels are selected for digitizing at a
specific moment. The timing of the data acquisition
scheme is interrupt driven, so that processor time
not used when the acquisition process is idle can be
used by active processes in the background.

Our data logging loop is established by a one
second interrupt interval timer we call the experi-

ment "pulse." Each second, the timer generates an
interrupt which causes program statements in the
pulse driver process to be executed. The pulse
driver uses the timetable database (described later)
to determine which channels should be selected by
a scanner during a particular second and triggers
the data acquisition devices attached to the chan-
nels. When the devices have their data available,
they generate a service request flag and the back-
ground processes are temporarily stopped to allow
the synchronous data acquisition process in the
foreground to be executed.
Asynchronous Data Acquisition The acquisition of
asynchronous data is a foreground process in
which our program does not initiate the data com-
ing in but only records it. This mode of operation is
characteristic of data from our scanning infrared
detector, which sends data as it becomes available
down a serial interface line to the data instrument
controller. Datum from the serial port generates an
interrupt which is then read and stored on disk by
the asynchronous data acquisition process if it is
activated, otherwise the data is lost.
Timetable Database The foundation of our data
acquisition program is formed by the timetable
database. The information stored in this database is
used for determining the behavior of the program.
The timetable gives the program the channel num-
bers to be selected at a specific time and the device
from which to read the data.

The structure of the timetable, shown in figure 5,
is closely related to the experiment. A minute is
divided into 60 seconds, each in which data collec-
tion can take place. The timetable is a two-dimen-
sional array 60 rows long by four columns wide.
Each row corresponds to a second of each minute
in which any combination of four DVMs can be
given a channel to digitize. When a non-negative
entry occurs in the timetable, it indicates that chan-
nel is to be selected by the scanner and the appro-
priate device to be triggered. Eventually, the data
acquisition device responds by sending a service
request flag to the computer, followed by the exe-
cution of the synchronous data acquisition process
which reads and stores the datum on disk.

The introduction of this timetable concept pro-
vides a powerful and flexible tool for tailoring the
program to the needs of a specific experiment, a
general need characteristic of a research labora-
tory. It is not necessary to change the program
code in order to change the behavior of the pro-
gram, the only thing to be done is to generate a
timetable which resembles the structure of the ex-
periment to be performed.
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Figure 5. Two-dimensional timetable used to sequence the data
acquisition channel selection. Each row corresponds to a sec-
ond in a minute and each column corresponds to one of four
DVMs. The non-negative numeric entries are scanner channels
to be digitized while the minus ones are when no data are
recorded.

Data Storage Structures Storage of the acquired
data is provided by the implementation of an ab-
stract data structure, consisting of several virtual
arrays linked together and the subroutines GET
and STORE we developed. This approach en-
hances the language features that were available in
Compiled BASIC by allowing for a single data
storage array that is much larger than is normally
permitted. Since the programmer only has to use
the STORE and GET subroutines to save and re-
trieve data from storage, there is no problem of
finding the data's location in the linked virtual ar-
rays.
Synchronous Data Storage The data manipulated
by the program is divided into two groups: the raw
data coming from the data acquisition instruments
and the calculated data derived from the raw data.
Raw data are saved on a hard disk, thus providing
a non-volatile storage medium. This protects the
data already recorded from being lost in case the
computer system goes down. The calculated data
are stored on an electronic disk to provide fast ac-
cess to the derived quantities.

The synchronous data are stored in the equiva-
lent of a two dimensional array of the form shown
in figure 6a. This array has the structure of the
timetable. Each row of the data array corresponds
to a minute during the experiment. Row I corre-
sponds to the first minute while the total number of
minutes allowed is dictated by the amount of vir-
tual array space allocated and the number of chan-
nels recorded. Column 0 of the array contains the
real-time in minutes at which the minute started
while the remainder of the columns record the
voltages.

a) Data File

Column

1
2
3
4
5

M .

n
U t

m-3
m-2
m-1
m

0 1 -n-i......---. n - 1 n

b) Map File

Channel Number
0 1 2 3 4 79 80 81

I 11-11 51 21-11 I 1131601-11

Data File Column

Figure 6. Diagrams of data file (a) and map file (b) used to store
synchronous data from the channels selected in the timetable.
Each row in the data file corresponds to a minute when data are
recorded. Column 0 entries are the minutes in real-time when
the data were recorded. The rest of the columns contain voltage
measurements corresponding to one of the scanner channels
recorded during the experiment. The map file entries are
column Iullibers of the data file used to store each of the scan-

ner channel numbers. A - I indicates that the scanner channel
was not recorded.
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Due to the data structure, only one value can be
stored for a specific channel for a given minute.
When multiple readings are taken from a single
channel, either the last voltage read or the average
of the set of readings is stored.

Usually, only a subset of the available channels
are recorded during a specific experiment. In order
to optimize storage use, a variable mapping of the
channels to the array columns is provided by using
a map file illustrated in figure 6b. This one dimen-
sion array is 82 (0 to 81) units long. Each entry
corresponds to a physical channel number; the first
80 are for the scanner channels and the last two are
for the frequency counters. When a channel is to be
recorded during an experiment, it is assigned a
column number in the map file. If a channel is not
to be used, it is assigned a - 1. Note that the chan-
nels do not have to be assigned sequentially since
the GET and STORE subroutines use the map file
for determining data placement.

This technique has a distinct advantage of effi-
cient utilization of storage space. One can trade off
the maximum recording time for the number of
channels recorded. For every 64KB of storage
used (up to 256KB can be assigned to an array) two
channels can be recorded for 45 hours while all 80
channels can be saved for 1.7 hours.
Asynchronous Data Storage Storage of the asyn-
chronous data is provided in a fashion similar to
the synchronous data. Since there are no channels
and minutes, the dimensions of the data storage ar-
ray is of a fixed length and width. The asyn-
chronous data in our experiment comes from the
scanning infrared detector and have a known or-
der. The absorbance of the sample at several wave-
lengths is monitored, transmitted as serial datum to
the computer, and printed in order. Each row of
the data storage array is designed to be wide
enough to save each set of absorbance readings
plus one more column for the minute during which
transmission of each data set started. An end of
record (the characters carriage return and line
feed), which separates the data sets, provides a sig-
nal to indicate when the row count of the data stor-
age array should be incremented and the time
information recorded.

Interactive Program Control

Since our program is actually made up of several
processes that can be either active or dormant, a
tool has to be provided to manipulate the state of
these processes. Therefore, we developed operator
interface software which exploits the features of-

fered by a video screen with a touch sensitive over-
lay (TSO). Pushing a touch sensitive pad on the
screen initiates the foreground process, TSO han-
dler, which activates or passivates a process. The
TSO is also used to update various on-line parame-
ters, such as references temperatures and plotting
parameters, entered by the operator.

Miscellaneous Features

A good deal of the processes are mutually exclu-
sive, that is they do not execute concurrently, so
they can be exchanged in and out of memory while
occupying the same region of memory. This is pos-
sible by using the overlay feature provided by the
computer's operating system. The main program,
global routines, and the processes that are fre-
quently executing concurrently always remain in
memory. The rest of the processes are mutually ex-
clusive (such as the displays) and reside in overlays
and may only be present in memory when the pro-
cess is executing.

A crucial feature of our program worth mention-
ing is its ability to recover from errors that may
occur. Even when the computer system totally
goes down, no data which has already been
recorded is lost as long as the computer's real-time
clock is not corrupted. This ability to recover is
due to our storing the data on the hard disk imme-
diately after reading them from the data acquisition
instruments. When the computer is restarted, our
program just continues the data acquisition where
it would have been if the data recording had not
been terminated. The resulting data set will have a
blank spot in it, however, all of the data will be
properly timed relative to the first part.

The ability of our program to recover from er-
rors and continue collecting data is made possible
by deriving the data acquisition timing from a real-
time clock. The instrument controller's clock is
read at the beginning of each system pulse. Sub-
tracting the starting time, which was stored on the
hard disk, from the pulse time gives the experiment
time. This is converted into minutes and seconds.
The minute is used to point to the proper syn-
chronous data storage row, while the second tells
which entry in the timetable should be used for
channel selection.

Sample Results

No description of an instrument system would be
complete without the displaying of sample results.
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The initial record of an experiment is the raw data
file stored on the hard disk. While the calculated
data provide a more meaningful picture of what
went on during a burn, they can be regenerated
from the raw voltages recorded. Another valuable
record is the list of printed data values logged dur-
ing the burn. This record allows one to readily
look up values for various times of the experiment
and provides an added level of backup in case the
disk files are lost.

The left half of one page from an experiment is
shown in figure 7. The overall form of the page is

Current time: 11:21:23
current minute: 55

2
3
4
5
6
7
8

10
11 Var Fl 0.017175
12 Xh2o 0.545390
13 CO(IR) 0.074799
14 C02(IR) 0.222540
15 CO To -0.159420
16 002 To 0.000289
17 EntryTo 0.000612
18 C2 Flow -0.008854
19 Miran To 0.000390
20
21
22
23
24
25
25
27
28
29
30
31 Var Fl 0.017175
32 Xh2o 0.543780
33 C0(IR) 0.079258
34 C02(IR) 0.256730
35 CO To -0.120635
36 C02 To 0.000288
37 Entry To 0.000614
38 N2 Flow -0.008823
39 Miren To 0.000392
40
41
4.2
43
44
45
46
47
48
49
50
51 Var Fl 0.017200
52 Xh2o 0.543660
53 C0(12) 08088448
54 C02(1R) 0.257730
55 CO To .0.117322
56 C02 Te 0.000289
57 Entry To 0.000611
58 62 F ow -0.008899
59 M-itan To 0.000391
60

Slot 54
Reference

EUsnee
Co

S02

0.0026
0. 0407
0. 0135
-0.0002
0. 2 357
0. 9918
0.0120

similar to the channel selection pattern used. One
page is produced for each minute of an experiment.
The time of day and the experiment time, in min-
utes, are printed at the top of each page. The first
column contains the second in which the data was
recorded, while the next three columns contain a
label, raw voltage, and calculated value for data
from DVMI. This pattern is repeated for the next
three columns for DVM2 and in two more sets of
columns for DVM3 and DVM4 (not shown).

The columns for DVM1 show a regular pattern
of nine channels digitized three times per minute.

Shi Top
O.y In
Ox)' Out

0.017
0.930
0.038

17. 384
-51.000
29 .098
36 .909
-0.009
31.554

0.017
0.929
0.041

20. 665
-51.000
29 8074
36 .95 7
-0.009
31.603

.017
0 .929
0.047
20. 763

-51 .000
29.098
36. 885
-0.009
31. 579

Out Cas

Sazp oas

Ox rot
Ox #1
ox #3

Low Top
Up Con
Ox Top

Up Mid
Mid Fla
Up Top
Exh Gas
A, Gas
sot Fla
LOW Mid
Up Bot

Low Bot

Ox. OutSh Top
Oxy In
Out Gas

Ox Sot
Ox #1
Ox #3

Low Top
up Con
Ox Top
Mid Fia

Up Top
E.. Gas
Ar Gas
sot Fla
Low Mid
Up Bot

Low Bot

0.000001 22.000
0.215740 21.574
-1.266290 -12.663

0.006151
0.008641
0.019475
0.020065
0.014808
0. 012748
0.010186
0.005134
0.009933
0.008630
O.o09534
0.014004
0.00540 7
0. 013833
0.023283
0.009894
0. 012844
0. 008671-1.2i7500
0.000002
0.215130
0s 006191

0. 019547
0 .020113
0.014836

0.012786
0.010227
0.005175
0.008719
0.008698
0.009998
0. 00 9583
0. 014026
0.005427
0 .013992
0.023290
0.009956
0. 012959

256.311
234.413
493 .257
507 .103
383.173
334. 074
2 72 .302
146. 889

266. 139
234 141
256. 387
364 056
153. 670
359 .983
582.592
265.187
336. 371
235 .154
-12 .675
22 2.000
21. 513

157.082

494. 9 24
508 .205
383. 814

334. 960
273.276
147.882
236 .316
235,.797
267,.699
257.562
364. 556
154.143
363. 747
582 .733
266. 67 5

339. 098

Figure 7. Sample print out from a typical experiment. Data from two DVMs are shown, while the data from the

other two have been deleted for simplicity. Each numbered row corresponds to one second during a minute of
synchronous data recording. The last eight rows show the asynchronous data storage row (Slot #) and the
absorbance measurements from our scanning infrared detector.
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The values for temperatures are individual mea-
surements while the flow rates are averaged ones.
The columns of data for DVM2 show a repeat of
some data but not with the regularity of DVM1.
Blank entries in the columns correspond to seconds
when data was not recorded.

The bottom of the page has a set of data received
from the scanning infrared detector. The data set
number (Slot #) is followed by the absorbance
readings at seven selected wavelengths. This set of
numbers is printed at the next available opportunity
after all seven readings are recorded. The timing is
usually such that the numbers printed were
recorded during the previous minute.

The video display contains the information
shown in the printed output but organized in logi-
cal groupings of channels. Besides the label for a
particular channel, the raw voltage or computed
value is displayed along with the change since the
last minute. Graphs of a selected channel as a func-
tion of time can also be plotted on the screen to see
long term trends in the data. The video display also
provides menus for the TSO which allow the oper-
ator to activate and deactivate various processes.

The use of the data to obtain calorimetric infor-
mation has been discussed in detail [3] and will not
be presented here. However, the use of the data for
combustion experiments has not been presented
previously and is given in the following discussion.

Figures 8 to 10 show graphs of three channels of
data from a typical experiment where a sample of
municipal solid waste with 5% added lime was
burned. From these data we derive other physical
quantities. The CO2 (fig. 8) and CO (fig. 9) data are
combined with flow rate data to give molar flow
rates. The CO2 molar flow rate curve is integrated
to give the total amount of carbon in the original
sample or used as is to indicate the rate of combus-
tion. The CO molar flow rate curve gives a mea-
sure of the completeness of the combustion
reaction.

The effects of changing parameters such as the
gas flow rates or its oxygen content can be ob-
served as changes in the slopes of these curves. The
sample was ignited at minute 61 which is marked
by a steep rise in the CO2 concentration. At minute
71 the oxygen concentration was reduced to slow
the burn down, but this was followed by an unac-
ceptably high concentration of CO at minute 82.
While watching the computer readouts, the oxygen
concentration and gas flow rates were adjusted to
lower the CO to an acceptable level of 0.1 mol%.
The large CO peak at minute 156 is a characteristic
peak that usually occurs when the sample combus-

tion nears completion. The ability to see the data in
real time allows us to control the combustor to
study the effects of different operating conditions.

Two other peaks can be seen at minutes 262 and
273 minutes into the experiment. These correspond
to calibration data for the CO and CO, detectors,
respectively.

I,,.

Time m oin

Figure S. Plot of mole percent CO, data as a function of exper-
ment time. The sample burned during the combustion experi-
ment was municipal solid waste with 5% added lime. The
sample was ignited at minute 61 and burned until minute 190.
The peak at minute 275 was caused by a 20 mol% carbon diox-
ide reference gas used to calibrate the detector.
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Figure 9. Plot of mole percent CO data as a function of experi-
ment time. The sample burned during the combustion experi-
ment was municipal solid waste with 5% added lime. The peak
at minute 260 was caused by a 0.3 mot% carbon monoxide refer-
ence gas used to calibrate the detector.
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Figure 10 shows the combustor wall temperature
at a point near the burning sample. The wall
reached nearly 500 'C for a good part of the burn.
This is not quite the 600 'C we desire during a
combustion experiment but well below the 900 'C
critical temperature where the combustor can be
damaged. The break in the curve at 202 minutes is
due to the cooling gas circulated around the com-
bustor after the burn. The temperature drops slow-
ly to a level where the combustor can be
disassembled.
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Figure 10. Plot of the combustor wall temperature, approxi-
mately 40 cm away from the sample, as a function of experiment
time. The sample burned during the combustion experiment was
municipal solid waste with 5% added lime.
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Glossary

ASCII: Derived from the American Standard
Code for Information Interchange. A seven- or
eight-bit code used to represent alphanumeric char-
acters.

BASIC: Derived from Beginners All-purpose
Symbolic Instruction Code. A high-level program-
ming language with a small repertoire of com-
mands and a simple syntax. Fluke BASIC has an
expanded instruction set for instrument control and
other enhanced features.

Driver: a small program that controls external
devices or interrupts.

Summary and Conclusions

Our data acquisition system has proven itself
through real experiments to live up to its design.
The hardware provides a versatile foundation for
data acquisition. The autoranging capabilities of
the DVM's compensate for differences in signal
level while the scanners provide plenty of room for
expansion. The modular form of the data acquisi-
tion software has enabled us to modify the program
with a minimum amount of trouble and debugging.
The data tables are easy to modify and let us
change the recording and displaying of data to suit
the needs of our experiments. The tabular form of
the recorded data makes it easy to manipulate and
export to other computers for further analysis.

Flag: any of various types of indications used for
identification that signifies the occurrence of some
condition.

Foreground: a program or process of high priority
that utilizes machine facilities as needed with less
critical, background, work performed in the other-
wise unused time.

FORTRAN: Derived from formula translator. A
high-level language used mostly for scientific or al-
gebraic applications.

Interrupt: to stop a running program in such a way
that it can be resumed at a later time, and in the
meanwhile permit some other action to be per-
formed.
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Modular programming: the construction of a com-
puter program from a collection of modules, each
of workable size, whose interactions are rigidly re-
stricted.

Module: a distinct and identifiable unit of a com-
puter program dedicated to a particular process.

Multiprogramming: the interleaved execution of
two or more programs by a computer, in which the
central processing unit executes a few instructions
from each program in succession.

Overlay: a technique for bringing routines into
high-speed storage from some other means of stor-
age during processing, so that several routines will
occupy the same storage location at different times;
an overlay is used when the total storage require-
ments for instructions exceed the available main
storage.

Pascal: a high-level language which emphasizes
structured programming.

Process: a set of instructions, data, and control in-
formation capable of being executed by the central
processing unit of a computer in order to accom-
plish some purpose; in a multiprogramming envi-
ronment, processes compete with one another for
control of the central processing unit.

RAM: random-access memory.

Scheduling mechanism: a systematic method of
determining the order in which processes will be
performed by a computer system.

Structured programming: the use of program de-
sign and documentation techniques that impose a
uniform structure on all computer programs. In an-
other sense, it is an approach to programming in
which only three constructs are employed for gov-
erning flow of control through the program. These
three constructs allow for sequential, conditional,
and iterative control flow.

True subroutine: a section of computer software
which may be developed separately from the
calling program, have parameters exchanged be-
tween it and the calling routine, and have local
variables not accessible from the other program
segments.

Virtual memory: a combination of primary and
mass storage memories that can be treated as a sin-
gle memory by programmers because the computer
itself translates a program or virtual address to the
actual hardware address.
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