In This Issue:

EDITORIAL Comments from the Chief Editor

Departments

News Briefs

DEVELOPMENTS		63'
Exporters Urged to Follow Proposed EC Standards		
Using Elevators for the Handicapped During a Fire		
New Diagram for Predicting Weld Phases		
Angle Accuracy Satellite Time Transfer		
Expanded Coarial Noise Calibration Available		
U.S., Canada Laboratory Accreditation to Facilitate Interna	ational Trade	
Five NIST Projects Win 1988 R&D 100 Awards		
U.SJapan Test Standards		
Silicon Photodetector Self-Calibration Accuracy Verified in	International Comparison	
Wiggler for the NIST Free-Electron Laser		
STANDARD REFERENCE MATERIAL		641
Standard Reference Material (SRM) 1879—Respirable Crist	obalite	
Articles		
Kinetic Studies Using a Highly Sensitive	Walter Braun, Philippe Dagaut,	643
Microphone Detector	and Barry C. Cadoff	
Solvent-Free Injection in Supercritical	Thomas J. Bruno	655
Fluid Chromatography Using Sintered		
Glass Deposition		
Paper from the Accuracy in Trace Analysis Symposium Proceedings not inc	luded in J. Res. Natl. Bur. Stand., Vol. 93, No. 3	3 (1988)
Enzyme-Enhanced Electrochemical	Mirtha Umaña, Jess Waller,	659
Immunoassay for Phenytoin	Mansukh Wani, Carol Whisnant, and Edgar Cook	
Paper from the Accuracy in Trace Analysis Symposium Proceedings not inc	luded in J. Res. Natl. Bur. Stand., Vol. 93, No. 3	(1988)
Liposome-Based Flow Injection Immunoassay	Laurie Locascio-Brown,	663
System	Anne L. Plant, and Richard A. Durst	
Conferences/Events		
Workshop on Microstructure and Macromolecular Research	C. J. Glinka, J. A. Gotaas	667
with Cold Neutrons	and C. O'Connor	007
National Bureau of Standards, Gaithersburg, MD, April 21–22, 1988		
U.SJapan Panel on Wind and Seismic Effects	Noel J. Raufaste	671
National Bureau of Standards, Gaithersburg, MD, May 17–20, 1988		

SUBJECT AND AUTHOR INDEX TO VOLUME 93

635

The National Bureau of Standards Becomes The National Institute of Standards and Technology

On August 23, 1988 President Reagan signed the Omnibus Trade and Competitiveness Act and changed the name of the National Bureau of Standards to the National Institute of Standards and Technology (NIST). Under a section of this new law known as the "Technology Competitiveness Act," several new assignments designed to boost U.S. industry in the world marketplace are added to the traditional functions of NIST.

NIST will continue to serve as the Nation's central laboratory for developing and disseminating measurement standards and scientific data for science, engineering, manufacturing, commerce, industry, and education. NIST will continue to provide a variety of services to the scientific and technical communities, including calibration services, standard reference data, and standard reference materials. These activities and the continuing research programs will continue to form the technical core of NIST.

New activities NIST has been assigned to develop are:

1. Create a series of Regional Centers for the Transfer of Manufacturing Technology that will be affiliated with non-profit institutions and organizations;

2. Develop a program to provide assistance and make Federal technology available to State and local technology programs and technology extension services;

3. Establish an Advanced Technology Program to encourage the commercialization of new high-technology products; and

4. Support a Department of Commerce Clearinghouse for State and Local Initiatives on Productivity, Technology, and Innovation to provide technical and analytical help to State and local officials making decisions on technology policy.

In keeping with the new name of our laboratories, we have changed the name of this journal to:

Journal of Research of the National Institute of Standards and Technology

Under its new name, this journal will continue its policy of presenting technical articles and news items of particular interest to scientists, technicians, and engineers interested in measurement methodology and analyses.

Karl G. Kessler Chief Editor

News Briefs

Developments

EXPORTERS URGED TO FOLLOW PROPOSED EC STANDARDS

The Commission of the European Communities (EC) is acting swiftly to turn the 12 member countries into a single integrated market of 320 million people by the end of 1992. EC legislation dealing with standardization is likely to have a profound effect on U.S. exports, predicts an NIST report. The report recommends U.S. business interests should establish communications with European subsidiaries, distributors, or their American industry associations to obtain up-to-date information on the development of European directives and standards. U.S. companies also are urged to seek and take opportunities to comment on, and attempt to influence, proposed European directives and standards. The NIST report contains a list of EC and U.S. government contacts for information on various aspects of EC activities related to standardization.

To obtain a copy of A Summary of the New European Community Approach to Standards Development (NBSIR 88-3793-1), send a self-addressed mailing label to: Patrick W. Cooke, Office of Standards Code and Information, A629 Administration Building, National Institute of Standards and Technology, Gaithersburg, MD 20899.

USING ELEVATORS FOR THE HANDI-CAPPED DURING A FIRE

Evacuating the handicapped during a fire has long been a concern to the fire protection community. Elevators would be an ideal solution, except for a number of fire-related problems including the "piston effect," which potentially can pull smoke and toxic gases into an elevator lobby as the elevator car moves upward. In a joint project, researchers at NIST and the National Research Council of Canada (NRCC) are developing smoke control technology for elevators and, most recently, analyzed the problem of piston effect. Several concepts for smoke control currently are being tested at NRCC's full-scale research tower. As part of the project, NIST and NRCC jointly will develop practical engineering design information for elevator smoke control.

NEW DIAGRAM FOR PREDICTING WELD PHASES

NIST researchers have produced a new, more accurate diagram for predicting the ferrite content of stainless steel welds. Knowledge of the ferrite content is important because, when held to within a certain small range, it helps to control the properties of the weld. Too low a ferrite content can cause cracking and too high a content can increase the rate of corrosion. The new diagram, developed in cooperation with the Colorado School of Mines and the Welding Research Council, was produced from a database containing more than 950 alloy composites from worldwide sources. It is more accurate than the two most commonly used diagrams, termed DeLong and Schaeffer.

For more information, contact Thomas A. Siewert, Fracture and Deformation Division, National Institute of Standards and Technology, Boulder, CO 80303.

HIGH ACCURACY SATELLITE TIME TRANSFER

Satellites have been used for over 25 years for dissemination of highly accurate time information. The coverage, however, has been restricted to certain areas of the Earth's surface. Now, NIST scientists can utilize several commercial communication satellites to disseminate a time signal whose eventual coverage will be worldwide. It will be an extremely accurate signal—to within 1 nanosecond (1 billionth of a second). The experimental service was initiated recently using domestic U.S. satellites and will be extended to an Intelsat satellite; users require both a receiver and a transmitter. For more information, contact Dave Howe, Time and Frequency Division, National Institute of Standards and Technology, Boulder, CO 80303.

GOSIP APPROVED AS FEDERAL STANDARD

The Government Open Systems Interconnection Profile known as GOSIP was approved recently by the Secretary of Commerce as a Federal Information Processing Standard. (FIPS are developed by NIST for use by the federal government.) GOSIP defines a common set of data communication protocols which enable computer systems developed by different vendors to communicate and enable the users of different applications on these systems to exchange information. GOSIP is based on agreements reached by vendors and users of computer networks in workshops organized by the NIST National Computer and Telecommunications Laboratory.

Order FIPS PUB 146, Government Open Systems Interconnection Profile (GOSIP) from the National Technical Information Service, Springfield, VA 22161.

EXPANDED COAXIAL NOISE CALIBRATION AVAILABLE

NIST now can calibrate noise sources in the 8 to 12 GHz range for government and industry. The calibration is achieved using an automated radiometer and a cryogenic coaxial noise standard. With the addition, the system now routinely calibrates noise sources from 2 to 12 GHz at all frequencies and at all noise power spectral densities below 18,000 K. Measurement uncertainties range typically from 1 to 3 percent. In principle, there is no limitation on the type of coaxial connector. Current connectors are precision N, APC7, and GR900 as well as various rectangular waveguide flange connectors. The service is valuable to users since noise is the ultimate limiting factor in electromagnetic system performance. Manufacturers and users of highprecision electronic and communications equipment desire low-noise products so the products themselves don't distort the signal being generated, amplified, and received.

For more information contact George J. Counas, Division 723.02, National Institute of Standards and Technology, Boulder, CO 80303, 303/497-3664.

U.S., CANADA LABORATORY ACCREDITA-TION TO FACILITATE INTERNATIONAL TRADE

The U.S. National Institute of Standards and Technology (NIST) and the Standards Council of Canada (SCC) signed an agreement that will help reduce trade barriers between the world's two largest trading partners.

The agreement—signed by Ernest Ambler, NIST director, and John R. Woods, SCC executive director—provides mutual recognition of testing laboratories which are accredited by the NIST National Voluntary Laboratory Accreditation Program (NVLAP) and SCC National Accreditation Program for Testing Organizations (NAPTO).

The agreement is in accord with provisions of the assigned U.S.-Canada free trade agreement that is to go into effect January 1, 1989 pending approval by legislators in both countries. Under the free trade agreement, each party shall provide recognition of the accreditation systems for testing facilities, inspection agencies, and certification bodies of the other party.

The laboratory accreditation systems administered by NIST and SCC are voluntary; participation is not mandated by law in either country. NIST and SCC base their decision to accredit a testing laboratory on similar but not identical criteria. Officials responsible for administering each system have participated in assessment visits to testing laboratories accredited under the other national program.

The NVLAP program, established in 1976 and managed by the NIST Office of the Associate Director for Industry and Standards, is a voluntary "umbrella" system designed to assess the competence of laboratories to perform specific tests. "Competence" is determined by evaluating applicant laboratories to assure that they have the equipment, staff, and procedures necessary to perform prescribed tests in accordance with nationally or internationally accepted standards or test methods.

Currently, approximately 200 laboratories are accredited in programs administered by NIST for thermal insulation, carpet, solid-fuel room heaters, acoustical testing services, personnel radiation dosimeters, commercial products (paint, papers, and plastics), building seals and sealants, construction materials testing services, electromagnetic compatibility and telecommunications equipment, computer network protocols, and asbestos.

The Canadian NAPTO program was established in 1980. Formal recognition of competence in managing and performing specific tests has been granted to 49 private sector and government laboratories in scientific, engineering and technological fields including: biological, chemical, electrical, mechanical, nondestructive, and physical and calibration testing. Testing organizations accredited under the SCC program form part of the National Standards System of Canada.

The agreement with the Standards Council of Canada is the fourth pact between NIST and a foreign laboratory accreditation system. NIST also has agreements with Australia's National Association of Testing Authorities, the National Testing Laboratory Scheme of the United Kingdom's National Physical Laboratory, and Testing Laboratory Registration Council of New Zealand.

For further information on NAPTO, or the NIST NVLAP program, contact: Manager, Laboratory Accreditation, A527 Administration Building, National Institute of Standards and Technology, Gaithersburg, MD 20899, 301/975-4016.

FIVE NIST PROJECTS WIN 1988 R&D 100 AWARDS

Five research projects in instrumentation and measurement technology from the Commerce Department's National Institute of Standards and Technology (NIST) received R&D 100 Awards.

R&D 100 Awards are bestowed annually by *Re-search & Development* magazine to highlight 100 significant technical products of the preceding year. NIST has now received 62 R&D 100 Awards since first entering the competition in 1973.

The 1988 award-winning projects include:

Optical Waveguide Dosimeter

William L. McLaughlin of the NIST Center for Radiation Research and Branislav Radak, a guest scientist from the Boris Kidric Institute in Yugoslavia, developed an extraordinarily versatile ionizing radiation dosimeter around the concept of radiation-sensitive dyes.

Colorless compounds that take on color when irradiated, "radiochromic dyes" have been in use for some years as one-shot, disposable dosimeters for industrial radiation processing, an application that McLaughlin pioneered.

In the new invention, the dyes are used in the core of a long fiber-optic tube that can be coiled into a small space, about 2 centimeters square. A light source at one end and a detector at the other read changes in the dye.

Because the light path can be quite long even in a small detector, the instrument can be made ex-

tremely sensitive. The optical waveguide dosimeters can function over a range from about 0.005 to 10,000 gray.

They will register either pulsed or steady radiation fields, and can measure accurately both dose and dose rates of x and gamma rays, neutrons, and charged-particle beams.

By selecting from a variety of available radiochromic dyes and plastics, researchers can tailor the dosimeters to have special properties, such as matching the radiation interaction characteristics of tissue for medical applications and radiation protection.

Cone Calorimeter

Vytenis Babrauskas and William Twilley of the NIST Center for Fire Research developed an apparatus which provides the data critical to predicting the fire hazard of a product from a small sample of material.

The instrument, known as the NIST Cone Calorimeter, measures the heat released and the rate at which it is released, the time it takes for a material to ignite, the amount of smoke produced, and the amount of several known toxic gases. Equipment previously available could not measure as many fire properties.

Both the ASTM and the International Organization for Standardization are proposing voluntary fire hazard test methods based on the NIST Cone Calorimeter. Commercial units now are sold by two U.S. manufacturers and a rapidly growing number are in use worldwide.

System for Absolute Determination of Aqueous Electrolyte Conductivity

Three NIST researchers constructed a device that determines the "absolute" electrical conductivity of aqueous (water-based) solutions and can be used as a primary standard against which other instruments may be compared.

The unique feature of the device is its measurement cell. Other available systems rely on cells of fixed geometry and work by comparing a solution of unknown conductivity to a standard calibration solution of known conductivity. These instruments typically are accurate to 0.1 percent.

The NIST system uses a variable cell size and does not have to be calibrated. Because its results are traceable to the physical standards of mass, length, and electrical resistance, the new device provides an "absolute" conductivity determination with an accuracy of 0.02 percent. It also features extremely accurate temperature control, which is important because conductivity measurements are dependent on temperature.

The device has many potential applications. Standards laboratories desiring an absolute measuring system could adapt it. Other laboratories could use the device to calibrate existing conductivity measuring instruments. Oceanographers could employ it in measuring seawater salinity, and environmental scientists could determine dissolved solids.

With minor modifications, the device also could be used as a reliable indicator of water purity. Because contaminants change the electrical conductance of water, a measurement of a sample's conductance is a test of its purity. Such an instrument would be valuable in the pharmaceutical, electrical power, and electronics industries, which rely on pure water for their products.

The NIST system for absolute determination of aqueous electrolyte conductivity was developed by Drs. Yung Chi Wu, Kenneth W. Pratt, and William F. Koch, all of the NIST Center for Analytical Chemistry.

Trace Measurement System

Computers known as multiprocessors use more than one computing element, or "processor," to simultaneously solve many pieces of a problem. While multiprocessors can speed the processing of data, they also have unique problems including unbalanced processing loads, uneven flow of information, and an increased likelihood of communications bottlenecks.

Three researchers in the NIST National Computer and Telecommunications Laboratory developed tools to help measure the performance of multiprocessors. The ability to measure performance helps users evaluate and compare machines and manufacturers improve future designs.

Through a single circuit board added to the computer system, the Trace Measurement System (TRAMS), can measure key characteristics of a program such as the time it takes to execute a piece of code and how frequently a piece of code is executed.

Unlike other measurement systems now on the market, TRAMS is significantly simpler and, more importantly, does not disturb the operation being measured. Disturbances, or "perturbations," can alter the performance of a multiprocessor, making the results of the measurement meaningless.

NIST researchers Robert J. Carpenter, John W. Roberts, and Alan Mink developed the measurement system with partial sponsorship from the Defense Advanced Research Projects Agency.

Image-Preserving Optical Delay

Edward F. Kelley of the NIST Center for Electronics and Electrical Engineering generated a pioneering photographic "time machine" which, when used with a high-speed camera, permits photographing events which occurred before the camera's shutter is opened.

The system, called an image-preserving optical delay, differs from conventional photography which records an event only when the shutter is open.

This new device, an arrangement of optical components including mirrors and a crystal shutter, allows researchers to take detailed, high-speed photographs of random—that is, non triggered events.

It is now used for processes which last from 100 nañoseconds, or billionths of a second, to 10 microseconds, or millionths of a second, to study materials utilized by the electric power industry.

This system stores optical images of a random event long enough so the shutter of a high-speed camera can be opened and photographs taken of the processes leading to the random event. Kelley has filed a patent application on the system.

Functionally, the optical delay is equivalent to forcing the image to travel an additional 120 meters before it gets to the camera. Using a series of concave and planar mirrors, this path length is folded into about 4 meters.

The system is rugged enough to be used in a variety of settings. Situated on a table-top, the device contains optical components which require alignment. However, normal vibration, air currents, and airborne dust have minimal effect on the system's operation. Also, the system does not require a clean room, an optical bench, or any other special features.

U.S.-JAPAN TEST STANDARDS

NIST, in cooperation with Japanese organizations and the American Society for Testing and Materials (ASTM), is developing standard test methods for measuring the tensile and fracture toughness properties of steels at liquid helium temperature (4 K). Special considerations apply to mechanical tests near absolute zero because of severe adiabatic heating during plastic deformation. The U.S. Department of Energy and the Japanese Atomic Energy Research Institute are supporting this work to develop design standards for fusion energy applications. The tensile and fracture standards are now in their sixth drafts and have been submitted to ASTM for formal approval.

SILICON PHOTODETECTOR SELF-CALIBRA-TION ACCURACY VERIFIED IN INTERNA-TIONAL COMPARISON

Silicon self-calibration, an accurate and convenient approach to photodetector spectral responsivity calibration founded on the fundamentals of solid state physics, has been successfully implemented at NIST and six other national laboratories as their absolute radiometric base. This technique was developed in 1980 by the Radiometric Physics Division.

The first intercomparison of spectral responsivity scales (or equivalently, monochromatic radiant power scales) that has occurred since a number of national laboratories adopted the new technique has been published recently in the report of the 11th session of the CIPM Consultative Committee for Photometry and Radiometry (CCPR). The comparison, which was run by NIST for the CCPR, included 11 national laboratories. Six used the silicon self-calibration method, four used electrical substitution radiometers, and one used both approaches to realize their scales of absolute spectral responsivity. The results showed that eight of the laboratories agree to within ± 0.15 percent in measuring the responsivity of two different silicon photodiodes at the 633 nm HeNe laser wavelength. This level of agreement is a factor of four better than the ± 0.6 percent achieved by six of the eight national laboratories in an earlier (1967) comparison.

WIGGLER FOR THE NIST FREE-ELECTRON LASER

The Radiation Source and Instrumentation Division recently signed a contract for installation of a wiggler. The wiggler is under construction and scheduled to be installed at NIST in October 1989. It is one of the key parts of the free-electron laser (FEL) facility being constructed as a joint project with the Naval Research Laboratory. The wiggler is a precise array of magnets with alternating fields that cause an electron beam to follow a sine trajectory and to emit intense, coherent radiation. This wiggler will be 3.64 m long and will have 130 magnetic periods. The electron beam will be provided by the racetrack microtron (RTM), which is nearing completion.

The NIST FEL facility will be the most versatile in the country, providing a very large range of wavelengths (200 nm to 10 μ m) over which it will be continuously tunable. The FEL output will consist of a continuous train of 3-ps wide pulses at 74.375 MHz with an average power of 10 to 100 W. The facility will be operated for research in physics, chemistry, biophysics, and biomedicine.

Standard Reference Material

STANDARD REFERENCE MATERIAL (SRM) 1879—RESPIRABLE CRISTOBALITE

The various crystalline phases of silicon dioxide cause different physiological effects in the respiratory system and it is necessary to identify the crystalline phases in the industrial atmosphere to assess and monitor health risks. Standards of pure crystalline phases are needed to determine their presence by x-ray diffraction techniques.

The Office of Standard Reference Materials announces the availability of a respirable cristobalite powder certified for use as a quantitative x-ray powder diffraction standard. The powder is 98 percent crystalline cristobalite with no other detectable crystalline phases. The mass median equivalent spherical diameter of the powder is 3.3 microns, with 80 percent of the mass of the particles in the range of 2 to 5 microns.

This SRM and SRM 1878, Respirable Alpha Quartz, provide two respirable powders of different crystalline phases of silicon oxide. The program for the certification of these SRMs was begun in cooperation with the National Institute of Occupational Safety and Health.

Certification of this SRM was performed in the Ceramics Division of the Institute for Materials Science and Engineering.

Kinetic Studies Using a Highly Sensitive Microphone Detector

Volume 93	Number 6	November–December 1988
Walter Braun, Philippe Dagaut, and Barry C. Cadoff National Institute of Standards and Technology Gaithersburg, MD 20899	A very sensitive microphone detector is used to study fast kinetic rate processes in the gas phase resulting in the genera- tion of heat. The rate of heat evolution in turn produces a short duration pres- sure pulse which drives the microphone. The frequency response of the micro- phone is somewhat slower than required to record these pulses as they actually appear at the detector. The theory of the method used for the data reduction is presented. It is based upon the Green's Function method which ex- presses the time dependent microphone signal, X , (t) , as the convolution of the pressure pulse function, $f(t)$, by the mi- crophone's impulse response function,	G(t). A Fourier analysis of $X(t)$ and the two relevant functions, $f(t)$ and $G(t)$, at a single frequency, allows direct deter- mination of the rate constant for the ki- netic process under study. The method is demonstrated by applying it to the study of vibrational energy relaxation of pentafluorobenzene in argon buffer gas and gives results in agreement with other experimental methods. Key words: CO ₂ laser; energy transfer; gas phase; kinetics; measurement; opto- acoustic; waveform analysis. Accepted: June 9, 1988

1. Introduction

Several direct methods have been used to study energy transfer (relaxation) processes from vibrationally excited molecules in the gas phase. These methods can be distinguished by the way the vibrationally excited molecules are produced and how they are detected. Production methods include i), electronic excitation via pulsed excimer lasers, followed by rapid internal conversion into vibrational energy or ii), direct vibrational excitation using a pulsed CO₂ laser. Detection methods involve realtime measurement of the relaxation process through the use of a number of different energy detection probes: ultraviolet absorption, infrared absorption, infrared fluorescence, pressure wave detection (optoacoustics or interferometry), and broadening of Hg 254 nm absorption. Most of these energy detection methods are well suited to detecting relaxation

in pulsed CO₂ laser experiments when the fluence of the laser is greater than about 0.25 J/cm^2 . In experiments using excimer laser excitation the fluence is usually considerably attenuated in order to minimize photolysis by multi-photon absorption processes, resulting in a poorer signal-to-noise ratio.

Of all the detection methods employed, optoacoustic techniques (using microphones or piezoelectric crystals) are probably the most sensitive. However, microphones used in such experiments generally have a limited frequency response thereby confining measurements to systems exhibiting relatively slow energy relaxation [1]. The low pressure limit for performing such experiments is usually about 1 torr. Below this pressure the onset of dispersion (energy loss) due to diffusion and thermal conductivity results in a decreased signal. The limitation of being able to measure only slow relaxation processes has recently been circumvented by Beck, Ringwelski, and Gordon (BRG) [2]. These workers employ a small surface area piezoelectric crystal detector with a high-frequency response. Their method involves the direct monitoring of individual pressure pulses arriving at the detector as a result of the pulsed CO₂ laser excitation of a gas. The pressure pulse is characterized by both a condensation (compression) and a rarefaction portion and their relative magnitudes is determined by the rate of energy relaxation, the size of the irradiated zone, the radiation distribution within this zone, and the speed of sound in the gas medium. The important advantage of faster response time has, however, incurred the disadvantage of lower detection sensitivity.

In this paper we explore the application of a very sensitive microphone detector to the measurement of relaxation rates that are somewhat faster than the angular frequency response of the detector. The measurements basically involve the sampling of amplitude information as well as some limited waveform information [3]. As in the BRG [2] experiments, individual pressure pulses are monitored. These pulses are not viewed as they actually appear at the detector but rather as the detector responds to them. The detector generally develops a damped ringing sine wave at a single angular frequency, ω_0 , termed the characteristic or natural frequency. If ω_0 is much lower than the frequency of the pressure pulse then the pulse shape cannot be effectively extracted; however, amplitude and some waveform information remain so that it is still possible to measure accurate rate constants for vibrational relaxation processes faster than ω_0 .

Thus, the measurable range of rate constants with the present method is about the same as with the BRG [2] method. This range is limited by the approximate condition $c_0/(10r_0) \leq k' P \leq 3c_0/r_0$ where k' is the bimolecular rate constant for energy relaxation (torr s)⁻¹, P is the bath gas pressure (torr), c_0 is the speed of sound in the bath gas medium (cm/s), and r_0 (cm) is the radius of the cylindrical zone irradiated by the excitation laser beam. The upper limit for measurable k'P values is approximately the reciprocal of the time it takes for a pressure pulse to traverse the diameter of the irradiated zone; the lower limit comes about because late contributions to the developing pressure wave (due to slow relaxation) ultimately interfere with earlier contributions and the resultant pressure pulse is strongly attenuated (de-phased).

2. Theory of the Method

2.1 Background

We initially follow the procedure of Rothberg et al. [4] who described the use of microphones to perform photoacoustic calorimetry. Kinetic rate constants were not obtained by these workers, but an analysis was made on how very rapid or very slow kinetic processes (compared to ω_0) affect the microphone's sensitivity. In addition, their work dealt with pulsed laser excitation of liquid phase systems while here we concentrate entirely on the gas phase.

For convenience, in the following discussion the symbol t is to be viewed as a retarded time. It is a measure of time that begins (t=0) when the pressure pulse, originating from the laser irradiation zone, arrives at the detector.

We first deal with a simple model of the detector which is taken to be that of a damped harmonic oscillator [5] and follows the differential equation,

$$u(d^{2}X/dt^{2}) + v(dX/dt) + wX = f(t)$$
, (1)

where X is the displacement of the mechanical diaphragm from its equilibrium position, u is the diaphragm mass, v is a damping constant, and w is a spring constant. The functional form of a driving pressure pulse acting on the detector face as a function of time t, will here and in the rest of the text be given by the designation, f(t). We now employ the Green's function method [6] to obtain the detector's response to the driving pressure pulse. We take this to be equal to X(t) which is given by

$$X(t) = \int_{0}^{t} G(t,\tau) f(\tau) d\tau = G * f, \qquad (2)$$

where

$$G(t,\tau) = A \sin(\omega_0(t-\tau)) \exp(-\beta(t-\tau))$$
(3)

is the suitable Green's function for the initial value problem given by the differential eq (1) (assuming that X=0 and dX/dt=0 at t=0) and represents the impulse response function. Equation (3) describes an underdamped sine wave where A is an arbitrary amplitude constant and β is the damping constant. The detector response, given by eq (2) is thus the convolution of the pressure wave pulse incident on the detector, given by $f(\tau)$, by the impulse response, $G(t,\tau)$ and the convolution is designated by (G*f). It is understood from the limits of integration in eq (2) that $G(t,\tau)$ is given by eq (3) for $\tau \leq t$ but is zero for $\tau > t$. Thus, if both f and Gare known, the signal given by the detector is completely specified by eq (2). The problem, in fact, can be completely solved experimentally: if a known pressure signal f(t) is presented to the detector and its response X(t) is measured, the function G can be determined through a deconvolution process. This is in principle possible through fast Fourier transform methods (FFT). Taking the Fourier transform of eq (2) gives, by the "Convolution Theorem,"

$$F[X(t)] = F[G(t)] \cdot F[f(t)], \qquad (4)$$

that is, the Fourier transform of the convolution is the product of the individual Fourier transforms. It remains to divide F[X(t)] by F[f(t)] and then, taking the inverse transform to recover G(t). Once G(t) is known, we can, in principle, recover f(t)for any unknown pressure signal. However, we should point out that the duration of pressure wave f(t) (see below) is frequently less than half of the period of the detector's impulse response so that such a deconvolution would not be expected to cleanly recover the shape of f(t). This fact, coupled with inherent noise in the data and the use of an imperfect representation for G(t) can frequently produce unsatisfactory results. For this reason we reduce our data in a somewhat different way which we develop in the succeeding sections.

2.2 Development of Present Method

It would be helpful if we could separate the quantities f and G out from within the integral in eq (2). This can be achieved by taking either a single-frequency [7] Laplace or Fourier transform of eq (2). Subsequently, we will consider the latter transform as a special case of the former. Taking the Laplace transform of the convolution function as the product of the individual Laplace transforms of G(t) and f(t),

$$L[X(t)] = L[G(t)] \cdot L[f(t)], \qquad (5)$$

results in

$$\int_{0}^{\infty} X(t) \exp(-\alpha t) dt =$$
$$\int_{0}^{\infty} G(t) \exp(-\alpha t) dt \cdot \int_{0}^{\infty} f(t) \exp(-\alpha t) dt.$$
(6)

Here α is an arbitrary real and positive constant. Using the function G, given by eq (3), the integral containing G in eq (6) is given by

$$\int_{0}^{\infty} G(t) \exp(-\alpha t) dt = \omega_0 / [(\alpha + \beta)^2 + \omega_0^2].$$
 (7)

We have thus achieved the desired separation of the two functions G and f in eq (2). For the special (but frequently encountered) case where the functional form of G(t) remains unchanged over a range of experimental conditions, eq (6) becomes,

$$\int_{0}^{\infty} X(t) \exp(-\alpha t) dt =$$

constant $\cdot \int_{0}^{\infty} f(t) \exp(-\alpha t) dt$. (8)

It then remains to reduce the actual data according to the first integral in eq (8) and calculate the second integral from known representations of f(t). These representations will, as mentioned above, be a function of the irradiation geometry and the relaxation rate constant.

The time-varying pressure, at an observation point somewhat distant from the cylindrical axis of a laser irradiated zone, as obtained from the solution of the linearized acoustic wave equation, has been given by Bailey et al. [8], with some generalization by BRG [2]. We present the results of these two papers here in a notation similar to that of BRG [2],

$$f(\bar{t}) = Q_0 \,\bar{k} \int_0^\infty (\bar{l}^2 + \bar{k}^2)^{-1} \{-\bar{k} \exp[-\bar{k}(\bar{t} + \bar{\delta})] + \bar{l}\sin[\bar{l}(\bar{t} + \bar{\delta})] + \bar{k}\cos[\bar{l}(\bar{t} + \bar{\delta})] \}$$

$$J_0(\bar{l}, \bar{r}_n) \, h(\bar{l})\bar{l}d\bar{l}. \tag{9}$$

At this point we will be dealing with dimensionless quantities; the advantage of doing so will become clearer as we proceed. Also, for the sake of clarity a bar will be placed over all dimensionless quantities. In eq (9), dimensionless time is defined as $\overline{t} = tc_0/r_0$; dimensionless probe position is defined as $\bar{r}_{\rm p} = r_{\rm p}/r_0$; dimensionless pseudo-first-order rate constant \bar{k} is given by $\bar{k} = kr_0/c_0$. The dimensional quantities consist of r_0 and c_0 , defined earlier; r_p , the probe position which is the distance of the microphone from the axis of laser beam, always $\geq r_0$; k, the pseudo-first-ordered rate constant for energy relaxation (s^{-1}) . This form allows us to arrive at any set of solutions regardless of the irradiation geometry and sound speed. The delay between the laser pulse and the arrival of the pressure wave at the detector is given by, $\bar{\delta} = (r_p - r_0)/r_0$. In eq (9), $h(\bar{l}) = \bar{J}_1(\bar{l})/\bar{l}$ characterizes a uniformly irradiated "tophat" geometry [9], J_0 and J_1 the zero and first order Bessel functions, respectively, and Q_0 is a constant. Two examples of calculated pressure waves obtained under rapid relaxation and slow relaxation conditions are shown in figure 1.

Figure 1. Two representative waveforms (in dimensionless units) of the pressure wave calculated from eq (9)—one for rapid relaxation, $\bar{k}=13$, and one for slower relaxation, \bar{k} -0.65. These two curves show approximately the full time span of the waveforms encountered under fast and relatively slow relaxation conditions. Curves are scaled by the factors indicated. The duration of one cycle of the microphone's damped impulse response function, G(t) is shown for reference as $2\pi/\bar{\omega}_0$.

2.3 Calculation of Calibration Curves

It remains to determine the integral on the righthand side of eq (8) as a function of a variable relaxation rate constant. This integral, expressed in terms of dimensionless time, \bar{t} ; dimensionless rate constant, \bar{k} , and dimensionless alpha, defined as $\bar{\alpha} = \alpha r_0/c_0$, is given by,

$$L[f(\bar{t},\bar{k})] = \int_{0}^{\infty} f(\bar{t},\bar{k}) \exp(-\bar{\alpha}\,\bar{t}) \mathrm{d}\bar{t}$$
(10)

Several curves were evaluated by numerically solving eq (10) using the expression for $f(\bar{t})$ given by eq (9), as a function of \bar{k} , for several values of $\bar{\alpha}$. There is some small error involved in the numerical integration. Within this minor limitation we fit these curves (normalized to unity for the fastest relaxation rate constant) to the following empirical expression,

$$L[f(\bar{t},\bar{k})] \propto 1 - \exp(-\bar{a}\,\bar{k}^{0.75}).$$
 (11)

For reference, these curves are presented in figure 2. It should be noted that there may be no physical

significance to the functional form given by eq (11), except that it best fits the results of the numerical integration of eq (10). Replacing the 0.75 exponent by unity results in a poorer fit. The significance of $\bar{\alpha}$ should be addressed at this point. It could first of all be viewed as a mathematical convenience allowing separation of the two terms, f and G, within the integral in eq (2). Alternatively the factor $exp(-\alpha t)$ in eq (10) could be viewed as a "time window" used to crudely sample the shape of the pulse (waveform) in the chosen time domain. It is ultimately expected to distinguish between different waveforms with an accuracy sufficient to return meaningful kinetic results. As we discuss below it may or may not be adequate for the problem at hand.

Figure 2. Several fits of $L[f(\bar{t})]$ eq (10) to the functional form of eq (11) for different values of α .

,	$\bar{\alpha}$ =0.8122,	$\bar{a} = 0.85$
,	$\bar{\alpha} = 0.4060$,	$\bar{a} = 1.00$
-·-·- ,	$\bar{\alpha} = 0.0812$,	ā=0.65
• • • • • ,	$\bar{\alpha} = 0.0406$,	$\bar{a} = 0.50$

The results of figure 2 show that, while α varies by about a factor of 20, the calibration factor, \bar{a} , varies by only a factor of two. In order to apply this methodology it is important to note that whatever the value of $\bar{\alpha}$ used to process the actual data, the same value for $\bar{\alpha}$ must be used to calculate the appropriate calibration curve.

2.4 Analysis of Experimental Waveforms

We ultimately perform experiments in which a pseudo-first-order relaxation rate constant is varied linearly through a change of the bath gas pressure. The experimental signal curve is processed according to the left-hand side of eq (8),

$$L[X(\bar{t},\bar{k})] = \int_0^\infty X(\bar{t},\bar{k}) \exp(-\bar{\alpha}\,\bar{t}) \mathrm{d}\bar{t}\,.$$

These results must also fit the functional form (normalized to unity) of eq (11),

$$L[X(\bar{t},\bar{k})] \propto 1 - \exp(-AP^{0.75}).$$
 (12)

The experimental parameter, A, is thus derived from the experimental data. If the functional form of $G(\bar{t})$ remains constant, eqs (11) and (12) can simply be related according to eq (8) resulting in

$$1 - \exp(-\bar{a}(\bar{k}'P)^{0.75}) = 1 - \exp(-AP^{0.75}), \qquad (13)$$

where $\overline{k}' = \overline{k}/P$ is the dimensionless rate constant per unit pressure (bimolecular rate constant). If the functional form of G(t) varies, eq (13) is still applicable, as discussed in section 4. However, the lefthand side of eq (12) must be replaced by L(X)/L(G). That is, the variation of L(G) must be taken into proper account. From eq (13), we arrive at

$$\bar{k}' = (A/\bar{a})^{1/0.75}$$
 (14)

Equation (14) thus involves the experimental parameter, A, and the appropriate calibration factor, \bar{a} . The dimensional rate constant per unit pressure, k', is related to the dimensionless rate constant per unit pressure, \bar{k}' , according to

$$k' = \bar{k}' (c_0/r_0)$$
 (15)

We have evaluated $f(\bar{t})$ assuming that the microphone is a point detector. It actually occupies a finite width, d_0 , in the radial direction of the propagating pressure wave. Thus the function, $f(\bar{t})$, should be convolved using the suitable rectangular slit function (function of $\bar{d}_0 = d_0/c_0$). However, we here make the ad hoc assumption that the convolving effect of d_0 on f(t) is quite analogous to the effect on f(t) produced by a simple increase in the diameter of the laser beam, $2r_0$, which should be a good approximation if $d_0 \leq 2r_0$. Equation (15) is then modified to its final form,

$$k' = \bar{k}' c_0 (r_0 + d_0/2)^{-1} = \bar{k}' c_0 / r_{0 \text{ (eff)}}, \qquad (16)$$

where an effective r_0 is calculated as indicated.

2.5 Fourier Transform Method

An entirely analogous treatment can be applied to the case of a Fourier transform viewed as a special case of a Laplace transform. Then for $\alpha = -i\omega$, where $i = \sqrt{-1}$, ω being an arbitrary positive frequency, we refer back to eq (4), where it is understood here that we are transforming only at a single frequency, that in evaluating F(X), F(G) or F(f) the integration over time extends from zero to infinity, and that the transformed result is in the complex plane.

When $\alpha = i\omega$ eq (4) becomes

$$F^{*}(X) = F^{*}(G)F \cdot F^{*}(f)$$
. (17)

The product of eqs (4) and (17) returns a result which is a real number

$$F(X) \cdot F^*(X) = F(G) \cdot F^*(G) \cdot F(f) \cdot F^*(f) .$$
(18)

Equation (18) is entirely rigorous whether G(t) remains constant or not. However, if G(t) is constant then the Fourier transform of X(t) multiplied by its complex conjugate is simply proportional to the Fourier transform of the function f(t) multiplied by its complex conjugate.

We now develop a set of calibration curves by calculating $F(f) \cdot F^*(f)$ which are the Fourier analogues of the Laplace calibrations depicted in figure 2. These are presented in figure 3 for reference.

Figure 3. Numerical calculations $F(f) \cdot F^*(f)$, eq (18), for the conditions $\bar{\omega} = 1.256$ and

	, 0.5	ā			
- • - • -	, 2.00	ົພ			
	, 4.00	ω			
	, 1.0	ω̃ as fit	to eq (19) with	$\bar{a} = 0.46$.

While a number of curves for variable α can be fit to the functional form of eq (11) for the Laplace transform case, here for the case of the Fourier transform multiplied by its complex conjugate, only a range of $\bar{\omega}$ values can be accurately fit by the following simple functional form,

$$F(f) \cdot F^*(f) = 1 - \exp(-\bar{a}\,\bar{k})$$
. (19)

In all other respects the treatment given above applies to the present case, with the one exception that wherever the exponent 0.75 appears in an equation it is to be replaced by unity. Also, eq (19) should be used only for values of $\bar{\omega}$ around 1.0; for other values of $\bar{\omega}$, the other curves shown in figure 3 should be cast in suitable functional forms and counterpart experimental results analyzed in the same way.

2.6 Method Summary

The procedure outlined above involves taking suitable transforms, i) of the pressure wave as a function of the pseudo-first-order relaxation rate constant, ii) of G(t), if its functional form varies over the range of experimental conditions and finally, iii) of the experimental data as a function of the bath gas pressure. The processed results, when expressed in terms of the appropriate analytical functional form, allow simple extraction of the energy relaxation rate constant. Each operation involves taking a single-value transform. This accurately samples the amplitude and also samples the waveform in sufficient detail to produce accurate kinetic results.

The alternative procedure using FFT methods, as mentioned earlier, is subject to failure under the

present conditions (at least with respect to recovering a precise waveform) and further requires the tedious task of making additional waveform comparisons in order to finally extract a relaxation rate constant.

3. Experimental Procedure

The essential features of the experiment are presented schematically in figure 4. A CO₂ TEA laser delivering about 0.5 J/cm² per pulse of about 200 ns duration is directed into the spherical absorption chamber through a variable iris as a quasi-parallel beam. The diameter of the laser beam is adjustable from about 2 to 10 mm. A Knowles microphone BT-1759 was used in the present work [10]. The approximate dimensions, orientation and position of the microphone are given in figure 4. The device consists of a rectangular thin-metal diaphragm placed in close proximity to an electret disk behind which is positioned a ceramic printed circuit (PC) board containing an internal amplifier. This assembly is potted within a thin metal casing, the face of which contains several rows of holes which allow the diaphragm to respond to pressure changes in the environment. An equivalent electrical circuit describing the microphone consists of a battery

Figure 4. Schematic diagram of apparatus showing microphone position and approximate dimensions. The symbols D and R designate the direct (primary) and reflected pressure waves, respectively.

connected in series with a variable capacitance (the diaphragm) which is connected to the PC amplifier assembly. The assembly is biased with an external 1.35 V battery. The output of the microphone amplifier is connected with a short cable to an additional pre-amplifier which is used to reduce the output impedance of the microphone from about 3.5 k Ω to 50 Ω . The signal from this pre-amplifier is then fed to a Tektronix Model AM502 high-gain differential amplifier, the frequency response of which is set for a low-frequency 3-db cut-off of 10 KHz and a high-frequency 3-db cut-off of 1 MHz.

The output of this high gain amplifier is then connected to a Biomation Model 8100 fast digitizer which transmits the signal through an interface to the microcomputer assembly. The fast digitizer is triggered by a trigger pulse generated at the beginning of each CO_2 laser pulse. The microphone signal to the fast digitizer is further retarded by a pre-set time delay equal to or less than the time required for the pressure wave to travel from the laser-irradiated zone to the microphone detector. Multiple laser shots could thus be accumulated (averaged), viewed in real time, and finally stored on disks for further data reduction.

À typical set of experiments consists of i) preparing a dilute mixture (less than about one part per thousand) of an infrared absorbing gas in a non-absorbing diluent gas, in the 5-liter vessel containing the microphone assembly; ii) subjecting the mixture, at some total pressure, P, to one or more CO_2 laser pulses, simultaneously recording the microphone signal response and then storing the resultant waveform; iii) reducing the pressure of the mixture in stages, each followed by laser excitation and data aquisition, in order to follow the kinetics of the relaxation process. The resultant waveforms are finally processed according to the method presented in the previous section. Further details are given in section 4.

The gas handling system could be evacuated to pressures less than 1×10^{-6} torr. The infrared absorbing gas used in the present work was pentafluorobenzene (PFB) and the diluent gas was argon. Pressures were measured with a calibrated capacitance manometer. Gas mixtures were introduced at pressures down to about 0.5 torr and could be measured to better than 0.01 torr with the pressure measuring head.

4. Results

4.1 Microphone Response Function, G(t)

Before analyzing a typical energy relaxation experiment, we first describe several tests performed on the microphone assembly to determine its operating characteristics. These characteristics basically determine the functional form of G(t). Whatever the functional form of G(t), it is important that it either remain constant under the varying conditions of a set experiments, or if it varies, that its transform be independently obtained.

We first attempt to deduce an approximate functional form of G(t) for the specific microphone detector employed in these experiments and we then determine if G(t) varies under changing experimental conditions.

A computer algorithm was prepared to numerically perform the convolution given by eq (2). When we convolved G(t), given by eq (3), with a variety of simple pressure pulses, f(t), we obtained waveforms exhibiting the same characteristic feature: the first maximum was always significantly larger than the absolute value of the first minimum. The reverse effect was always observed for the experimental waveforms. Replacing eq (3) by

$$G(t,\tau) = A \sin[\bar{\omega}_0 (t-\tau)] \{1 - \exp[-\gamma(t-\tau)]\} \\ \exp[-\beta(t-\tau)]$$
(20)

resulted in a much better fit as can be seen in figure 5. No attempt has been made to adjust the constants, β and γ to produce an optimum fit. In fact, it may not be possible to achieve a perfect fit to the data since the driving wave, f(t), used in the simulation consisted of a single cycle sine wave with an angular frequency, $2\omega_0$, twice that of the detector. This idealized waveform for f(t) is only an approximation to the actual pressure waveform as shown in figure 1 (fast relaxation case). The actual detector impulse response function may also contain minor contributions at frequencies other than ω_0 which are not considered here. Approximate values obtained for the parameters in eq (20) are listed in the caption of figure 5.

The following two speculative interpretations of the functional form of eq (20) are given: 1) the circuit contains an RC of about 60 μ s (value of τ in caption of fig. 5), or 2) an initially excited microphone vibrational mode transfers energy to a second mode for which the microphone exhibits a greater response. Both explanations can account for the slowly developing signal as represented by the $\{1-\exp[-\gamma(t-\tau)]\}$ term in eq (20). We now consider how the microphone parameters change with variation of bath gas pressure and also laser intensity.

Figure 5. Solid (appearing) line is experimental microphone signal, 780 digitized data point, for a 4.7/1000 mixture of PFB in argon at a total pressure of 20 torr, time base extends from 0 to 390 μ s. Dashed curve is a numerical calculation of X(t) using eq (2) for the function $G(t)=A \sin(\omega_0 t) \cdot [1-\exp(-\gamma t)] \cdot \exp(-\beta t)$, where A is arbitrary, $\omega_0=0.097 \ (\mu s)^{-1}$, $\gamma=0.017 \ (\mu s)^{-1}$, $\beta=$ 0.014 $(\mu s)^{-1}$, and the function f(t) is taken as one cycle of a sine wave with an angular frequency of $2\omega_0$ and arbitrary amplitude.

4.2 Microphone Response to Laser Intensity

At a fixed total pressure, for a particular mixture, the laser light intensity was varied by a factor of about 100. This was effected by placing partially absorbing CaF_2 windows in front of the laser beam incident on the spherical chamber containing the absorbing gas and microphone. Each window was expected (from previous calibrations) to attenuate the laser beam by 65 percent. Figure 6 displays results of the microphone signal, measured at the first maximum, as a function of a number of windows placed in the path of the laser.

Figure 6. Relative intensity (of the first positive peak of the microphone signal) as a function of the number of attenuating BaF_2 windows.

The functional form which best fits the observed relative intensity is given by

$$I = I_0 (0.663)^n, (21)$$

where I_0 is the incident laser intensity and I is the intensity after attenuation by n windows. The addition of a single window reduces the intensity by a factor of 0.663. Since the experiments are all at a constant pressure we expect that the microphone impulse function is strictly constant, and the pressure wave impinging on the microphone also has a constant waveform. Because of the latter two conditions it is necessary that the microphone produce a signal with a constant shape (waveform), regardless of magnitude. This allows us to use any part of the resultant waveform (for example, the first maximum) as a suitable measure of the laser intensity impinging on the gas mixture. In fact, a careful review of the resultant waveforms showed that the scaled waveforms could always be precisely superposed for a two orders of magnitude change in the laser intensity. The good fit of the data to the functional form of eq (21) provides equivalent information. Figure 6 further verifies that the detector is linear over the range of excitation. Our experience has shown that pressure waves too intense can cause non-linearities in either the microphone or the amplifier or both.

4.3 Fast Relaxation: Effect of Pressure on Microphone

Experiments were performed by adding additional argon to a starting mixture of about 1/1000 PFB in argon. The starting pressure was chosen high enough (20 torr) so that energy relaxation was very fast as determined from previous measurements [11]. From a pressure of 20 torr and higher, the pressure waveform, f(t), is unchanged. Assuming that the microphone impulse function, G(t), is also constant, the signal waveform must also remain unchanged. We measure the amplitude of the microphone signal at several convenient points (the first maximum, for example) and plot these in figure 7 as a function of the gas pressure. Clearly, the amplitudes are not constant showing that the functional form of G(t) does indeed vary with pressure. We suggest that this comes about because the damping constant, β [eq (20)] changes with pressure. On this basis the functional dependence of G(t) with pressure is obtained and given in the caption of figure 7.

Figure 7. Pressure effect on microphone response: Amplitude (arbitrary units) of microphone signal sampled at two time points (t_0) vs total gas pressure. First pressure consists of a 20 torr mixture of 5/1000 PFB in argon. Additional pressures obtained through consecutive additions of pure argon. Open circles (sampled at $t_0 = 26.51 \,\mu$ s) fit to the expression $I = I_0 \exp[-(1.18 \times 10^{-4} P - 0.78 \times 10^{-7} P^2) \cdot t],$ solid circles (sampled at $t_0 = 38.34 \ \mu s$) fit to the expression $I = I_0 \exp[-(1.22 \times 10^{-4} P - 1.07 \times 10^{-7} P^2) \cdot t]$, with time, t, in μ s, the pressure, P, in torr, I_0 the amplitude extrapolated to P=0, and I the amplitude at pressure P.

It is interesting to see from figure 7 that the signal decay is not a linear function of pressure. There are, in fact, at least two decay rates, one considerably faster than the other, suggesting at least two microphone characteristic frequencies. We tentatively describe the fast decay to energy dissipation from a higher frequency mode of the microphone and the slow decay from a lower frequency mode. We cannot at this time quantitatively assess pressure changes in γ [eq (20)] and for present purposes assume it to be a constant.

The analysis of our experiments would be simplified if G(t) were constant with pressure. Since this is not the case, the data of figures 5 and 7 allow us to arrive at G(t) as a function of pressure through the use of eq (20) and the following derived parameters

$$\omega_0 = 0.097 \ (\mu s)^{-1}, \ \gamma = 0.017 \ (\mu s)^{-1}$$

 $\beta = (0.01 + 1.2 \times 10^{-4} \ P - 1.0 \times 10^{-7} \ P^2) \ (\mu s)^{-1}, \ (20a)$

where the unit of time in eq (20a) is μ s and the pressure *P* is in torr.

4.4 Analysis of Simulated Data

Before analyzing laboratory data we describe simulated experiments in which the computer algorithm, described above, numerically calculates the convolution given by eq (2). The algorithm also numerically calculates Laplace and Fourier transforms of X(t), G(t) and f(t) performed at a single frequency, α or ω . Equations (6) and (18) were shown to be valid for a wide variety of arbitrary pressure waveforms as well as values for the parameters α and ω . That is, the transform of the "signal" was found to be equal to the product of the transform of the "pressure pulse" and the transform of G(t) as expected.

Using the above computer algorithm we were in a position to evaluate the effect of "noise" on the results of data transformed at a single frequency. Thus, we performed simulations in which random as well as systematic "noise" was added to the "signal data" to determine the effect on its transform. From these limited simulations we found (qualitatively) that introduction of systematic noise in the form of baseline shifts (which we have observed experimentally to be caused by stray electrostatic signals from the laser) as well as random noise gave results in poor agreement for the Laplace transform and in good agreement for the Fourier transform as compared with the respective noise-free results.

4.5 Analysis of Relaxation Data

In agreement with the above simulations we found that the experimental data transformed using the Laplace method were considerably more scattered than data using the Fourier analogue. Typical Fourier data transforms as a function of bath gas pressure are given in figure 8. By contrast, because of the poor quality of the Laplace results, we did not analyse the data by that method. However, we should point out that base line shifts in our data which we have shown to yield poor results by the Laplace method can in principle be subtracted out. This was not attempted here; however, doing so in the future may permit more effective use of the Laplace method.

We now describe the analysis of the data of figure 8 in order to obtain the rate constant for vibrational relaxation of PFB in argon. As expected, we found that the Fourier transform returns the largest numerical value when the transform is performed at ω_0 and the results of figure 8 were so obtained. However, performing the transform at other frequencies is also possible.

Figure 8. Data, X(t) transformed according to eq (18) and presented as the solid points. The similar transform of G(t) is calculated from eq (20) using the parameters listed in eq (20a). The results are displayed using the solid line.

For these experiments the laser beam dimension r_0 was set at 0.42 cm. The value for c_0 , the sound velocity in argon, is 3.216×10^4 cm/s, and the frequency used for the transform, ω , is 0.097 (μ s)⁻¹. These values result in $\bar{\omega} = 1.256$, chosen to correspond to the simple exponential calibration curve in figure 3 (\bar{a} =0.46). The experimental data, X(t)were transformed according to eq (18) and are presented as points in figure 8. Data up to about 20 torr mainly show the effect of vibrational relaxation while data at higher pressures show predominantly variation of the microphone's impulse response function, G(t), with pressure. While pressure data as presented in figure 7, on cursory examination, suggest a moderate change of the function G(t), it is seen that the operation $F(G) \cdot F^*(G)$ produces a much larger variation. However, eq (18) is entirely rigorous and is capable of handling variations in G(t) and $F(G) \cdot F^*(G)$ as long as they can be quantitatively described.

There are two ways to characterize the variation of G(t) with pressure. The simplest procedure is to curve fit the transformed high pressure data in figure 8 and then assume that a short extrapolation to the low pressure regime gives the proper transform of G(t). Instead, we calculated $F(G) \cdot F^*(G)$ from eqs (20) and (20a), resulting in the solid line of figure 8 [12]. This calculated curve fits the experimental points reasonably well at high pressures (where it should fit the data), and serves as a means for calculating $F(G) \cdot F^*(G)$ for the low pressure points with an accuracy quite adequate for our purposes.

Finally, according to eq (18), dividing $F(X) \cdot F^*(X)$ obtained at each pressure by the calculated $F(G) \cdot F^*(G)$ at that pressure yields $F(f) \cdot F^*(f)$, the quantity of interest. The resultant

curve is presented in figure 9 where the data are fit to the functional form of eq (12) (replacing the 0.75 power by unity, for this case). The best fit yields for the parameter, A, the value, 0.25. According to eq (14) (again replacing 0.75 by unity) and using for \bar{a} the value 0.46 results in $\bar{k}'=0.54$. From eq (16), using $r_0=0.40$ cm and $c_0=3.078\times10^{-2}$ cm/ μ s, we derive k=0.042 (μ s · torr)⁻¹. This value is in good agreement with $k'=0.0428\pm0.0092$ (μ s · torr)⁻¹ and $k'=0.053\pm0.014$ (μ s · torr)⁻¹ obtained from a previous study employing two different methods [13].

Figure 9. Each transformed data point at a given pressure (from fig. 8) divided by the transform of G(t) at the corresponding pressure (taken from the solid curve of fig. 8) yields, according to eq (18), the quantity of interest, $F(f) \cdot F^*(f)$, and is presented as a solid point in this figure. These values, as a function of pressure, are best fit to the eq $F(f) \cdot F^*(f) = 1 - \exp(-0.25 \cdot P)$, shown as the solid line.

4.6 Amplitude Method

For comparison, the amplitude of the first maximum of the microphone signal was plotted as a function of pressure in figure 10 and the functional form $[1-\exp(-0.4P^{0.75})]$ was found to be a good fit to the data. The scatter in this data is somewhat greater than in the transformed data presented in figure 8. It is interesting that the amplitude plot of figure 10 is so similar to the plot of figure 9. There is nothing in the treatment presented above that would suggest that the amplitude method should give results roughly equivalent to those obtained from the transform method.

The experimental observation that amplitude data can be used in an alternative method to derive rate constants suggests that changes in the pressure pulse waveform have perhaps less influence on the overall microphone response than changes in the magnitude of the pressure pulse, at least for the present experimental conditions. In fact, we do observe that the microphone signal waveforms do not change markedly, particularly around the first maximum [14]. However, if the amplitude method is used, then the calibration constant, \bar{a} in eq (14), must be derived through separate means, i.e., \bar{a} cannot be obtained absolutely. That need not necessarily be a limitation if calibrations can be developed from mixtures possessing known relaxation rate constants or if the method described in the previous section provides the absolute standard. The amplitude method is simple and could be quite useful and worthy of further investigation.

Figure 10. Amplitude data: Plot of the first positive peak of the microphone signal as a function of pressure (low pressure domain). Solid line is a fit of the data to the functional form, Signal= $1-\exp(-A \cdot P^{0.75})$, where A = 0.40.

5. Concluding Remarks

The method requires few assumptions; these can be directly examined or verified through the use of independent methods. The assumptions include: i), the function G(t) exists and ii), the signal can be represented by the simple convolution of G(t) by f(t) when terms involving the signal and its derivative at t=0 are equal to zero; iii), the variation of G(t) (or its transform) with pressure can be properly dealt with; and finally, iv), the representation of f(t) suitably describes the relaxation-induced pressure pulse. Assumptions i-ii have been evaluated experimentally and found to be valid; assumption iii can result in an additional source of uncertainty in the kinetic analysis if the variation of G(t) through the use of an extrapolation procedure or the use of an analytic expression is inaccurate. Other detectors may show less variation of G(t)with pressure and we plan to examine a number of these. Assumption iv can be assessed independently. For example, the functional form of f(t) has been investigated in detail by Beck and Gordon [15] and found to be an excellent representation of the experimentally derived pressure pulse. In the derivation of f(t) the additional assumption was made that first order relaxation kinetics apply. The adequacy of this assumption has been independently demonstrated for certain systems [16]. It can always be checked by simply performing kinetic measurements as a function of varying energy fluence and demonstrating the constancy of the derived "rate constant."

In the present work we employed the Fourier transform method using a single frequency coincident with the characteristic frequency of the detector. Analysis at other frequencies are of course possible and the quality of the results obtained as a function of frequency should be addressed in more detail in future work. Additionally we plan to use the Laplace transform method in experiments that are more noise-free.

The kinetic application presented here involves the measurement of the rate of energy transfer. There are other kinetic measurements which use optoacoustic detection and involve chemical reactions. Such reactions usually generate heat and the rate of heat liberation is a measure of the rate of reaction. Recently a number of such studies have been described in the literature [4,17,18]. So far they have dealt entirely with the characterization of the extent of reaction through a procedure involving amplitude analysis which has been aptly termed photoacoustic calorimetry. The method presented here should be of value to this important new area of research since it could provide the means of performing a temporal analysis from which reaction rate constants could be derived. A microphone exhibiting very high sensitivity such as the one used here would be required. We anticipate initiating experiments of this kind.

About the authors: All the authors are in the NIST National Measurement Laboratory. Walter Braun is with the Chemical Kinetics Division, Philippe Dagaut is a guest worker in the Chemical Kinetics Division, and Barry C. Cadoff is with the Gas and Particulate Science Division.

6. References

- [1] Smith, N. J. G., Davis, C. C., and Smith, I. W. M., J. Chem. Phys. 80, 6122 (1984).
- [2] Beck, K. M., Ringwelski, A., and Gordon, R. J., Chem. Phys. Lett. 121, 529 (1985).

- [3] In order to simplify the discussion in the present paper we (somewhat unconventionally) refer to waveform or wave shape as being synonymous and distinct from intensity, or its equivalents, magnitude or amplitude. The latter term or terms, viewed as a scaling factor, convert each infinitesimal segment of a given waveform into an equivalent waveform segment of proportionally greater or lesser magnitude.
- [4] Rothberg, L. J., Simon, J. D., Bernstein, M., and Peters, K. S., J. Amer. Chem. Soc. 105, 3464 (1983).
- [5] Kreuzer, L. B., J. Appl. Phys. 42, 2934 (1971).
- [6] Greenberg, M. D., Application of Green's Functions in Science and Engineering, Prentice-Hall, Inc., Englewood Cliffs, NJ (1971).
- [7] The transform of a function, F(t) is defined as

 $L[F(t)] = \int_0^\infty \exp(-st) \cdot F(t) \cdot dt = f(s).$ We define a single-

frequency transform as,

 $L[F(t)]s_0 = \int_0^\infty \exp(-s_0 t) \cdot F(t) \cdot dt = f(s_0), \text{ that is the value}$ returned by the specified operation using a fixed value of s,

returned by the specified operation using a fixed value of s, namely s_0 . For the sake of clarity we identify the use of a single-frequency transform using the former notation and by specifying the positive, real number, s_0 , by the symbol α . The symbol ω will subsequently be reserved for the case of the Fourier transform obtained at the fixed frequency, ω .

- [8] Bailey, R. T., Cruickshank, F. R., Guthrie, R., Pugh, D., and Weir, I. J. M., Mol. Phys. 48, 81 (1983).
- [9] Two independent studies have shown that "tophat" rather than Gaussian geometry best describes IR laser irradiation; Beck, K. M., and Gordon, R. J., J. Chem. Phys. 87, 5681 (1987); and Braun, W., Wallington, T. J., and Cvetanovic, R. J., J. Photochem. Photobiol., A: Chemistry 42, 207 (1988).
- [10] Certain commercial equipment and instruments are identified in this article in order to adequately specify the experiments described here. Such identification does not imply recognition or endorsement by the National Institute of Standards and Technology, nor does it imply that the material or equipment identified are necessarily the best available for the purpose.
- [11] Wallington, T. J., Scheer, M. D., and Braun, W., Chem. Phys. Lett. 138, 538 (1987).
- [12] It should be mentioned that while pressure changes can cause a variation in the microphone impulse response function, G(t), it can also cause a variation in the energy/pressure derived from the laser beam. Since the latter entirely produces an amplitude effect it is properly accounted for by means of the procedure(s) described here.
- [13] Wallington, T. J., Braun, W., Beck, K. M., and Gordon, R. J., J. Phys. Chem. 92, 3839 (1988).
- [14] A similar observation was made by Barker, J. R., Brouwer, L., Patrick, R., Rossi, J. J., Trevor, P. L., and Golden, D. M., Int. J. Chem. Kinet. 17, 991 (1985).
- [15] See reference cited in reference [9].
- [16] Braun, W., and Wallington, T. J., Chem. Phys. Lett. 140, 441 (1987).
- [17] See reference [14].
- [18] Anderson, V. E., Cheng, H. Z., Diebold, G. J., Mahmood, A., and Sweigart, D. A., J. Amer. Chem. Soc. 109, 6191 (1987).

Solvent-Free Injection in Supercritical Fluid Chromatography Using Sintered Glass Deposition

Volume 93	Number 6	November-December 1988
Thomas J. Bruno	Sample injection in supercritical fluid chromatography (SFC) is usually per-	sented which allow solvent-free injec- tion. Using these devices, sample (in a
National Institute of Standards	formed using a combination of apparatus from liquid chromatography and capil-	bed. After removal of the solvent by
and Technology	lary gas chromatography. The device	mild heating and evacuation, the sample
Boulder, CO 80303	most often consists of an injection valve (of the type used in liquid chromatogra- phy) followed by a flow splitter con- trolled by a restrictor. It is sometimes	loop is filled with the supercritical car- rier and the valve is switched to the in- ject position.
	desirable to inject samples in the ab- sence of a solvent, as in physicochemi- cal applications of SFC. In this article, two simple modifications to a conven-	Key words: chromatography; injection; supercritical fluid chromatography; supercritical fluids.
	tional sampling valve system are pre-	Accepted: July 27, 1988

Sample introduction in analytical applications of supercritical fluid chromatography (SFC) is usually performed using a high-pressure multiport sampling valve (of the type used for high-performance liquid chromatography-HPLC) equipped with a flow splitter. The splitter is most often of fixed split ratio (for a given pressure and temperature): the ratio is determined and controlled by a fused silica capillary restrictor. The sample, which is usually a solid or liquid dissolved in an appropriate solvent, is syringe loaded into the sample loop of the multiport valve, and injection is achieved by switching the position of the valve. The solvent will be separated from the sample species by the physical and chemical interactions with the stationary phase in the column.

In some nonanalytical applications of supercritical fluid chromatography it is often desirable to inject a sample (which may be of low volatility) in the absence of solvent. Such applications are typically in physicochemical measurement studies. As an example, we may consider the chromatographic determination of binary diffusion coefficients using the Taylor-Aris method [1–5]. In this technique, a sample is injected onto the head of an open tubular column as a sharply defined spike. As the carrier moves the sample through the length of the tube, the initial sharply defined spike will broaden into a Gaussian-like profile. For this experiment, the column is uncoated and ideally should be inert, and the presence of a solvent would ruin the measurement.

In order to allow convenient injection of relatively nonvolatile solutes for this type of measurement, we have used two approaches to provide a solvent-free injection. In the first approach, a standard multiport injection valve has been modified to accept the deposition of sample on a small section of sintered glass placed within the sample loop. In the second approach, an extractor based on sintered glass deposition precedes the sampling valve. Sintered glass was chosen as the deposition material for several reasons. First, since glass has a relatively high energy surface, one would expect a conveniently-sized aliquot of sample to be easily loaded. In addition, there is no danger of the sintered glass bed being displaced from its position in the loop or extractor. An initial series of devices packed with small beds of chromatographic supports (such as Tenax-GC¹) was unsatisfactory for this reason.

In the first approach, the sample loop is fitted with a nichrome heater wire, and the valve block with a cartridge heater to provide temperature control. A schematic diagram of the modified sample loop is provided in figure 1. The sintered glass, which was obtained from a commercial supplier as a 0.16-cm (0.0625-in) thick disk, was cut into cylindrical sections (of 0.16-cm diameter) using a core drill. To fabricate a loop, one or more of these wafers are interposed in the center of a sample loop [consisting of 316 stainless steel tubing of 0.02-cm (0.009-in) inside diameter and 0.16-cm (0.0625-in)outside diameter] constrained by a small stainless steel cylinder [0.32-cm (0.125-in) outside diameter and 0.16-cm (0.0625-in) inside diameter]. This outer cylinder is brazed to the sample loop using a hydrogen torch. A hydrogen torch was employed to avoid using flux, which could contaminate the sintered glass bed. The sampling loop thus modified is then installed as part of a high-pressure analogue of a sampling system described previously [6]. This sampling system contains provisions for pressurization, venting, and evacuation of the sample loop. The high-pressure limit of this sample loop is constrained by that of the sampling valve [approximately 41 MPa (6000 psi)]. Calculations indicate, however, that the maximum allowable working pressure of the modified loop itself is in excess of 96 MPa (approximately 14,000 psi).

The use of this sampling device is quite simple. A solvent-borne solute is loaded via syringe into the sampling loop as one would in HPLC. In this case, the more volatile the solvent and the less volatile the solute, the better. The sample loop and valve are then warmed and the solvent vapors vented. The loop is then evacuated to remove as much residual solvent vapor as possible. Naturally, the longer the evacuation time, the more solvent will be removed. A heating-evacuation cycle of between 5 and 7 min is usually sufficient to remove all but trace quantities of most common solvents.

Figure 1. A schematic diagram of the modified sample loop containing a cylinder of sintered glass.

The chromatogram presented in figure 2 was obtained using this sampling technique in a developmental supercritical fluid chromatograph designed and built for physicochemical measurements. The sample in this case was a 0.01 percent (mass/mass) solution of naphthalene in methylene chloride. The solution was loaded into the loop using an HPLC syringe, and the methylene chloride solvent was removed by a heating-evacuation cycle (at a temperature of approximately 50 °C for 5 min). The loop was then pressurized with carbon dioxide at 13.8 MPa (2000 psi), with the loop and sampling valve being held at 50 °C. An equilibration time of approximately 1 min was allowed for the dissolution of the naphthalene in the carbon dioxide.

Figure 2. A chromatogram showing the FID response of naphthalene in supercritical carbon dioxide at 20.7 MPa (3000 psi) and 130 °C. The electrometer was set at a range of 10^{-11} , with attenuation of 1.

¹ Certain commercial equipment, instruments, or materials are identified in this paper in order to adequately specify the experimental procedure. Such identification does not imply recommendation or endorsement by the National Institute of Standards and Technology, nor does it imply that the materials or equipment identified are necessarily the best available for the purpose.

Switching of the sampling valve then resulted in the injection into the carrier stream at a pressure of 20.7 MPa (3000 psi) and 130 °C (the conditions of the chromatographic experiment). The pressurization step described above is done at a pressure lower than the column initial pressure so as to counteract somewhat the deleterious effect of the relatively large volume of the modified loop. In the case of figure 2, the column was a 3050-cm uncoated stainless steel tube [0.23-cm (0.009-in) inside diameter], and detection was done using a modified flame ionization detector [7]. The symmetry of the peak is indicative of negligible adsorptive interference by the sintered glass bed.

There are a number of advantages associated with this method of injection. The first is, of course, the removal of the solvent when solventfree injection is required. In addition, there is a greatly reduced need to use a flow splitter since most of the applied sample is solvent, which is removed during the heating-evacuation step. To reduce the amount of solute injected, one simply dilutes the solution applied to the sintered glass. The solute is then actually injected in a solution of the supercritical carrier. The major disadvantage experienced with the technique is the relatively long time involved in completing an injection (approximately 8 min). Improvements along these lines are currently being pursued. Since another disadvantage is the relatively large loop volume, attempts are being made to minimize the size of the sintered glass bed. The problems caused by large loop volume (such as peak broadening and pressure pulsation) appear to be relatively minor, however, as judged from comparative HETP (height equivalent to a theoretical plate) determinations.

A second approach we have had success with makes use of a small extractor placed ahead of the sampling valve. This approach is similar to that taken by others in physicochemical measurements [8,9]. The extractor is shown schematically in figure 3. The manifold arrangement used with this extractor is shown in figure 4. The extractor itself was machined from a section of 316 stainless steel bar, 12.7 cm in diameter and 4 cm in length. A hole (0.32-cm diameter) bored through the center of the bar accommodates a section of cut sintered glass, as in the sample loop approach described earlier. The extractor is sealed at either end using threaded or brazed fittings. A syringe loading tube is brazed onto the side of the extractor body, and is capped using a compression fitting plug.

Figure 3. A schematic diagram of the extractor (which precedes the sampling valve). The manifold for this extractor is shown in figure 4.

Figure 4. A schematic diagram of the manifold which controls the extractor (which is shown in fig. 3). The sampling valve is shown in the "fill" position.

To use this extractor, a solvent-borne sample is loaded onto the sintered glass bed through the loading tube using a conveniently-sized syringe. After capping the loading tube with a pressure fitting (not shown in fig. 3), the extractor and transfer lines are evacuated using the vacuum valve. Solvent evaporation is aided by raising the temperature of the entire manifold, which is contained in an air bath. The extractor is then filled with the carrier using the inlet valve. As can be seen from figure 4, the position of the chromatographic injection valve determines if the loop is filled. Usually, the injection valve is in the inject or flow position until carrier and sample have had time to equilibrate. After the sampling valve is switched to the inject position, the inlet valve may be reopened to insure that the carrier pressure will be the same in both the chromatographic column and the sampling loop. The density will also depend upon the temperature, thus to achieve density equivalence, the chromatographic column and injection manifold must be at the same temperature. This generally will pose no difficulty, since one sample loading can usually provide enough solute for dozens of injections.

Acknowledgment

The financial support of the United States Department of Energy, Office of Basic Energy Sciences, is gratefully acknowledged. About the author: Thomas J. Bruno is a physical chemist in the Thermophysics Division of the National Engineering Laboratory at the National Institute of Standards and Technology, Boulder, CO.

References

- Conder, J. R., and Young, C. L., Physicochemical Measurement by Gas Chromatography, John Wiley and Sons, Chichester (1979).
- [2] Laub, R. J., and Pecsok, R. L., Physicochemical Applications of Gas Chromatography, John Wiley and Sons, New York (1978).
- [3] Taylor, G. I., Proc. Roy Soc. (London), Ser. A 219, 186 (1953).
- [4] Taylor, G. I., Proc. Roy Soc., Ser. A 225, 473 (1954).
- [5] Aris, R., Proc. Roy. Soc., Ser. A 235, 67 (1956).
- [6] Bruno, T. J., J. Chromatogr. Sci. 23, 325 (1985).
- [7] Bruno, T. J., Proc. Fifth Symp. Energy Eng. Sci. (CONF-8706187) Argonne, IL (1987) pp. 52-60.
- [8] Smith, R. D., Udseth, H. R., Wright, R. W., and Yonker, C. R., Sep. Sci. Tech. 22, 1065 (1987).
- [9] Roth, M., Steger, J. L., and Novotny, M. V., J. Phys. Chem. 91, 1645 (1987).

Enzyme-Enhanced Electrochemical Immunoassay for Phenytoin

Mirtha Umaña, Jess Waller, Mansukh Wani, Carol Whisnant, and Edgar Cook

Research Triangle Institute Post Office Box 12194 Research Triangle Park, NC 27709-2194

Introduction

The use of electrochemically generated electrontransfer mediators to control the oxidation states of enzymes has been the subject of considerable research [1,2]. Among these studies, the oxidation of glucose by glucose oxidase (GOx) has been extensively studied. Ferrocene derivatives [3] and other redox compounds [4,5] have been used to mediate the oxidation of dissolved and immobilized GOx [6]. Polypyrrole has been used to immobilize GOx on the surface of electrodes [7,8,9]. This polymer provides a simple and effective immobilization medium, and because it is an electronic conductor, it is expected to facilitate the electron transfer to the enzyme.

An important application of enzyme-mediated electrocatalysis is in immunoassays where the current amplification of the enzyme reaction enhances the sensitivity of the measurement. The immunological utility of the ferrocene/GOx system has been demonstrated with lidocaine as the antigen [10]. The general scheme is illustrated in figure 1; ferrocene-antigen (Fer-Ag) is competitively displaced from the antibody (Ab) by Ag, the analyte, and it is determined as an enzyme-amplified oxidation current. This scheme has significance because it expands the applicability of electrocatalytic analysis to analytes currently determined by immunoassays, and thus, deserves further research to demonstrate its generality.

This paper describes experiments aimed at understanding the kinetics and mechanism of the reaction, at determining the optimum conditions for the assay, and at testing the generality of the scheme shown in figure 1. We have chosen phenytoin [5,5-diphenylhydantoin (DPH)] as the model antigen, because of its clinical importance. For this drug to be effective and safe, plasma levels must be between 5 and 20 mg/L [11]. Thus, the development of easy, real-time assays for this and other critical-level drugs is highly desirable.

This paper also describes preliminary results on the electron-transfer mediation of ferrocene derivatives to polypyrrole-immobilized GOx. The goal of these experiments is to couple the polypyrrole-immobilized GOx to the ferrocene-DPH system to produce a reagentless electrochemical immunoassay sensor, so that easy, real-time determinations may be realized.

Experimental

Electroanalysis was conducted with a PAR 175/ 173 potentiostat, in a three-electrode assembly (GC, Ag/AgCl, Pt). A two-compartment cell was used for immunological experiments. Preparation and use of GOx-polypyrrole modified electrodes (GOx/PP/GC) have been described elsewhere [7,8]. The polyclonal anti-DPH serum was prepared at RTI [12].

Ferrocene-phenytoin (Fer-DPH) was synthesized inhouse. To a room-temperature stirred solution of ferrocene carboxylic acid and 3-(2aminoethyl)-5,5-diphenylhydantoin in anhydrous THF, 1,3-dicyclohexylcarbodiimide was added in one portion. After 5 h, the solvent was removed in vacuo. The residue was purified by elution from silica gel (5 g) using 20% acetone in hexane to yield a yellow solid with m.p. 248–251 °C. NMR, high resolution mass spectrometry, and elemental analysis confirmed the identity of the compound. Fer-DPH is insoluble in water but soluble in 10% CH₃CN. Typical cyclic voltammograms (CVs) of DPH-Fer conjugate produced $E^{\circ \prime}=0.47$ V vs Ag/AgCl and 0.06 V peak separation.

Results and Discussion

The DPH antibody binding was compared to that of Fer-DPH in a competitive inhibition RIA using ³H-DPH (specific activity 40.3 Ci/mmol/L) as tracer. Anti-DPH antibodies (DPH affinity >10⁹ L/mol) showed 25% cross-reactivity (at 50% displacement of radioligand) with Fer-DPH. Thus, the Ab binding to Fer-DPH is sufficiently strong to

form a stable Fer-DPH-Ab complex but DPH will readily displace Fer-DPH as needed for the scheme shown in figure 1.

The CVs of Fer-DPH are completely quenched by the formation of Fer-DPH-Ab upon addition of 100 μ L DPH antiserum. The inability of Fer-DPH-Ab to exchange electrons with the electrode may be due to steric effects, since the antibody may block the redox center from the electrode.

Kinetic information on the electrocatalysis was obtained with scan rate dependence studies. In the absence of GOx, the current (i_d) is determined by diffusion of the ferrocene derivative and is expected to obey the Randles-Sevcik relationship for a reversible system:

$$i_{\rm d} = 2.69 \times 10^5 \, n^{3/2} \, A \, D^{1/2} \, C_0^* \, \nu^{1/2},$$
 (1)

where *n* is the number of electrons, *A* is the area of the electrode, *D* is the diffusion coefficient, C_0^* is the concentration of electroactive species in the solution, and ν is the scan rate.

In the presence of GOx and excess glucose, the limiting value of the current response (i_k) is independent of ν :

$$i_{k} = n F A C_{0}^{*} (D k' C_{z}^{*})^{1/2}, \qquad (2)$$

where F is the Faraday constant; C_z^* is the enzyme concentration, and k' is the rate constant for the catalytic reaction. From scan rate dependence studies [13], we estimated a pseudo first-order rate constant for the catalytic reaction of GOx with ferrocene carboxylic acid and Fer-DPH of approximately 2×10^5 and 4×10^5 mol⁻¹L⁻¹, respectively. These values are comparable to the ones previously reported for ferrocene derivatives [5]. In the presence of 1.5 mmol/L GOx, the catalytic current is about three times the Fer-DPH background current and increases with enzyme concentration but is independent of glucose (above 20 mmol/L). Thus, the overall current is governed by the rate of reaction of the ferrocene with GOx rather than the rate of reaction of GOx with glucose as needed for the scheme of figure 1.

Experiments shown in figure 2 demonstrate the development of the DPH electrochemical immunoassay. The CV of Fer-DPH is observed in curve a; upon addition of GOx and glucose, a large catalytic current is observed in curve b; upon addition of DPH-antiserum the catalytic current is almost completely inhibited in curve c; and after addition of DPH, due to the release of Fer-DPH from the antibody complex by the competitive binding of DPH, the catalytic current is recovered in curve d. The increase in current from curve c to curve d, is proportional to the amount of DPH added, and can be quantitated to produce a standard curve of DPH (pharmacologically relevant range) as shown in figure 3.

Currently, experiments aimed at producing a reagentless electrochemical immunoassay using a GOx/PP/GC electrode are in progress. GOx/PP/ GC electrodes were examined for their response to ferrocene derivatives. The GOx/PP/GC electrodes were potentiostatted at 0.5 V, in an oxygenfree solution containing a measured amount of ferrocene. After addition of an excess of oxygenfree glucose solution, the current increased as expected from figure 1. The catalytic current increased linearly with ferrocene (10^{-4} mol/L) . Extrapolation to zero ferrocene shows a current increase (5 nA) due to the addition of glucose to a solution that contained no electron-transfer mediator. An explanation for this current increase may be that electrons are transferred directly from the polypyrrole that surrounds the GOx to its active center. This hypothesis is currently under investigation by monitoring the disappearance of glucose.

Acknowledgment

We thank the Research Triangle Institute staff: E. Holt for the immunological studies and D. Rector for synthesis, and Dr. R. W. Murray of UNC for helpful discussions. This work was funded by the Army Research Office under Contract Number 85-G-05201.

Figure 1. The catalytic cycle of GOx using ferrocene derivatives as electron-transfer mediators interrupted by the binding of an antibody to a ferrocene-antigen conjugate.

Figure 2. Cyclic voltammograms of Fer-DPH conjugate in aqueous 0.5 mol/L KCl at pH 7 with 10% CH₃CN. a) 200 mmol/L Fer-DPH, b) after addition of 40 mmol/L glucose and 0.8 mmol/L GOx, c) after addition of anti-DPH serum, d) after addition of DPH.

Figure 3. Calibration plot for electrochemical immunoassay of DPH.

References

- Schlapfer, P., Mindt, W., and Racine, Ph., Clin. Chem. Acta 57, 283 (1974).
- [2] Alecsandrovskii, Y. A., Beshikina, L. V., and Rodionov, Y. V., Biokhimiya 46, 708 (1981).
- [3] Cass, A. A. G., Davis, G., Graeme, D. F., Hill, H. A. O., Aston, W. J., Higgins, I. J., Plotkin, E. V., Scott, D. L., and Turner, A. P. F., Anal. Chem. 56, 667 (1984).
- [4] Crumliss, A. L., Hill, H. A. O., and Page, D. J., J. Electroanal. Chem. 206, 327 (1986).
- [5] Albery, W. J., Bartlett, P. M., and Cransten, D. H., J. Electroanal. Chem. 194, 223 (1985).
- [6] Lange, M. A., and Chambers, J. Q., Anal. Chim. Acta 175, 89 (1985).
- [7] Umaña, M., and Waller, J., Anal. Chem. 58, 2979 (1986).
- [8] Umaña, M., and Waller, J., Proc. of the U.S. Army CRDEC Scientific Conference on Chemical Defense Research, Vol. 2, 18–21 November 1986, p. 879.
- [9] Foulds, N. C., and Lowe, C. R., J. Chem. Soc. Faraday Trans., 1259 (1986).
- [10] Glerian, K. D., Hill, H. A. O., McNeil, C. J., and Green, M. J., Anal. Chem. 58, 1203 (1986).
- [11] Cook, C. E., Amerson, E., Poole, W. K., Lesser, P., and O'Tuama, L., Clin. Pharm. Therap. 18, 742 (1975).
- [12] Cook, C. E., Kepler, J. A., and Christensen, H. D., Res. Comm. Chem. Pathol. Pharmacol. 5, 767 (1973).
- [13] Nicholson, R. S., and Shain, I., Anal. Chem. 36, 707 (1964).

Liposome-Based Flow Injection Immunoassay System

Laurie Locascio-Brown, Anne L. Plant, and Richard A. Durst

Center for Analytical Chemistry National Institute of Standards and Technology Gaithersburg, MD 20899

The development of many biochemical assays is dependent upon the specific interaction of an antigen with its antibody. This interaction is usually monitored using secondary labels with the most popular immunoassays employing fluorescent or radioactive tracers for detection of a single binding event. We are developing a novel flow injection analysis (FIA) system which contains an immunospecific reactor column and utilizes liposomes for detection. The fluorophore-loaded liposomes used in this assay can be made to provide signal enhancement in the range of one thousand to one million times per binding event making fluorescent assays competitive in sensitivity with radioimmunoassays.

Liposomes are spherical structures composed of phospholipid bilayers that form spontaneously when phospholipid molecules are dispersed in water. The interior and exterior environments of liposomes are aqueous and, therefore, liposomes can be prepared with large numbers of water-soluble marker molecules trapped in their internal aqueous space. Liposomes are prepared by the injection method [1] from a mixture of dimyristoylphosphatidylcholine: cholesterol: dicetyl phosphate with a molar ratio of 5:4:1. Approximately 1×10^3 carboxyfluorescein molecules are encapsulated inside each liposome when the liposomes are formed in 3 mmol/L carboxyfluorescein solution. The liposomes may be "sensitized" to a particular antigen through covalent binding of that antigen to the polar head group of a phospholipid molecule which is incorporated into the lipid mixture at about 1 mol % prior to liposome formation. When the liposome is formed in water, approximately half of the antigen will be exposed to the external solution, and, therefore, will be available to interact with antibody binding sites. The combining of antigen on these "sensitized" liposomes with antibody can then be monitored through the fluorescence of the encapsulated marker molecule. In this assay, each binding event is amplified approximately 1000 times. Liposomes containing 3 mmol/L carboxyfluorescein are about 0.1 μ m in diameter, and have a polydispersity of 0.1 which corresponds to a size distribution of 0.5% as determined by photon correlation spectroscopy with data analysis using the cumulants method [2]. The diffusion coefficient of these liposomes in water was determined to be 5×10^{-8} cm²/s, and the liposomes contained 1–5 lamellae per liposome. These liposomes have been determined to be stable for greater than 3 months in TRIS buffer at room temperature.

The flow injection system contains a glass reaction column (2.0 mm i. d.×99.5 mm; total volume of 155 μ L) packed with nonporous glass beads 250 ± 40 µm in diameter (60-80 mesh) which provide the solid phase for the immuno-specific reaction. The antibody is covalently bound to the solid support in a manner which ensures the proper orientation of the antibody binding site such that there is very little loss in activity. The antibody is prepared for binding by initially cleaving the Fc portion of the antibody with pepsin leaving an $F(ab')_2$ fragment attached in the hinge region through a disulfide bond. Reducing this disulfide bond yields two Fab' fragments with equal affinity for antigen binding and with a sulfhydryl group at the base of the fragment available for attachment. Covalent immobilization of this Fab' fragment is achieved through silanization of the beads with an aminosilane reagent. An amide bond is formed between the aminosilane and a difunctional succinimidyl-maleimido linking agent. The Fab' fragment is then easily attached to the maleimido group through the sulfhydryl group at the base of the antibody fragment (fig. 1). Several preparations of nonporous soda lime glass beads derivatized with a monofunctional silane have proven to be stable in a packed column for 7 d when subjected to a flow rate of 1 mL/min in slightly basic TRIS buffer. Quantitation of silanized sites is accomplished through acetylation of the amino group using ¹⁴Clabeled acetic acid. Detection of the interaction between sample antigen (analyte) molecules, and the covalently immobilized antibodies is achieved by competition with liposomes that are "sensitized" with antigen.

The flow properties of liposomes in flow injection systems were investigated to determine optimal conditions for competitive immunochemical binding events in a heterogeneous sample. It was found that due to the large differences in diffusion coefficients of liposomes and small solution molecules, some separation of the sample and liposome solution boluses occurred prior to the introduction of the mixture onto the column. This precolumn separation reduces the sensitivity of the assay since the arrival of the liposome bolus precedes the sample bolus, and many sites become saturated before any competition can take place. Precolumn mixing of the liposome suspension reduces the separation of the boluses, and a simple solution to the problem was found in simultaneous separate injection of the liposome-antigens and free antigens. The liposome-antigens were injected using a knitted sample loop while sample solutions were injected through a straight sample loop [3] as shown in figure 2. This manipulation was sufficient to cause significant precolumn bolus overlap, and allowed the full benefit of performing a competitive assay.

The stability of liposomes was studied when exposed to the materials and flow rates commonly used in a flow injection apparatus. Liposomes were found to be unstable when exposed to the underivatized glass bead column due to the loss of lipid from the liposome bilayer to hydrophobic sites on the column. Conditioning of the system with lipid prior to the introduction of liposomes helped to stabilize the structures by saturating any exposed hydrophobic sites. The sites remained saturated with continuous use of the system for 2 weeks due to the slow partitioning of the lipid into the aqueous phase. The liposomes were also tested under higher flow rates to determine the degree of rupturing due to shear forces. No leakage of carboxyfluorescein from the structures was observed when exposed to flow rates of 2 mL/min which is typical for use in FIA. The results obtained from injections of liposome samples after conditioning were very reproducible with consistency in dispersion and peak symmetry.

The hydrodynamic characteristics of liposomes were studied extensively to determine the feasibility of using liposomes as analytical reagents in flowing systems. Liposomes are bulky structures in a typical flow injection system with a diameter that corresponds to roughly 1/5000 of the tube diameter. The heterogeneity and the size of the liposomes in solution made it important to determine if the behavior of these structures was consistent with that predicted by the theory developed for a homogeneous solution containing molecules of a similar diffusion coefficient. In theory, the dispersion squared is linearly related to the length of straight tubing through which the sample flows. In a homogeneous solution, the slope of this plot is a constant which is inversely proportional to the square root of the diffusion coefficient. When heterogeneous mixtures are injected into a flowing stream, we can expect some partitioning of the particulates out of the flow stream resulting in uncharacterized dispersions. Plots of carboxyfluorescein-loaded liposomes and carboxyfluorescein solution behavior gave straight lines with correlation coefficients of 0.92 and 0.99, respectively. The ratio of the respective slopes is approximately equal to the inverse ratio of the square root of the diffusion coefficients suggesting that liposome behavior closely follows the behavior of a homogeneous solution. The behavior of liposomes in other common components of a flow injection system, such as a knitted delay tube and a packed reactor column, showed that liposome flow mimicked the theoretical behavior of a homogeneous solution. Therefore, liposome suspensions may be used in FIA as calibration solutions, and so are appropriate analytical reagents in methods of continuous analysis.

Figure 1. Silanization of nonporous glass bead surface, and covalent attachment of Fab' fragment.

Figure 2. Flow injection system with simultaneous double injection. Xs represent microprocessor-controlled solenoid pinch valves.

References

- Batzri, S., and Korn, E. D., Biochim. Biophys. Acta 298, 1015 (1973).
- [2] Koppel, D. E., J. Chem. Phys. 57, 4814 (1972).
- [3] Locascio-Brown, L., Plant, A. P., and Durst, R. A., Anal. Chem. 60, 792 (1988).

Conferences/Events

WORKSHOP ON MICROSTRUCTURE AND MACROMOLECULAR RESEARCH WITH COLD NEUTRONS National Bureau of Standards, Gaithersburg, MD, April 21–22, 1988

On April 21-22, 1988, over 160 scientists, including 25 from industry, 70 from universities and 30 from government laboratories and agencies (not including NBS), gathered at NBS, Gaithersburg, for a Workshop on Microstructure and Macromolecular Research with Cold Neutrons. This workshop was one of a series, each devoted to a major area of research with cold neutrons, that are being held in conjunction with the development of the Cold Neutron Research Facility (CNRF) at the NBS 20 MW research reactor as a national, useroriented research facility. The dual aims of this workshop were to highlight research opportunities in the application of cold neutron techniques to the study of submicron structure in materials and macromolecular systems, and to inform and involve the scientific community in the planning for instrumentation for the CNRF.

The long wavelength neutrons that are produced by a cold moderator, such as the 40 K D_2O -ice moderator recently installed in the NBS reactor, are a powerful probe of both the structure and dynamics of materials. The emphasis of this workshop was on the structural applications of cold neutrons. Thus techniques such as small angle neutron scattering (SANS), which probes structure in bulk materials on the 1 to 100 nm scale, and the relatively new technique of neutron reflectometry, which probes near surface structure to depths of tenths of microns, were discussed in detail. For both of these techniques, cold neutrons substantially extend the distance scale probed and improve the spatial resolution beyond what has been possible with thermal neutrons.

The first morning session of the workshop on Scientific Opportunities with Cold Neutrons opened with a review by T. Russell (IBM Almaden Research Center) of the impact SANS has had on Polymer Science in general, and on the understanding of the interactions and correlations in polymer mixtures in particular. Russell also discussed recent developments, important to the development of polymer composites, in the use of grazing incidence neutron and x-ray scattering for the evaluation of conformation changes and concentration gradients in polymer mixtures near surfaces and at interfaces. The use of scattering methods to characterize such seemingly dissimilar materials as porous rock and agglomerated colloids was the subject of the talk by S. K. Sinha (Exxon Research and Engineering Co.). Sinha presented a general formalism which unified the concepts of surface and mass fractals and showed how the selfsimilar nature of fractal structures is most directly revealed through scattering measurements. Several examples were presented which underscored the need for scattering instruments which probe a wide range of length scales in order to accurately determine the nature and limits of fractal behavior.

The second half of this session was devoted to applications of neutron reflectometry, reviewed by

R. K. Thomas (Oxford University), and grazing incidence diffraction, covered by H. Zabel (University of Illinois). Thomas discussed the complementarity of neutron and x-ray reflection techniques for studying inhomogeneities normal to a surface or interface. He gave several examples of reflection measurements on surfactants and polymers adsorbed at the surfaces of solutions which demonstrated the use of contrast variation to enhance the scattering from the adsorbed layer, which is the particular advantage of the neutron technique. In his talk, H. Zabel outlined the basic theory of the novel technique of surface dynamical diffraction and reflection and presented the first neutron results obtained for a Si(110) surface. This technique, which exploits the interplay between simultaneous Bragg diffraction and surface reflection to provide structural information both parallel and normal to a surface, is potentially a powerful probe of surface reconstruction, roughening transitions, and the nature of surface magnetic structures.

The first afternoon session was devoted entirely to reviewing the current status and future plans for the NBS CNRF. NBS Deputy Director Ray Kammer opened the session by outlining the overall scope of the CNRF as a national user facility open to all qualified researchers on the basis of scientific merit. He went on to describe the user policy for the facility and the plan for instrument development which allows for one-third of up to 15 experimental stations to be developed by groups outside NBS, so-called Participating Research Teams, who would then receive three-fourths of the available beam time. Kammer's policy overview was followed by a technical overview by J. M. Rowe of NBS who described the architectural design of the experimental hall and office wing (scheduled for completion in early 1989) associated with the CNRF, and the network of totally reflecting guide tubes that will transport neutrons from the reactor cold source to the CNRF. He also presented data on the performance of the D₂O-ice cold source now in operation in the reactor and gave a timetable for projected instrument development.

The remaining four talks in this session each focused on a specific cold neutron technique and presented design concepts for its implementation in the CNRF. Described were a novel SANS instrument that would utilize a doubly curved mirror to focus a beam onto a detector, the current state of development of neutron supermirrors and their use both to enhance flux and to produce polarized neutron beams, a neutron reflectometer suitable for measurements on both solid and liquid surfaces, and an improved facility for neutron depth profiling which would utilize a converging neutron guide to increase the sensitivity of this technique by more than one order of magnitude over what is now possible using thermal neutrons.

The application of cold neutron methods to the study of submicron structure in specific classes of materials was the theme of the second morning session of the workshop. J. Hayter (Oak Ridge National Laboratory) opened the session with a survey of submicron chemical systems such as colloids and micellar solutions whose structure and interactions can be probed effectively with cold neutrons, while G. Zaccai (Institut Laue-Langevin) gave a corresponding survey of applications to biological systems such as protein solutions and DNAcomplexes. Metallurgical applications, with an emphasis on time-resolved studies of phase separation in binary alloys, were reviewed by B. Gaulin (Oak Ridge National Laboratory). Finally, R. Page (Southwest Research Institute) gave a critical review of current and potential applications in the study of damage accumulation, phase transformations, and processing of advanced ceramics.

The final afternoon of the workshop consisted of three discussion sessions which provided participants with the opportunity to comment upon or inquire further about any aspect of the CNRF. The first session on Macromolecular Dynamics explored the potential impact which cold neutron inelastic scattering techniques could have in the study of molecular motions in macromolecular systems. C. Han of the NBS Polymers Division along with Z. Akcasu and S. Krimm, both of the University of Michigan, stimulated the discussion by giving their views of the important scientific issues which could be addressed with advanced neutron scattering instrumentation. This discussion flowed naturally into the next session on Instrumentation and Techniques in which progress in several key areas of cold neutron instrumentation were highlighted. The final session on User Needs focused on the practical needs of the potential user of the CNRF. This discussion was wide-ranging and touched on security requirements for access to the facility, proposal procedures, travel support, housing availability, etc. Several participants stressed the need for adequate sample preparation facilities particularly for biological samples which often have limited lifetimes and thus cannot be prepared far in advance.

One clear impression that emerged from the workshop is that there is a strong and growing in-

terest in the scientific potential of the relatively new techniques of neutron reflectometry and grazing incidence diffraction for the study of near surface and interface structure. As a result of this expressed interest, the development of a state-ofthe-art neutron reflectometer for the CNRF will be given increased priority. This instrument, along with a 30 m SANS machine, are expected to be the first instruments to go into operation when the CNRF guide hall is completed.

Copies of the workshop program containing the abstracts of the invited talks, and a 12-page booklet describing the CNRF may be obtained by contacting Carol O'Connor, National Institute of Standards and Technology, Bldg. 235, Rm. A106, Gaithersburg, MD 20899, 301/975-6240.

C. J. Glinka, J. A. Gotaas, and C. O'Connor Institute for Materials Science and Engineering National Institute of Standards and Technology Gaithersburg, MD 20899

Conferences/Events

U.S.-JAPAN PANEL ON WIND AND SEISMIC EFFECTS National Bureau of Standards, Gaithersburg, MD, May 17–20, 1988

The U.S.-Japan Panel on Wind and Seismic Effects provides for cooperative activities of 15 U.S. and 6 Japanese Agencies to reduce damage from strong winds and earthquakes. The Panel is part of the U.S.-Japan Natural Resources Development Program under the aegis of the U.S.-Japan Cooperative Science Program of 1961. The National Bureau of Standards (NBS) provides the U.S.-side chairman and secretariat; Dr. Richard N. Wright, Director of the Center for Building Technology (CBT) and Noel J. Raufaste of CBT, respectively. Annually, the Panel conducts a 1-week joint technical meeting where recent research results are discussed. A technical study tour follows the Panel meetings.

This year (1988) the United States hosted the 20th joint meeting and visits to U.S. laboratories and construction projects. The meeting was held at NBS during 17–20 May. Technical presentations focused on: Wind Engineering; Earthquake Engineering; Storm Surge; Tsunamis; U.S.-Japan Cooperative Research Program (where NBS is performing cooperative research in seismic behavior of large concrete bridge piers); summaries of recent Panel Workshops; and a report from each side on Two Decades of Panel Accomplishments and Future Work.

During 1988–89, the Panel members agreed to performing large-scale testing of precast seismic structural systems, advance technologies in application of active and passive control of buildings and other structures, improve knowledge of strong motion data on performance of buried pipeline systems, and verify the effectiveness of retrofitting and strengthening methods for structures and soils. Five workshops are being planned on: repair and retrofit of buildings, sensor technology applied to large engineered systems, earthquake hazard and risk assessment, disaster prevention for lifeline systems, and loads on bridges. Also, a planning meeting will address remedial treatment of liquefiable soils.

Panel accomplishments during the past year included: more than six guest researchers exchanged between U.S. and Japanese laboratories; correlation of data from the Whittier Narrows and the Mexico City earthquakes with Japanese and U.S. design practices; joint research in large-scale testing of masonry and lifeline structures; sharing repair methods for civil engineering structures; exchanged data from strong motion arrays to study causes and effects of horizontal variations in ground motions and effects of overburden on intensity of ground shaking; and translated into English and published the Japanese publication, Manual for Repair Methods of Civil Engineering Structures Damaged by Earthquakes. This report is a valuable reference for development of U.S. building practices. The data produced by the joint Panel influence on-going U.S. and Japan structural engineering research, and guide improvements of building codes and standards of both countries.

Noel J. Raufaste

Center for Building Technology National Engineering Laboratory National Institute of Standards and Technology Gaithersburg, MD 20899

Subject and Author Index to Volume 93

A

Abe, Amy, James E. Freeman,	
D. Scott Aldrich, and Steven J. Borchert,	
Pharmaceutical Trace Analysis	242
Abramson, Fred P., and	
Donald H. Chace, Applications	
of the Reaction Interface/Mass	
Spectrometer Technique to the	
Analysis of Selected Elements and	
Nuclides from Submicrogram Quantities	
of Biological Macromolecules and	
Xenobiotics	419
Absolute Cross-Section Measurements	112
in XOO Instruments: The NBS Bound Robin	431
absorbed dose	602
A course un A polycing The Dala of	005
Accuracy in Analysis. The Role of	010
Standard Reference Materials	213
Accuracy in CPAA for C, N and	
O and in ERDA and NRA for H	482
Accuracy in Furnace Atomic	
Absorption Spectroscopy	445
Accuracy in Microanalysis by Electron	
Energy-Loss Spectroscopy	372
Accuracy in Quantitative Electron	
Probe Microanalysis	509
Accuracy in the Determination of Chlorinated	
Dibenzo-p-Dioxins and Dibenzofurans in	
Environmental Samples	241
Accuracy in Trace Analysis	217
Accuracy of Surface Analyses. The	387
Accurate Measurement of Vitamins in	207
Foods and Tissues	367
accurate trace chemical analysis	202
	220
H Duf and K Calcab Stringing	
H. Kuj, una K. Schord, Suppling	
voltammetric Assay of Trace Technetium	
with a TOPO Coated Glassy Carbon	
Electrode	493
acidic and basic air pollutants	283
Ackerman, Stanley A., John G. Phillips,	
Donald W. Thayer, Jay B. Fox, Jr., and	
Ronald K. Jenkins, Effects of Ionizing	
Radiation on Nutrients in Foods	364
activity coefficients	161
Adams, John R., Michael S. Epstein,	
Barry I. Diamondstone, and Thomas E. Gills,	
A New River Sediment Standard Reference	
Material	234
adipose tissue.	343
Adsorptive Stripping Voltammetry –	0.0
A New Electroanalytical Avenue	
for Trace Analysis	480
aerosal activation	-109 551
Abuja S G. Thompson and I Swith	551
Trace (Illustrations A polyage of Ilestable	
Trace / Ultratrace Analyses of Unstable	
Compounds: Investigations on Hydrazobenzene	.
and Azobenzene	344
alcohols	161

Aldrich, D. Scott, Steven J. Borchert, Amy Abe, and James F. Freeman, Pharmaceutical	
Troce A polysis	212
	242
aikali uranyi(2+)phosphates	221
Alkylation of DNA In Vivo:	
Development of Analytical	
Methodology for Trace Quantitative	
Analysis	419
alkylbenzenes	161
Alofs, D. J., D. E. Hagen, and D. R. White,	
Condensation Method for Humidity	
Measurement in the UMR Cloud	
Simulation Chamber	551
ombiant air 301	270
ambient lause	419
	283
ammonium pyrrolidine ditnicaroamate-	
methyl isobutyl ketone-furnace	
atomic absorption spectrometry	305
ammonium uranyl(2+)phosphate	557
analysis	213
Analysis at the Atomic Level: The Atom	
Probe Field-Ion Microscope	374
Analysis of Gaseous and Particle-Associated	
PAH and Nitroarenes in Ambient Air	279
analysis of PCBs and pesticides in human	217
adinose tissue	3/2
Analysis of Trace Plements in	545
Mathamphatamina Undrachlarida hu	
Internationalise Council of Disease Mars	
Inductively Coupled Plasma-Mass	
Spectrometry	469
analytical balance	565
analytical capabilities of inductively	
coupled plasma-mass spectrometry	433
analytical chemistry	207
Analytical Chemistry and Material	
Purity in the Semiconductor Industry	396
analytical electron microscope	369
analytical methodology	419
analyzed reference materials	264
Anderson, T. M., R. E. Thompson, and	
I R Tuschall IIS RPA Reference Standards	
and Quality Assurance Materials for the	
Analysis of Environmental Pollutanta	227
Analysis of Environmental Fonutanis	411
Annular Depuders and Eilden Dasha Designed to	411
Annular Denuders and Filter Packs Designed to	
Measure Ambient Levels of Acidic and Basic	
Air Pollutants	283
Application of Flame Spread Theory to	
Predict Material Performance, The	61
application of reduced palladium as	
a chemical modifier	450
Applications of Lasers in	
Bioanalytical Chemistry	502
Applications of Mass Spectrometry	
in Polymer Analysis: Use of	
GC-GC-High Resolution MS to	
Identify Photo- and Oxidative	
Degradation Products of RPA_	
Polycarhonate	204
	574

Volume 93, Number 6, November-December 1988 Journal of Research of the National Institute of Standards and Technology

A sufficient of the Decention	
Applications of the Reaction	
interface/ Mass Spectrometer Technique	
to the Analysis of Selected Elements	
and Nuclides from Submicrogram Quantities	410
of Biological Macromolecules and Aenoblotics	419
Appropriate Reference Parameters for the	
Evaluation of Elemental Analysis Data	224
from Biomedical Specimens	326
arc (argon, blackbody, and hydrogen)	21
Arey, Janet, Barbara Zielinska, Roger Atkinson,	
and Arthur M. Winer, Analysis of Gaseous and	
Particle-Associated PAH and Nitroarenes in	
Ambient Air	279
argon	85
aromatic compounds in natural samples	
by Shpol'skii Spectroscopy	441
arsenic species in urine	315
Arunachalam, J., S. Jaikumar,	
S. V. Burangey, S. Gangadharan, and	
S. Natarajan, Multitechnique	
Approach to Trace Characterization	
of High Purity Materials: Gallium	400
Assessment of the Analytical Capabilities	
of Inductively Coupled Plasma-Mass	
Spectrometry	433
Atkinson, Roger, Arthur M. Winer,	
Janet Arey, and Barbara Zielinska, Analysis of	
Gaseous and Particle-Associated PAH and	
Nitroarenes in Ambient Air	279
atom probe field-ion microscope	374
atomic absorption spectrometric	
applications to clinical-biomedical trace	
metal analyses	334
atomic absorption spectrometry	350
atomic level	374
atomic spectroscopy	447
automated interpretation of large EPMA	
data sets	260
Automated Manufacturing Research Facility	539
Automation and Application of a	
Direct-Current Plasma Emission	
Spectrometer	458
azobenzene	344

B

Bailey, George G., and Daniel C. Paschal,	
Determination of Manganese in Serum	
with Zeeman Effect Graphite Furnace	
Atomic Absorption	323
Barker, Todd Q., Harlan R. Wilk,	
Steven L. Monfre, and Steven D. Brown,	
Multicomponent Analysis in Static and	
Flow Systems Using Digital Filters	253
Barman, B. N., Daniel E. Martire, and	
Michele (Miller) Schantz, Partitioning of	
Alkylbenzenes and Aliphatic Alcohols between	
Hexadecane and Methanol-Water Mixtures	161
Bavdaz, M., N. Gurker, P. Ketelsen,	
W. Petersen, M.H. Salehi, T. Dietrich,	
and A. Knöchel, Synchrotron Radiation	
Excited Fluorescence Micro-Analysis	
Using a New Imaging Technique	379
Beach, L. M., T. M. Rettberg, and	
D. E. Shrader, Graphite Furnace AAS:	
Application of Reduced Palladium as	
a Chemical Modifier	450

Beekman, D. W., E. H. Taylor, V. Lorch,	
L. J. Moore, J.E. Parks, and M. T. Spaar,	
Ultra-Trace Elemental and Isotopic	
Quantification for Neonatal Nutrition	
Studies	328
Benne, Dietrich, and Venkalesn Iyengar,	
Appropriate Reference Parameters for	
The Evaluation of Elemental Analysis	226
Pallang Ion M. Pickard A. Durrt	320
and Possence Vannuck Homogeneous	
Electrochemical Immunoassy Using	
a Chemically Modified Electrode	506
Reman Fleaner Some Atomic Absorption	500
Spectrometric Applications to Clinical-	
Biomedical Trace Metal Analyses	334
Beugelsdijk, Tony I., and Dan W. Knobeloch.	551
Laboratory Robotics in Radiation	
Environments	268
Biochemical Applications of	200
Chromatography/SIMS	499
biological macromolecules	419
biological reference materials	360
Biological Reference Materials for	
Trace Element Analysis: What is New?	318
blackbody	7
Blyshak, L., S. L. Neal, I. M. Warner,	
G. Nelson, and G. Patonay, Enhanced	
Multidimensional Luminescence	
Measurements Through Cyclodextrin	
Complexation	438
BOD ₅	311
Borchert, Steven J., Amy Abe,	
James E. Freeman, and D. Scott Aldrich,	
Pharmaceutical Trace Analysis	242
BPA-Polycarbonate	394
Braun, Walter, Philippe Dagaut, and	
Barry C. Cadoff, Kinetic Studies Using	
a Highly Sensitive Microphone Detector	643
Bridges, J. Mervin, William R. Ott, and	
Jules Z. Klose, Radiometric Calibrations of	
Portable Sources in the Vacuum Ultraviolet	21
Brown, D., G. Legere, and P. Burgener,	
ICP Trace Element Analyses from	
Fusion Dissolution	454
Brown, R., N. E. Sanderson,	
P. Charalambous, and D. J. Hall,	
Quantitative Aspects of Glow	101
Discharge Mass Spectrometry	426
Brown, K. K., P. Tomboulian, and	
S.M. Walters, Trace Level Quantitation	201
Drawn Compounds Using PPTLC	301
Brown, Sieven D., 1000 Q. Burker, Harlan P. Wills and Staym I. Morfree	
Multicomponent Analysis in Statis and Flow	
Systems Using Digital Filters	252
Reven W F M S Tung N Fidelman and	233
B Sieck Octocalcium Phoenhate	
Solubility Product from 4 to 37 °C	613
Bruna Thomas J., Solvent-Free Injection in	013
Supercritical Fluid Chromatography Uking	
Sintered Glass Deposition	655
Buckley, T. J., and J.M. Rukkers. A Computer	000
Controlled Data Acquisition System for	
Combustion Calorimetric Experiments,	145
A 7	

Bulkin, Bernard J., The Importance of Quantitative	
Trace Analysis in Industry Today	189
Burangey, S. V., S. Gangadharan,	
S. Natarajan, J. Arunachalam, and	
S. Jaikumar, Multitechnique	
Approach to Trace Characterization	
of High Purity Materials: Gallium	400
Burgener, P., D. Brown., and G. Legere,	
ICP Trace Element Analyses from	
Fusion Dissolution	454
Busch, K. L., M.S. Stanley, K. L. Duffin,	
and J. C. Dunphy, Biochemical Applications	
of Chromatography/SIMS	499
Byrd, G. D., L. T. Sniegoski, and	
E. White V. Determination of 3-Quinuclidinyl	
Bezilate in Urine	293

С

Cadoff, Barry C., Walter Braun, and	
Philippe Dagaut, Kinetic Studies Using a Highly	
Sensitivie Microphone Detector	643
calibration	53, 565
calibration, grid plate	41
calibration, radiometric	21
calibration standards	264
calibration, uncertainty	53
calibrations of portable sources in the	
vacuum ultraviolet	21
calorimeter	603
capillary electrophoresis	406
CAPPIS	298
carbon-11 labelled carboxylic	
acids	338
Carroll, Raymond L. Clifford H. Spiegelman	
and Robert L. Watters Jr. Heteroscedastic	
Calibration Using Analyzed Reference	
Materials as Calibration Standards	264
Caruso Joseph A. Microwave Induced	20.
Plasmas as Sources for Atomic	
Spectroscopy	447
Chabala I V I. Wang and	
R Lati-Satti Imaging Microanalysis	
of Materials With a Finely Focused	
Weaver Ion Drobe	277
Chace Donald H and	5//
Ered P Abraman Applications	
of the Denotion Interface (Mass	
Spectrometer Technique to the	
Applysic of Selected Elements and	
Mulides from Submissogram Quantities	
of Pielogical Magramalagulas and	
Vershieties	410
Charge Karry I and Marilus Madamar	419
The NPS Vision System in the AMDE	5 20
Chang C i B C Cooke and	339
L P. O'Lean Alleviation of DNA In Vivos	
J. K. O Lear, Alkyladoli of DIVA III VIVO:	
Development of Analytical Methodology	410
for Trace Quantitative Analysis	419
Chang, S. C., I. S. Kao, C. P. Iang, and	
M.R. Lee, Studies of Limit of	
Detection on 2,4,0-1 militrotoiuene	100
(INI) by Mass Spectrometry	428
Characterization of High Purity Suicides	239
Charalambous, P., D. J. Hall, K. Brown,	
and N.E. Sanderson, Quantitative	
Aspects of Glow Discharge Mass	10-
Spectrometry	420

chemical blanks and chemical yields	228
chemically active electrode materials	488
chemically modified electrode	506
Chemiluminescence Detection in Flowing	
Streams – Immobilized and Solid-State	504
Reagents.	501
Chemometrics in Europe: Selected Results	257
Chemometrics and Standards	193
Cheung, I. I., C. W. McLeoa, I. Zhang,	
I. Cook, A. Cox, and A. R. Date, Flow Injection Inductively Coupled	
Plasma Spectrometry: A New	
Strategy for Elitratrace Analysis	167
chlorinated dibenzo-p-dioxins	241
chromatography	655
chromatography, biochemical applications	499
chromatography, ion	425
chromatography, open tubular liquid	403
chromatography, supercritcal fluid	655
Chromium (III) and Chromium (VI)	305
Ciaccio, Leonard L., and Klaus Hamever,	
An Instrument for Determination of	
Energy Oxygen and BOD ₅	311
Classical Pitfalls in Contemporary	
Nuclear Data Analysis.	479
clinical chemical analysis	336
cloud drop growth	551
CO ₂ laser	643
Cohen, A., P. Ellerbe, R. Schaffer,	
L. T. Sniegoski, E. White V, and M. J. Welch,	
The Development of Definitive Methods for	
Organic Serum Constituents	341
combustion	145
compositional mapping	518
Computer Assisted Pesticide and	-
PCB Identification System (CAPPIS)	298
Computer application	145
System for Combustion Calorimetric	
Bystein for Compussion Calorimetric	145
computer vision	530
Condensation Method for Humidity	557
Measurement in the UMR Cloud Simulation	
Chamber.	551
Conlon. T. W., and J. A. Cookson	001
MeV Ion Beam Analysis	473
contamination or trends in the concentrations	
of trace metals in marine environments	321
convection	603
convective velocity	603
Convective Velocity Effects on a	
Thermistor in Water	603
Cook, Edgar, Mirtha Umāna, Jess Waller,	
Mansukh Wani, and Carol Whisnant, Enzyme-	
Enhanced Electrochemical Immunoassay for	
Phenytoin	659
Cook, I., A. Cox, A. R. Date, Y. Y. Cheung,	
C. W. McLeod, and Y. Zhang, Flow	
Injection-Inductively Coupled	
riasma Spectrometry: A New	100
Strategy for Ultratrace Analysis	402
C. i Chang Alkyletion of DNA In Vivo.	
Development of Analytical Methodology	
for Trace Quantitative Analysis	410

Cookson, J. A., and T. W. Conlon,	
MeV Ion Beam Analysis	473
Cox, A., A. R. Date, Y. Y. Cheung,	
C. W. McLeod, Y. Zhang, and I. Cook,	
Flow Injection-Inductively Coupled	
Plasma Spectrometry: A New	
Strategy for Ultratrace Analysis	462
СРАА	482
Crecelius, Eric A., Detecting Contamination or	
Trends in the Concentrations of Trace	
Metals in Marine Environments.	321
Crews, H. M., R. Massev, D. J. McWeenv, and	
J. R. Dean. Trace Element Speciation in Food:	
A Combined Enzymolysis—SEC-ICP-MS	
Approach	349
Crews. H. M., R. C. Massey.	515
D. J. McWeenv, J.R. Dean, and	
L. Ebdon Some Applications of	
Isotone Analysis of Lead	
in Food by ICP-MS	464
Crilly Paul Renjamin An Evaluation	101
of Jansson's Method to	
Deconvolve Overlanned Gas	
Chromatographic Beaks	412
ortional office reduction	415
arrived arouth	292
Country Stat growth	211
Currie, Lioya A., George A. Kiouaa,	
and Ann E. Snemeld, I race Kadiocarbon	• • • •
Analysis of Environmental Samples	289
Currie, L. A., Chemometrics and Standards	193
cyclodextrin complexation	438
Czae, Myung-Zoon, and Jong-Hyup Lee,	
Range-Programming Stripping Voltammetry	
for Determination of Some Metals in	
Seawater	296

D

Dagaut, Philippe, Barry C. Cadoff, and	
Walter Braun, Kinetic Studies Using a	
Highly Sensitive Microphone Detector	643
data acquisition	145
Date, A. R., Y. Y. Cheung, C. W. McLeod,	
Y. Zhang, I. Cook, and A. Cox,	
Flow Injection-Inductively Coupled	
Plasma Spectrometry: A New	
Strategy for Ultratrace Analysis	462
Davis, R. S., and B. E. Welch, Practical	
Uncertainty Limits to the Mass	
Determination of a Piston-Gage Weight	565
Davis, R. S., M. R. Moldover, J. P. M. Trusler,	
T. J. Edwards, and J. B. Mehl, Measurement of	
the Universal Gas Constant R Using a	
Spherical Acoustic Resonator	85
De Biévre, Paul, Transferring	
Accuracy to the Trace Level	
and Then to the Field	520
De Wit, J. S. M., J. W. Jorgenson,	
R. T. Kennedy, R. L. St. Claire, III,	
J. G. White, and P. R. Dluzneski, Open	
Tubular Liquid Chromatography and	
the Analysis of Single Neurons	403

De Kesel, A., J. Hoste, B. Wallaeys,	
J. Vandenhaute, J. Versieck, and	
L. Vanballenberghe, Biological Reference	
Materials for Trace Element Analysis:	
What is New?	318
Dean, J. R., H. M. Crews, R. Massey, and	
D. J. McWeeny, Trace Element Speciation	
in Food: A Combined Enzymolysis-SEC-ICP-MS	
Approach	349
Dean, J. R., L. Ebdon, H. M. Crews,	
R. C. Massey, and D. J. McWeeny,	
Some Applications of Isotope	
Analysis of Lead in Food by	101
Downia M I N Howards P C Magazi	404
D I MoWarny I Parker M Scotton and	
I. B. Startin, Ethyl Carbonate Analysis in	
Fermented Products: A Comparison of	
Measurements of Mass Spectrometry Thermal	
Energy Analyser, and Hall Electrolytic	
Conductivity Detector	249
Depth Profiling of Trace Constituents	472
Using Secondary Ion Mass Spectrometry	390
Design of Cost-Effective OC Procedures	570
for Clinical Chemistry	218
Detecting Contamination or Trends in the	210
Concentrations of Trace Metals in	
Marine Environments	321
Determination of Chromium (III) and	
Chromium (VI) by Ammonium Pyrrolidine	
Dithiocarbamate-Methyl Isobutyl Ketone-	
Furnace Atomic Absorption Spectrometry	305
Determination of Manganese in Serum with	
Zeeman Effect Graphite Furnace Atomic	
Absorption	323
Determination of 3-Quinuclidinyl Benzilate	
in Urine	293
Determination of Trace Elements in	
Uranium Oxide (U ₃ O ₈) by Inductively	
Coupled Plasma Emission Spectrometry	
and Graphite Furnace Atomic Absorption	
Spectrometry, The	452
Determination of Tributyltin in the	
Marine Environment	277
Determination of Traces of Uranium	
and I norium in Microelectronics	
Constituent Materials.	398
development of evolution with delays	367
for trace quantitative analysical methodology	410
Development of Definitive Methods for	419
Organia Sarum Constituents. The	241
Development of Multi Purpose Diological	341
Development of Munu-rupose Diological	260
de Wit I S M I W Iorgenson P T Konnedu	200
R I. St Claire III I C. White and	
P R Diumeri Open Tubular Liquid	
Chromatography and the Analysis of Single	
Neurons	402
DeZwaan, Jack, and Douglas B. Hooker, Organic	-05
Microanalysis of Submicrogram Samples	245
diagnostic probe	484
Diamondstone, Barry I., Thomas E. Gills.	
John R. Adams, and Michael S. Epstein, A New	
River Sediment Standard Reference Material,	234

dibenzo-p-dioxins	241
dibenzofurans	241
Pesticide and PCB Identification	
System (CAPPIS)	298
Dietrich, T., A. Knöchel, M. Bavdaz,	
N. Gurker, P. Ketelsen, W. Petersen,	
and M. H. Salehi, Synchrotron Radiation	
Excited Fillorescence Micro-Analysis	370
Diffraction Imaging (Topography) with	517
Monochromatic Synchrotron Radiation	577
digital filters	253
direct-current plasma emission	
spectrometer	458
Direct Collide Analysis Lising Sputter	22
Initiated Resonance Ionization	
Spectroscopy (SIRIS)	383
dithiocarbamates and related	
compounds	496
Djordjevic, Nebojsa, Karin E. Markides,	
and Milton L. Lee, Supercritical	
to Trace Analysis	400
Dluzneski, P. R. J. S. M. de Wit.	-103
J. W. Jorgenson, R. T. Kennedy,	
R. L. St. Claire III, and J. G. White,	
Open Tubular Liquid Chromatography and	
the Analysis of Single Neurons	403
Dahum Pengld C. Uni Lean	419
Bruce Steiner, and Masao Kurivama.	
Diffraction Imaging (Topography)	
with Monochromatic Synchrotron Radiation	577
Doiron, Theodore D., Grid Plate Calibration	
at the National Bureau of Standards	41
Domen, Steve R., Convective Velocity	602
Dayle Matthew I. D. Scott Wright	005
H. Brian Halsall, William R. Heineman,	
Sarah H. Jenkins, and Kenneth R. Wehmeyer,	
Electrochemical Enzyme Immunoassay	491
Duffin, K. L., J. C. Dunphy, K. L. Busch	
and M. S. Stanley, Biochemical	400
Dunn. William I., III. S. L. Emery, and	477
Donald R. Scott, Pattern Recognition	
Classification and Identification of Trace	
Organic Polutants in Ambient Air from	
Mass Spectra.	281
Dunphy, J. C., K. L. Busch, M. S. Stanley,	
of Chromatography/SMS	400
Durst, R., S. Gomiscek, M. Verber.	777
and V. Francetic, Electrochemical	
Studies of Dithiocarbamates and	
Related Compounds	496
Durst, Kichard A., Laurie Locascio-Brown,	
and Anne L. Flant, Liposome-Based Flow Injection Immunoassay System	662
Durst, Richard A., Rosanne Kannuck	003
and Jon M. Bellama, Homogeneous	
Electrochemcial Immunoassy Using	
a Chemically Modified Electrode	506

E

Eatherton, Randy L., and Herbert H. Hill, Jr., Ion Mobility Spectrometry after Chromatography – Accomplishments,	
Goals, Challenges Ebdon, L., H. M. Crews, R. C. Massey, D. J. McWeeny, and J.R. Dean,	425
Analysis of Lead in Food by ICP-MS	464
Edwards, T. J., J.B. Mehl, R. S. Davis, M. R. Moldover, and J. P. M. Trusler, Measurement of the Universal Gas Constant R Using a	
Spherical Acoustic Resonator	85
in Foods	364
by Electron Energy-Loss Spectroscopy	372
Eidelman, N., B. Sieck, W. E. Brown, and M. S. Tung, Octacalcium Phosphate	
Solubility Product from 4 to 37 °C	613
Quality Control for Trace Analysis	221
trace analysis	489
Electrochemical Enzyme Immunoassay Electrochemical Studies of	491
Dithiocarbamates and Related Compounds	496 372
electron probe microanalysis	509
electrooptic materials.	577
elemental analysis.	269
Ellerbe, P., L. T. Sniegoski, J. M. Miller,	
and E. White V, An Isotope Dilution Mass	
Spectrometric (IDMS) Method for the	
Determination of Vitamin C in Milk,	367
Ellerbe, P., R. Schaffer, L. T. Sniegoski,	
E. White V, M. J. Welch, and A. Cohen,	
The Development of Definitive Methods for	
Organic Serum Constituents	341
Emery, S. L., Donald R. Scott, and	
Classification and Identification of Trace	
Organic Polutants in Ambient Air from	
Mass Spectra	281
energy oxygen	311
energy transfer	643
Enhanced Multidimensional Luminescence	
Measurements Through Cyclodextrin	
Complexation	438
environmental samples	, 307
Enzyme-Ennanced Electrochemical	650
anzumolysis combined	2/0
enithermal neutron activation	224
Epler, K. S., T. C. O'Haver, M. S. Epstein,	221
and R. E. Jenkins, Automation and Application	
of a Direct-Current Plasma Emission	
Spectrometer	458
EPMA data sets	260
Lessen, Michael S., Barry I. Diamondstone, Thomas F. Cilla and John D. Adama A. Norr Direct	
LINGTHUS E. GUIS, UND JOHN K. AUAMS, A NEW KIVER Sediment Standard Reference Material	721
Soument Stanuary Reference Matchal	234

Volume 93, Number 6, November-December 1988 Journal of Research of the National Institute of Standards and Technology

Epstein, M. S., R. E. Jenkins, K. S. Epler, and T. C. O'Haver, Automation and Application of a Direct-Current Plasma Emission Spectrometer. 458 equilibrium constants. 613	3
and T. C. O'Haver, Automation and Application of a Direct-Current Plasma Emission Spectrometer	3 3
of a Direct-Current Plasma Emission Spectrometer	3 3
Spectrometer	3 3
equilibrium constants	3
	l
error estimation in gamma-ray	l
spectrometry 481	
Espourteille F A C D Rice R G Huggett	
and M A Unger Determination of Tributyltin	
in the Marine Environment 27	7
Ethyl Carbonata Analysis in Earmantad Products	,
A Comparison of Manyaramenta of Man	
A comparison of Measurements of Mass	
Spectrometry, Thermal Energy Analyser, and	
Hall Electrolytic Conductivity Detector	,
evaluation of elemental analysis	
data from biomedical specimens	ć
Evaluation of Jansson's Method to	
Deconvolve Overlapped Gas	
Chromatographic Peaks, An 413	3
Evenson, Merle A., Inaccuracies in	
Clinical Chemical Analysis	5
Evolutionary Factor Analysis	5
Ewald, M., P. Garriques, and	
E. Parlanti, Trace Analysis of	
Aromatic Compounds in Natural Samples	
by Shpol'skii Spectroscopy	1
expansion cloud chamber	1
expert system	ā
Expert Systems and Robotics. 20	9
exposure assessment studies	5
extraction	4

\mathbf{F}

factor analysis	256
Factor, Arnold, Ralph J. May, and	
Woodfin V. Ligon, Jr., Applications	
of Mass Spectrometry in Polymer	
Analysis: Use of GC-GC-High	
Resolution MS to Identify Photo-	
and Oxidative Degradation Products	
of BPA-Polycarbonate	394
Fairbank, W. M., Jr., J. M. R. Hutchinson,	
J. E. Parks, M. T. Spaar, and L. J. Moore,	
Direct Solids Analysis Using Sputter	
Initiated Resonance Ionization	
Spectroscopy (SIRIS)	383
Fassett, J. D., Inorganic Trace	
Analysis by Isotope Dilution	
Mass Spectrometry-New Frontiers	417
Fast-Neutron Diagnostic Probe, A	484
fermented products	249
Field, Bruce, and Liu Ruimin, An Improvement	
in the Reliability of Standard Cell Enclosures	533
filter packs	283
Finn, Ronald, and Patricia Landais,	
Technical Difficulties Associated With the	
Formation of Carbon-11 Labelled Carboxylic	
Acids	338
flame spread	61
flow calorimetry	145
Flow Injection-Inductively Coupled	
Plasma Spectrometry: A New	
Strategy for Ultratrace Analysis	462
•	

Fluorescence Spectrometric Determination	
of Nonfluorescent Compounds via	
Molecular Fragmentation	437
fluorescent and chemiluminescent	
detection in HPLC	504
fluorometrix analysis	443
food analysis	358
formation of carbon-11 labelled	
carboxylic acids	338
Fox, Jay B., Jr., Ronald K. Jenkins,	
Stanley A. Ackerman, John G. Phillips,	
and Donald W. Thayer, Effects of Ionizing	
Radiation on Nutrients in Foods	364
Francetic, V., R. Durst,	
S. Gomiscek, and M. Veber,	
Electrochemical Studies of	
Dithiocarbamates and Related	
Compounds	496
Freeman, James E., D. Scott Aldrich,	
Steven J. Borchert, and Amy Abe, Pharmaceutical	
Trace Analysis	242
Frost, J. H., J. H. Phillips,	
C. A. Potera, and P. M. Michalko, The Use of	
Cryogenic Size Reduction to Improve	
Purgeable Priority Pollutant Analyses	
in Soil Samples	292
fundamental constants	85
furnace atomic absorption spectroscopy	445
fusion dissolution	454

G

gallium	400
gamma-ray spectrometry	481
Gangadharan, S., S. Natarajan,	
J. Arunachalam, S. Jaikumar, and	
S. V. Burangey, Multitechnique	
Approach to Trace Characterization	
of High Purity Materials: Gallium	400
Garbarino, J. R., and H. E. Tavlor.	
Assessment of the Analytical	
Canabilities of Inductively	
Coupled Plasma-Mass Spectrometry	433
Garriques P., E. Parlanti and	100
M. Ewald. Trace Analysis of Aromatic	
Compounds in Natural Samples by	
Shpol'skii Spectroscopy	441
gas phase	643
GC/MS 331	365
geological samples	224
geometry correction	41
Gilbert John and James R Startin	-71
Stable Isotone Dilution GC/MS for the	
Quantification of Food Contaminants	365
Gills Thomas F. John R. Adams	202
Michael S. Englein and Barry I. Diamondstone	
A New River Sediment Standard Reference	
Material	224
alow discharge mass enectrometry 202	424
Gowiesek S. M. Kehen V. Enguestie	420
guniscer, S., M. Veber, V. Franceik,	
of Dithisserhamates and Delated	
or Difiniocaroaniates and Related	101
	490

Gordon, C. M., C. W. Peters, and	
T. K. Olson, A Fast-Neutron	
Diagnostic Probe	484
Graphite Furnace AAS: Application of	
Reduced Palladium as a Chemical	
Modifier	450
graphite furnace analysis	307
graphite furnace atomic absorption	
spectrometry	2,467
Grasserbauer, M., Quantitative	
Secondary Ion Mass	
Spectrometry	510
grid plate	41
Grid Plate Calibration at the National	
Bureau of Standards	41
Gurker, N., P. Ketelsen, W. Petersen,	
M. H. Salehi, T. Dietrich, A. Knöchel,	
and M. Bavdaz, Synchrotron Radiation	
Excited Fluorescence Micro-Analysis	
Using a New Imaging Technique	379

H

Induced Transient Species in Surface Waters 285 Hagen, D. E., D. R. White, and D. J. Alofs, Condensation Method for Humidity Measurement in the UMR Cloud Simulation Chamber
 Hagen, D. E., D. R. White, and D. J. Alofs, Condensation Method for Humidity Measurement in the UMR Cloud Simulation Chamber
Condensation Method for Humidity Measurement in the UMR Cloud Simulation Chamber
Measurement in the UMR Cloud Simulation Chamber
Simulation Chamber
Hall, D. J., R. Brown, N. E. Sanderson,
and P. Charalambous, Quantitative
Aspects of Glow Discharge Mass
Spectrometry
Hall electrolytic conductivity detector
Halsall, H. Brian, William R. Heineman,
Sarah H. Jenkins, Kenneth R. Wehmeyer,
Matthew J. Doyle, and D. Scott Wright,
Electrochemical Enzyme Immunoassay
Hameyer, Klaus, and Ciaccio, Leonard L.,
An Instrument for Determination of
Energy Oxygen and BOD ₅ 311
heat transfer
heavy ion probe
Heineman, William R., Sarah H. Jenkins,
Kenneth R. Wehmeyer, Matthew J. Doyle,
D. Scott Wright, and H. Brian Halsall,
Electrochemical Enzyme Immunoassay
Heinrich, K. F. J., Accuracy in
Quantitative Electron Probe
Microanalysis 509
Herold, David A., Judy C. Hundley,
Michael R. Wills, John Savory, and
Michael Kinter, Use of High Resolution
GC/MS for Obtaining Accuracy in Lipid
Measurements
Heteroscedastic Calibration Using Analyzed
Reference Materials as Calibration Standards 264
hexadecane
Heydorn, K., Classical Pitfalls in
Contemporary Nuclear Data Analysis
hierarchical design
High Performance Capillary Electrophoresis 406
high purity materials
high purity silicides
high resolution GC/MS 331

High Resolution Nonlinear	
Laser Spectroscopy	440
Hill Herbert H Ir and Randy I. Fatherton	470
Ion Mobility Spectrometry after	
Chrometography — A ccomplishments	
Goale Challenges	175
History of Trace Analysis	175
Hollow I.S. D. C. Pattamore	1/5
moder, J. S., D. G. Fullerson,	
Tavia Chamicala in Salastad Human	
Derevisione	410
	412
Homogeneous Electrochemical Immunoassay	
Using a Chemically Modified Electrode	506
Hooker, Douglas B., and Jack DeZwaan, Organic	
Microanalysis of Submicrogram Samples	245
Hoste, J., B. Wallaeys, J. Vandenhaute,	
J. Versieck, L. Vanballenberghe, and	
A. De Kesel, Biological Reference Materials	
for Trace Element Analysis: What is New?	318
Hotes, S. A., and W. R. Kelly, Importance of	
Chemical Blanks and Chemical Yields in	
Accurate Trace Chemical Analysis.	228
Howarth, N., R. C. Massey, D. J. McWeeny,	
I. Parker, M. Scotter, J. R. Startin, and	
M. J. Dennis, Ethyl Carbamate Analysis in	
Fermented Products: A Comparsion of	
Measurements of Mass Spectrometry, Thermal	
Energy Analyser, and Hall Electrolytic	
Conductivity Detector	249
HPLC	504
HPTLC	301
Huber, Calvin O., Voltammetric	
Sensors Using Chemically	
Active Electrode Materials	488
Huggett, R. G., M. A. Unger, F. A. Espourteille,	
and C. D. Rice, Determination of Tributyltin	
in the Marine Environment	277
humidity measurement	551
Hundley, Judy C., Michael R. Wills,	
John Savory, Michael Kinter, and	
David A. Herold, Use of High Resolution	
GC/MS for Obtaining Accuracy in Lipid	
Measurements	331
Huneke, J. C., Relative Sensitivity and	
Quantitation in Glow Discharge Mass	
Spectrometry: A Progress Report	392
Hutchinson, J. M. R., J. E. Parks, M. T. Spaar.	
L. I. Moore and W. M. Fairbank, Ir. Direct	
Solids Analysis Using Sputter Initiated	
Resonance Ionization Spectroscopy (SIRIS)	383
hydrazobenzene	344
hydrolysis	613
	015

I

Ianniello, Robert M., Trace Analyses	
of Impurities in Povidone	
by Square Wave Voltammetry	487
ICP Trace Element Analyses from	
Fusion Dissolution	454
ICP-AES: A Realistic Assessment of Its	
Capabilities for Food Analysis	358
ICP-MS	464
ideal gas	85
IDMS	367

Volume 93, Number 6, November-December 1988 Journal of Research of the National Institute of Standards and Technology

ignition	61
Ihnat, Milan, Reliable Measurement of Major, Minor, and Trace Elemental	
Nutrients	354
Imaging Microanalysis of Materials	
With a Finely Focused Heavy Ion Probe	377
image processing	239
Imaging lechnique	519
Yields in Accurate Trace Chemical Analysis	228
Importance of Quality Assurance in Trace Analysis. The	232
Importance of Quantitative Trace Analysis in	100
Industry Today, The	109
Cell Enclosures. An	533
Improving Accuracy in Graphite	
Furnace Atomic Absorption Spectrometry	
Through Peak Shape Monitoring	467
impurities in povidone by square	
wave voltammetry	487
Inaccuracies in Clinical Chemical Analysis	336
Increased Accuracy in the Automated	
Interpretation of Large EPMA Data Sets	260
In-Situ Filtration Sampler for the	200
Measurement of Trace Metals in	
Precipitation	312
inductively coupled plasma-mass	
spectrometry	469
injection	655
Inorganic Trace Analysis by Isotope Dilution	
Mass Spectrometry – New Frontiers	417
Instrument for Determination of	011
international comparison	511
International Comparisons of Pressure	343
Standards: A Status Report	545
ion beam analysis	473
Ion Chromatography: From Anions	
to Metals	411
Ion Mobility Spectrometry after	
Chromatography – Accomplishments,	
Goals, Challenges	425
ionizing radiation on nutrients in foods	364
Irradiance	21
Expert Systems and Robotics	200
isotope analysis of lead in food	464
Isotope Dilution Mass	
Spectrometry (IDSM)	419
Isotope Dilution Mass Spectrometric	
(IDMS) Method for the Determination of	
Vitamin C in Milk, An	367
isotopic quantification	328
Iyengar, Venkatesh, and Dietrich Behne,	
Appropriate Reference Parameters for	
Inc Evaluation of Elemental Analysis	200
Lata FIOII DIOIICUICAI SPECIMENS	320
and Rolf Zeisler, Development of Multi-	
Purpose Biological Reference Materials.	360
	200

J

Jackson, John K., Donald A. McSparron, James H. Walker, and Robert D. Saunders, The	
NBS Scale of Spectral Irradiance	7
Jaikumar, S., S. V. Burangey,	
S. Gangadharan, S. Natarajan, and	
J. Arunachalam, Multitechnique	
Approach to Trace Characterization	
of High Purity Materials: Gallium	400
Janssens, K., W. Van Borm, and P. Van Espen,	
Increased Accuracy in the Automated	
Interpretation of Large EPMA Data Sets	
by the Use of an Expert System	260
Jansson's Method	413
Jassie, L. B., and H. M. Kingston, Microwave	
Acid Sample Decomposition for Elemental	
Analysis	269
Jenkins, Sarah H., Kenneth R. Wehmeyer,	
Matthew J. Doyle, D. Scott Wright,	
H. Brian Halsall, and William R. Heineman,	
Electrochemical Enzyme Immunoassay	491
Jenkins, R. E., K. S. Epler, T. C. O'Haver,	
and M. S. Epstein, Automation and Application	
of a Direct-Current Plasma Emission	
Spectrometer	458
Jenkins, Ronald K., Stanley A. Ackerman,	
John G. Phillips, Donald W. Thayer, and	
Jay B. Fox, Jr., Effects of Ionizing Radiation	
on Nutrients in Foods	364
Jones, J. W., ICP-AES: A Realistic Assessment	
of Its Capabilities for Food Analysis	358
Jorgenson, J. W., R. T. Kennedy,	
R. L. St. Claire III, J. G. White,	
P. R. Dluzneski, and J. S. M. de Wit, Open	
Tubular Liquid Chromatography and the	
Analysis of Single Neurons	403
Junk, Gregor A., and John J. Richard,	
Solid Phase Extraction on a Small Scale	274

K

Kalman, David A., Quantitation of Arsenic	
Species in Urine for Exposure	
Assessment Studies	315
Kannuck, Rosanne, Jon M. Bellama,	
and Richard A. Durst, Homogeneous	
Electrochemical Immunoassy Using a	
Chemically Modified Electrode	506
Kao, T. S., C. P. Tang, M. R. Lee, and	
S. C. Chang, Studies of Limit of	
Detection on 2,4,6-Trinitrotoluene	
(TNT) by Mass Spectrometry	428
Karger, B. L., High Performance	
Capillary Electrophoresis	406
Kateman, G., Accuracy in Trace Analysis	217
Kawasaki, T., O. Wong, C. Wang, and	
T. Kuwana, Trace Biogenic Amine	
Analysis with Pre-Column Derivatization	
and with Fluorescent and Chemiluminescent	
Detection in HPLC	504
Keller, Barbara J., In-Situ	
Filtration Sampler for the	
Measurement of Trace Metals in	
Precipitation	312
-	

Volume 93, Number 6, November-December 1988 Journal of Research of the National Institute of Standards and Technology

Kelly, W. R., and S. A. Hotes, Importance of Chemical Blanks and Chemical Yields in Accurate Trace Chemical Analysis	228
<i>Lenneay, K. 1., K. L. St. Claire 111,</i> J. G. White, P. R. Dluzneski, J. S. M. de Wit, and J. W. Jorgenson, Open Tubular Liquid Chromatography and the Analysis of	400
Single Neurons Ketelsen, P., W. Petersen, M. H. Salehi, T. Dietrich, A Knöchel, M. Bavdaz, and N. Gurker, Synchtroton Radiation Excited Fluorescence Micro-Analysis	403
Using a New Imaging Technique	379
Microphone Detector	643 643
Analysis	269
John Savory, Use of High Resolution GC/MS for Obtaining Accuracy in Lipid Measurements	331
Kishi, Tohru, Analysis of Trace Elements in Methamphetamine Hydrochloride by Inductively	460
Klose, Jules Z., J. Mervin Bridges, and William R. Ott, Radiometric Calibrations of	469
Portable Sources in the Vacuum Ultraviolet Klouda, George A., Ann E. Sheffield, and Lloyd A. Currie, Trace Radiocarbon	21
Analysis of Enviornmental Samples Knobeloch, Dan, and Tony J. Beugelskijk, Laboratory Robotics in Radiation	289
Environments	268
Using a New Imaging Technique	379
From Anions to Metals	411
Chemistry	207
Synchrotron Radiation	577
and with Fluorescent and Chemiluminescent Detection in HPLC	504

L

Laboratory Robotics in Radiation	
Environments	268
Laitinen, H. A., History of Trace Analysis	175
lamp (deuterium)	21
Lampaarski, L. L. and T. J. Nestrick, Accuracy	
in the Determination of Chlorinated	
Dibenzo-p-Dioxins and Dibenzofurans in	
Environmental Samples	239

Landais, Patricia, and Ronald Finn, Technical Difficulties Associated With the Formation of Carbon-11 Labelled Carboxylic	
Acids	338
Laor, Un, Bruce Steiner,	
Masao Kuriyama, and Ronald C. Dobbyn,	
Diffraction Imaging (Topography) with	
Monochromatic Synchrotron Radiation	577
lasers in bioanalytical chemistry	502
Lee, Jong-Hyup and Myung-Zoon Czae,	
Range-Programming Stripping Voltammetry	
for Determination of Some Metals in	
Seawater	296
Lee M. R. S. C. Chang, T. S. Kao, and	
C P Tang Studies of Limit of	
Detection on 24.6. Trinitrotolyana	
(TNT) by Mass Seastrometer	400
(INI) by Mass Spectrometry	428
Lee, Muton L., Nebojsa Djorajević,	
and Karin E. Markides, Supercritical	
Fluid Chromatography: Application	
to Trace Analysis	409
Legere, G., P. Burgener, and D. Brown,	
ICP Trace Element Analyses from	
Fusion Dissolution	454
Levi-Setti, R., I Chabala, and	
V I. Wang Imaging Microanalysis	
of Moterials with a Finally Fooward	
User View Jon Broke	277
	3//
Ligon, Woodfin, V., Jr., Arnola Factor,	
and Ralph J. May, Applications of	
Mass Spectrometry in Polymer	
Analysis: Use of GC-GC-High	
Resolution MS to Identify Photo-	
and Oxidative Degradation Products	
of BPA-Polycarbonate	394
limit of detection on 2,4.6-Trinitrotoluene	
(TNT) by Mass Spectrometry	428
lipid measurements	331
Liposome-Based Flow Injection	001
Immunoseev System	663
Limone Main and Polf Doomham Onality	005
Control in Denting Instrumental Paith and	
Control in Routine Instrumental Epithermai	
Neutron Activation Analysis of Geological	
Samples	224
Little, James N., The Role of Robotics in the	
Laboratory of the 80s,	191
Locascio-Brown, Laurie, Anne L. Plant, and	
Richard A. Durst, Liposome-Based Flow	
Injection Immunoassay System	663
Lochmuller, C. H., The Role of the Robot in	
the Chemical Laboratory	267
Lorch V. L. I. Moore, I. E. Parks M. T. Spaar.	207
D W Reekman and F H Taylor Illtra-Trace	
Flemental and Isotonic Quantification for	
Neonatal Nutrition Studio-	200
	328
iower oxygenated organic compounds	299
iuminescence measurements	438

M

Magee, Charles, W., Depth Profiling	
of Trace Constituents Using Secondary	
Ion Mass Spectrometry	390
major, minor, and trace elemental	
nutrients	354

Malinowski, E. R., K. Schostack, P. Parekh, and S. Patel,	
Evolutionary Factor Analysis	256
manganese in serum Markides, Karin E., Milton I., Lee.	323
and Nebojsa Djordjevic, Supercritical	
Fluid Chromatography: Application	
to Trace Analysis Marković, Milenko, Nevenka Pavković,	409
and Neven D. Pavković, Precipitation of	
NH4UO ₂ PO ₄ . 3H ₂ O – Solubility and Structural Comparison with Alkali Uranyl(2+) Phosphates	557
Marshall, J. C., and T. L. Isenhour, Expert Systems and Robotics	209
Martinez, Richard I., Absolute Cross- Section Measurements in XOO Instruments:	209
The NBS Round Robin	431
Martire, Daniel E., Michele (Miller) Schantz,	-51
and B. N. Barman, Partitioning of	
Alkyloenzenes and Aliphatic Alcohols between Heredesane and Mathemal Water Mirtures	161
Hexadeciale and Methanol-water Mixtures	101
mass spectrometer technique	J0J 410
mass spectrometer teeningue	240 428
mass spectrometry glow discharge	243, 420
mass spectrometry in polymer analysis	304
Massey, R., D. J. McWeeny, J. R. Dean, and	574
H. M. Crews, Trace Element Speciation in	
Food: A Combined Enzymolysis – SEC-ICP-MS Approach	340
Massey, R. C., D. J. McWeeny,	545
H. M. Crews, Some Applications of	
Isotope Analysis of Lead in Food by ICP-MS	464
Massev, R. C., D. J. McWeenv, I. Parker.	
M. Scotter, J. R. Startin, M. J. Dennis,	
Englishing Englishing Cardamate Analysis in	
Measurements of Mass Spectrometry Thermal	
Energy Analyser and Hall Electrolytic	
Conductivity Detector	240
Material Handling Workstation	530
material properties	61
material purity	306
May, Ralph J., Woodfin V. Ligon, Jr., and Arnold Factor. Applications of	570
Mass Spectrometry in Polymer	
Analysis: Use of GC-GC-High	
Resolution MS to Identify Photo- and Oxidative	
Degradation Products of BPA-Polycarbonate	394
McGown, Linda B., and Kasem Nithipatikom,	
Socium Taurocholate Micelles in	110
McKinney Cered I Precision and Bias	443
of Graphite Furnace Analysis of	
Environmental Samples	307
McLeod, C. W., Y. Zhang, I. Cook,	201
A. Cox, A. R. Date, and Y. Y. Cheung,	
Flow Injection-Inductively Coupled	
Flasma Spectrometry: A New	
MeSnarron Donald A Jaman H Wallar	462
Robert D. Saunders and John K. Jackson The	
NBS Scale of Spectral Irradiance	7
McWeeny, D. J., J. R. Dean. I. Ebdon	/
H. M. Crews, and R. C. Massey, Some	
Applications of Isotope Analysis	
of Lead in Food by ICP-MS	464

McWeeny, D. J., I. Parker, M. Scotter, J. R. Startin, M. J. Dennis, N. Howarth, and R. C. Massey, Ethyl Carbamate Analysis in Fermented Products: A Comparsion of Measurements of Mass Spectrometry, Thermal Energy Analyser, and Hall Electrolytic	
Conductivity Detector	249
Approach	349 643
Measurement of Sunlight-Induced Transient Species in Surface Waters.	285
Measurement of the Universal Gas Constant	
R Using a Spherical Acoustic Resonator	85
measurements in XQQ instruments	431
measuring machine	41
J. P. M. Trusler, and T. J. Edwards, Measurement of the Universal Gas Constant P. Ling 2	
Spherical Acoustic Resonator	05
mercury	83 95
methanol-water mixtures	0J 161
metrology	41
MeV Ion Beam Analysis	473
Michaelis, Markus, Wolfhard Wegscheider, and Hung M. Orthur Improving	+75
Accuracy in Graphite Furnace Atomic	
Absorption Spectrometry Through	
Peak Shape Monitoring.	467
J. H. Phillips, and C. A. Potera, The Use of	
Cryogenic Size Reduction to Improve	
Purgeable Priority Pollutant Analyses	
missoanalusia	292
microelectronics constituent motorials	312, 311
micrometer scale	598
microscope	274
Microwave Acid Sample Decomposition	5/4
Nierowaya Induced Diagnes as	269
Sources for A tomic Spectroscopy	4 4 77
Miller, J. M., E. White V, P. Ellerbe,	447
and L. T. Sniegoski, An Isotope Dilution	
Mass Spectrometric (IDMS) Method for the	
Determination of Vitamin C in Milk	367
Miller, M. K., Analysis at the Atomic	507
Miller, M. K., Analysis at the Atomic Level: The Atom Probe Field-Ion	507
Miller, M. K., Analysis at the Atomic Level: The Atom Probe Field-Ion Microscope Miller-Ihli, Nancy J., Trace Element	374
Miller, M. K., Analysis at the Atomic Level: The Atom Probe Field-Ion Microscope Miller-Ihli, Nancy J., Trace Element Determinations in Biologicals Using	374
Miller, M. K., Analysis at the Atomic Level: The Atom Probe Field-Ion Microscope Miller-Ihli, Nancy J., Trace Element Determinations in Biologicals Using Atomic Absorption Spectrometry	374 350
Miller, M. K., Analysis at the Atomic Level: The Atom Probe Field-Ion Microscope Miller-Ihli, Nancy J., Trace Element Determinations in Biologicals Using Atomic Absorption Spectrometry mixing ratio	374 350 551
Miller, M. K., Analysis at the Atomic Level: The Atom Probe Field-Ion Microscope Miller-Ihli, Nancy J., Trace Element Determinations in Biologicals Using Atomic Absorption Spectrometry mixing ratio modular programming	374 350 551 145
Miller, M. K., Analysis at the Atomic Level: The Atom Probe Field-Ion Microscope Miller-Ihli, Nancy J., Trace Element Determinations in Biologicals Using Atomic Absorption Spectrometry mixing ratio modular programming molar gas constant Moldoner, M. P. J. P. M. Trucker, T. J. Edwards	374 350 551 145 85
 Miller, M. K., Analysis at the Atomic Level: The Atom Probe Field-Ion Microscope Miller-Ihli, Nancy J., Trace Element Determinations in Biologicals Using Atomic Absorption Spectrometry mixing ratio modular programming molar gas constant Moldover, M. R., J. P. M. Trusler, T. J. Edwards, J. B. Mehl, and R. S. Davis, Measurement of the Universed Constant of Microscope 	374 350 551 145 85
 Miller, M. K., Analysis at the Atomic Level: The Atom Probe Field-Ion Microscope Miller-Ihli, Nancy J., Trace Element Determinations in Biologicals Using Atomic Absorption Spectrometry mixing ratio modular programming molar gas constant Moldover, M. R., J. P. M. Trusler, T. J. Edwards, J. B. Mehl, and R. S. Davis, Measurement of the Universal Gas Constant R Using a Spherical Accurate Reserve 	374 350 551 145 85
 Miller, M. K., Analysis at the Atomic Level: The Atom Probe Field-Ion Microscope Miller-Ihli, Nancy J., Trace Element Determinations in Biologicals Using Atomic Absorption Spectrometry mixing ratio modular programming molar gas constant Moldover, M. R., J. P. M. Trusler, T. J. Edwards, J. B. Mehl, and R. S. Davis, Measurement of the Universal Gas Constant R Using a Spherical Acoustic Resonator 	374 350 551 145 85
 Miller, M. K., Analysis at the Atomic Level: The Atom Probe Field-Ion Microscope	374 350 551 145 85 85 437
 Miller, M. K., Analysis at the Atomic Level: The Atom Probe Field-Ion Microscope	374 350 551 145 85 85 437
 Miller, M. K., Analysis at the Atomic Level: The Atom Probe Field-Ion Microscope	374 350 551 145 85 85 437

monochromatic diffraction imaging	577
Moore, L. J., J. E. Parks, M. T. Spaar,	
D. W. Beekman, E. H. Taylor, and V. Lorch,	
Ultra-Trace Elemental and Isotopic	
Quantification for Neonatal Nutrition	
Studies	328
Moore, L. J., W. M. Fairbank, Jr.,	
J. M. R. Hutchinson, J. E. Parks, and	
M. T. Spaar, Direct Solids Analysis	
Using Sputter Initiated Resonance	
Ionization Spectroscopy (SIRIS)	383
Mori, Eiji, Hideo Saisho.	
Masataka Tanaka, and Koichi Nakamura.	
Determination of Traces of	
Uranium and Thorium in Microelectronics	
Constituent Materials.	398
Morrison, George H., Trace Analysis by	
Degrees: An Academic Perspective	187
multi-processor	539
multi-programming	145
multi-purpose biological reference	
materials	360
Multicomponent Analysis in Static and	
Flow Systems Using Digital Filters	253
multidimensional luminescence measurements	
through Cyclodextrin Complexation	438
Multitechnique Approach to Trace	
Characterization of High Purity	
Materials: Gallium	400

N

Nagy, Lajos György, Péter Zagyvai, and	
József Solymosi, A Uniform Concept for	
Error Estimation in Gamma-Ray Spectrometry	481
Nakamura, Koichi, Eiji Mori,	
Hideo Saisho, and Masataka Tanaka,	
Determination of Traces of	
Uranium and Thorium in Microelectronics	
Constituent Materials	398
Nashman, Marilyn, and Karen J. Chaconas,	
The NBS Vision System in the AMRF	539
Natarajan, S., J. Arunachalam,	
S. Jaikumar, S. V. Burangey, and	
S. Gangadharan, Multitechnique	
Approach to Trace Characterization	
of High Purity Materials: Gallium	400
NBS Round Robin	431
NBS Scale of Spectral Irradiance, The	7
NBS Vision System in the AMRF, The	539
Neal, S. L., I. M. Warner, G. Nelson.	
G. Patonay, and L. Blyshak, Enhanced	
Multidimensional Luminescence	
Measurements Through Cyclodextrin	
Complexation	438
Nelson, G., G. Patonay, L. Blyshak,	
S. L. Neal, and I. M. Warner, Enhanced	
Multidimensional Luminescence	
Measurements Through Cyclodextrin	
Complexation	438
neonatal nutrition studies	328
Nestrick, T. J., and L. L. Lamparski, Accuracy	
in the Determination of Chlorinated	
Dibenzo-p-Dioxins and Dibenzofurans in	
Environmental Samples	241

Р	
Portable Sources in the Vacuum Ultraviolet	21
Ott, William R., Jules Z. Klose, and I. Mervin Bridges, Badjometric, Calibrations of	
Peak Shape Monitoring	467
Absorption Spectrometry Through	
Accuracy in Graphite Furnace Atomic	
and Wolfhard Wegscheider. Improving	
Ortner Hugo M Markus Michaelis	341
organic serum constituents	243
Organia Migroanalysis of Submigroaram Samples	045
and the Analysis of Single Neurons	403
Open Tubular Liquid Chromatography	102
Probe	484
C. W. Peters, A Fast-Neutron Diagnostic	10.1
Olson, T. K., C. M. Gordon, and	
for Trace Quantitative Analysis.	419
Development of Analytical Methodology	
R. G. Cooks, Alkylation of DNA In Vivo:	
O'Lear, J. R., Cj. Chang, and	
Spectrometer	458
of a Direct-Current Plasma Emission	
and K. S. Epler, Automation and Application	
O'Haver, T. C., M. S. Epstein, R. E. Jenkins,	
Product from 4 to 37 °C	613
Octacalcium Phosphate Solubility	010
octacalcium phosphate	613
0	
	-117
and renobiotics	419
quantities of biological macromolecules	
nuclear data analysis	479
NKA for H	482
C, N and O and in ERDA and	400
Nozaki, T., Accuracy in CPAA for	
nonlinear laser spectroscopy	440
molecular fragmentation	437
nonfluorescent compounds via	
nitroarenes	279
Fluorometrix Analysis	443
Sodium Taurocholate Micelles in	
Nithipatikom, Kasem, and Linda B. McGown.	
and Solid-State Reagents.	501
Detection in Flowing Streams-Immobilized	
Nigman Timothy 4 Chemiluminescence	210
Compositional Mapping on a Micrometer Scale	5 19
Newoury, Dale E., Quantitative	
Material, A	234
New River Sediment Standard Reference	

PAH Parech, P., S. Patel, F., R. Malinowski	279
and K. Schostack, Evolutionary	
Factor Analysis.	256
Parker, I., M. Scotter, J. R. Startin,	
M. J. Dennis, N. Howarth, R. C. Massey,	
and D. J. McWenny, Ethyl Carbamate Analysis	
in Fermented Products: A Comparsion of	
Measurements of Mass Spectrometry, Thermal	
Energy Analyser, and Hall Electrolytic	
Conductivity Detector	249

Parks, J. E., M. T. Spaar, D. W. Beekman,	
E. H. Taylor, V. Lorch, and L. J. Moore,	
Outra-1 race Elemental and Isotopic	
Studies	328
Parks, J. E., M. T. Spaar, L. J. Moore,	
W. M. Fairbank, Jr., and J. M. R. Hutchinson,	
Direct Solids Analysis Using Sputter	
Initiated Resonance Ionization	
Spectroscopy (SIRIS)	383
Parlanti, L., M. Ewald, and P. Carrinuss, Trace Analysis of	
Aromatic Compounds in Natural Samples	
hy Shool'skii Spectroscony	441
partition coefficients	161
Partitioning of Alkylbenzenes and	
Aliphatic Alcohols between Hexadecane	
and Methanol-Water Mixtures	161
Paschal, Daniel C., and George G. Bailey,	
Determination of Manganese in Serum	
with Zeeman Effect Graphite Furnace	
Atomic Absorption	323
Patel, S., E. R. Malinowski,	
K. Schostack, and P. Parekh, Bushutionary Easter Analysis	250
Patonay G. I. Blyshak S. I. Neal	230
I M Warner and G Nelson Enhanced	
Multidimensional Luminescence	
Measurements Through Cyclodextrin	
Complexation	438
Pattern Recognition Classification and	
Identification of Trace Organic Pollutants	
in Ambient Air from Mass Spectra	281
Patterson, D. G., S. J. Smith, and	
J. S. Holler, Quantification of	
Populatione	410
Pavković Neven D. Nevenka Pavković	412
and Milenko Marković. Precipitation of	
$NH_2UO_2PO_4.3H_2O_{-}Solubility and Structural$	
Comparison with Alkali Uranyl(2+)	
Phosphates	557
Pavković, Nevenka, Neven D. Pavković,	
and Milenko Marković, Precipitation of	
NH4UO2PO4.3H2O-Solubility and Structural	
Comparison with Alkali Uranyl(2+)	
Phosphates	557
PCB Identification System	343
r CB Identification System	290
Peters, C. W., T. K. Olson, and	5-5
C. M. Gordon, A Fast-Neutron Diagnostic	
Probe	484
Petersen, W., M. H. Salehi, T. Dietrich,	
A Knöchel, M. Bavdaz, N. Gurker, and	
P. Ketelsen, Synchrotron Radiation	
Excited Fluorescence Micro-Analysis	
Using a New Imaging Technique	379
Peterson, James C., and Peter Robinson,	
Recent Advances in the Analysis of PUBS and Destinides in Human Adinase Tissue	212
Pharmaceutical Trace Analysis	545 717
nhase angle	272 52
phase angle standard	53
phase meter	53

Phase Meter Calibration at NBS	53
phenyltin Compounds	301
Phillips, John G., Donald W. Thayer,	
Jay B. Fox, Jr., Ronald K. Jenkins, and	
Stanley A. Ackerman, Effects of Ionizing	
Radiation on Nutrients in Foods	364
Phillips, J. H., C. A. Potera,	
P. M. Michalko, and J. H. Frost, The Use of	
Cryogenic Size Reduction to Improve	
Purgeable Priority Pollutant Analyses	
in Soil Samples	292
piston-gage.	565
Plant, Anne, L., Richard A. Durst, and	
Laurie Locascio-Brown, Liposome-Based	
Flow Injection Immunoassay System	663
plasma-mass spectrometry.	433
plume	603
point source heater.	603
Potera, C. A., P. M. Michalko.	002
I. H. Frost. and I. H. Phillins. The Use of	
Cryogenic Size Reduction to Improve	
Purgeable Priority Pollutant Analyses	
in Soil Samples	292
Powell, C. J., The Accuracy of Surface	
Analyses.	387
Practical Uncertainty Limits to the	207
Mass Determination of a Piston-	
Gage Weight.	565
pre-column derivatization	504
precipitation	557
Precipitation of NH ₄ UO ₂ PO ₄ 3H ₂ O ₋	
Solubility and Structural Comparison	
With Alkali Uranyl(2+) Phosphates	557
Precision and Bias of Graphite Furnace	
Analysis of Environmental Samples	307
pressure standards	545
primary standards.	545
Process Analytical Chemistry	207
Prospects for Trace Analysis in the	
Analytical Electron Microscope	369
purgeable priority pollutant analyses	292

Q

quality assurance	232
quality assurance materials for the	
analysis of environmental pollutants	237
quality control for trace analysis	221
Quality Control in Routine Instrumental	
Epithermal Neutron Activation Analysis	
of Geological Samples	224
quantification of food contaminants	365
Quantification of Toxic Chemicals	
in Selected Human Populations	412
Quantitation of Arsenic Species in	
Urine for Exposure Assessment Studies	315
Quantitative Aspects of Glow Discharge	
Mass Spectrometry.	426
Quantitative Compositional Mapping	
on a Micrometer Scale	518
quantitative electron probe	
microanalysis.	509
Quantitative Secondary Ion Mass	
Spectrometry	510
• •	

quantitative trace analysis in	
industry today	189
Quintiere, J. G., The Application of Flame Spread	
Theory to Predict Material Performance	61

R

<i>R</i>	85
radiance	21
Radiometric Calibrations of Portable Sources in	
the Vacuum Ultraviolet.	21
radiometry	7, 21
Range-Programming Stripping Voltammetry	
for Determination of Some Metals	
in Seawater	296
Rasberry, Stanley D., Accuracy in	
Analysis: The Role of Standard	
Reference Materials	213
reaction interface	419
Recent Advances in the Analysis of PCBs and	
Pesticides in Human Adipose Tissue.	343
reduced palladium	450
reference parameters	326
real-time.	539
Real-Time Control System	539
Relative Sensitivity and Quantitation	
in Glow Discharge Mass Spectrometry:	
A Progress Report	392
Reliable Measurement of Major, Minor, and	
Trace Elemental Nutrients	354
reliable temperature controller	533
resonator	85
response linearity	7
Rettberg. T. M., D. E. Shrader, and	
L. M. Beach, Graphite Furnace AAS:	
Application of Reduced Palladium as	
a Chemical Modifier	450
reversed phase liquid chromatography	161
Rice, C. D., R. G. Huggett, M. A. Unger, and	
F. A. Espourteille, Determination of Tributyltin	
in the Marine Environment	277
Richard, John J., and Gregor A. Junk,	
Solid Phase Extraction on a Small Scale	274
Robinson, Peter, and James C. Peterson,	
Recent Advances in the Analysis of PCBs and	
Pesticides in Human Adipose Tissue	343
robotics and expert systems	209
robotics in radiation environments	268
robotics in the laboratory	191
Role of the Robot in the Chemical	
Laboratory, The	267
Role of Robotics in the Laboratory	
of the 80s, The	191
Rosenberg, Rolf, and Maija Lipponen, Quality	
Control in Routine Instrumental Epithermal	
Neutron Activation Analysis of Geological	
Samples	224
round robins	545
Kuj, H., K. Schorb, H. J. Ache, and	
J. M. Iorres Llosa, Stripping	
voltammetric Assay of Trace Technetium	
with a TOPO Coated Glassy Carbon	400
Electione	493

Ruimin, Liu, and Bruce F. Field, An	
Improvement in the Reliability of	
Standard Cell Enclosures	533
Rukkers, J. M., and T. J. Buckley, A Computer	
Controlled Data Acquistion System for	
Combustion Calorimetric Experiments	145

S

Saisho, Hideo, Masataka Tanaka,	
Koichi Nakamura, and Eiji Mori,	
Determination of Traces of Uranium	
and Thorium in Microelectronics	
Constituent Materials.	398
Salehi, M. H., T. Dietrich, A. Knöchel	
M. Bavdaz, N. Gurker, P. Ketelsen, and	
W. Petersen, Synchrotron Radiation	
Excited Eluorescence Micro-Analysis	
Using a New Imaging Technique	379
Sanderson N E P Charalambous	212
D I Hall and R Rown Quantitative	
Aspects of Glow Discharge Mass	
Spectrometry	126
Santoliquido Patricia M The Determination	420
of Trace Elements in Uranium Oxide (U.O.)	
by Inductively Coupled Plasma Emission	
Spectrometry and Graphite Europea Atomic	
Absorption Spectrometer	450
Coundary Pohert D. John K. Jackney	452
Devel A M. Commerce and Leaves II. Wellow The	
Donaid A. McSparron, and James H. Walker, The	-
NBS Scale of Spectral Irradiance	1
Savory, John, Michael Kinter, David A. Herold,	
Judy C. Hundley, and Michael R. Wills, Use	
of High Resolution GC/MS for Obtaining	
Accuracy in Lipid Measurements	331
Schaffer, R., L. T. Sniegoski, E. White V,	
M. J. Welch, A. Cohen, and P. Ellerbe, The	
Development of Definitive Methods for	
Organic Serum Constituents	341
Schantz, Michele (Miller), B. N. Barman, and	
Daniel E. Martire, Partitioning of	
Alkylbenzenes and Aliphatic Alcohols between	
Hexadecane and Methanol-Water Mixtures	161
Schorb, K., H. J. Ache, J. M. Torres Llosa,	
and H. Ruf, Stripping Voltammetric	
Assay of Trace Technetium with a	
TOPO Coated Glassy Carbon Electrode	493
Schostack, K., P. Parekh, S. Patel,	
and E. R. Malinowski, Evolutionary	
Factor Analysis.	256
Scott, Donald R., William J. Dunn III, and	
S. L. Emery, Pattern Recognition Classification	
and Identification of Trace Organic	
Pollutants in Ambient Air from Mass Spectra	281
Scotter, M., J. R. Startin, M. J. Dennis.	
N. Howarth, R. C. Massey, D. J. McWenny,	
and I. Parker. Ethyl Carbamate Analysis	
in Fermented Products: A Comparsion of	
Measurements of Mass Spectrometry Thermal	
Energy Analyser and Hall Restrolutio	
Conductivity Detector	340
SEC-ICP-MS approach	249
secondary ion mass	349
secondary for mass	200 610
эресиошену	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Seevopaul, Purneshwar, and Maria C. I. Williams	
Characterization of High Purity Silicides	220
Seegonaul Purneshwar Analytical	239
Chemistry and Material Purity	
in the Semiconductor Industry	396
semiconductor industry	396
sensitivity and quantitation	392
Sequential Automated Analysis System	J/4
for Lower Oxygenated Organic	
Compounds in Ambient Air	299
Sheffield, Ann E., Llovd A. Currie.	
and George A. Klouda, Trace Radiocarbon	
Analysis of Environmental Samples	289
Shpol'skii Spectroscopy	441
Shrader, D. E., L. M. Beach, and	
T. M. Rettberg, Graphite Furnace AAS:	
Application of Reduced Palladium as	
a Chemical Modifier	450
Sieck, B., W. E. Brown, M. S. Tung,	
and N. Eidelman, Octacalcium Phosphate	
Solubility Product from 4 to 37 °C	613
SIMS	499
single neurons	403
SIRIS	383
Slavin, W., Accuracy in Furnace	
Atomic Absorption Spectroscopy	445
slit-scattering function	7
small scale fire tests	61
Smith, J., S. Ahuja, and G. Thompson,	
Trace/Ultratrace Analyses of Unstable	
Compounds: Investigations on Hydrazobenzene	
and Azobenzene	344
Smith, S. J., J. S. Holler, and	
D. G. Patterson, Quantification of	
Toxic Chemicals in Selected Human	
Populations	412
Sniegoski, L. T., E. White V, and	
G. D. Byrd, Determination of 3-Quinuclidinyl	
Benzilate in Urine	293
Sniegoski, L. T., E. White V, M. J. Welch,	
A. Cohen, P. Ellerbe, and R. Schaffer,	
The Development of Definitive Methods for	
Organic Serum Constituents.	341
Snuegoski, L. T., J. M. Muler, E. White V,	
and P. Ellerbe, An Isotope Dilution Mass	
Determination of Vitamia C is Mill	~ ~ =
Sodium Tourocholoto Micelles in	367
Eluorometriz A relucie	
Solid Phase Extraction on a Small Scale	443
solid state reagents	2/4 501
solubility	201
solubility product 557	612
Solvent-Free Injection in Supercritical	013
Fluid Chromatography Using Sintered	
Glass Deposition	655
Solvmosi József. Péter Zagyvai and	055
Laios György Nagy A Uniform Concept for	
Error Estimation in Gamma-Ray	
Spectrometry	481
Some Applications of Isotone Applysis	TUL
of Lead in Food by ICP-MS	464
Some Atomic Asborption Spectrometric	TUT
Applications to Clinical-Biomedical	
Trace Metal Analyses	334

Spaar, M. T., D. W. Beekman, E. H. Taylor,	
V. Lorch, L. J. Moore and J.E. Parks,	
Ultra-Trace Elemental and Isotopic	
Quantification for Neonatal Nutrition	200
Spaar M. T. I. I. Moore W. M. Fairbank Ir	328
J. M. R. Hutchinson, and J. E. Parks. Direct	
Solids Analysis Using Sputter	
Initiated Resonance Ionization	
Spectroscopy (SIRIS)	383
spectral irradiance	7
speed of sound	85
spherical resonator	85
spiegeiman, Cliffora H., Kobert L. Watters, Jr.,	
Calibration Using Analyzed Deference	
Materials as Calibration Standards	264
sputter initiated resonance	204
ionization spectroscopy	383
square wave voltammetry	487
St. Claire, R. L., III, J. G. White,	
P. R. Dluzneski, J. S. M. de Wit,	
J. W. Jorgenson, and R. T. Kennedy,	
Open Tubular Liquid Chromatography	
and the Analysis of Single Neurons	403
Stable Isotope Dilution GC/MS for the	
Quantification of Food Contaminants	365
standard cell enclosure	533
standards and chemometrics	102
standards (radiometric)	195
standard reference materials.	213
Stanley, M. S., K. L. Duffin,	215
J. C. Dunphy, and K. L. Busch, Biochemical	
Applications of Chromatography/SIMS	499
Startin, J. R., M. J. Dennis, N. Howarth,	
R. C. Massey, D. J. McWeeny, I. Parker, and	
M. Scotter, Ethyl Carbamate Analysis	
in Fermented Products: A Comparison of	
Reasurements of Mass Spectrometry, Thermal	
Conductivity Detector	240
Startin James R and John Gilbert	249
Stable Isotone Dilution GC/MS for the	
Quantification of Food Contaminants	365
static and flow systems	253
Statistical Models in Quality Control for	
Trace Analysis	221
Steiner, Bruce, Masao Kuriyama,	
Ronald C. Dobbyn, and Uri Laor,	
Diffraction Imaging (Topography) with	
Monochromatic Synchrotron Radiation	577
Slevens, Robert K., Annular Denuders and Filter	
Acidic and Pacia Air Pallutanta	000
Stripping Voltammetric Assay of Trace	283
Technetium with a TOPO Coated Glassy	
Carbon Electrode	493
Studies of Limit of Detection on	175
2,4,6-Trinitrotoluene (TNT) by	
Mass Spectrometry.	428
submicrogram samples	245
Subramanian, K. S., Determination of Chromium (III)	
and Chromium (VI) by Ammonium Pyrrolidine	
Dithiocarbamate-Methyl Isobutyl Ketone-Furnace	
Atomic Absorption Spectrometry	305

sunlight-induced transient species	285
Supercritical fluid chromatography	655
Supercritical Fluid Chromatography:	
Application to Trace Analysis	409
supercritical fluids	655
surface analyses.	387
surface effects	565
surface waters	285
Synchrotron Radiation Excited Fluorescence	
Micro-Analysis Using a New Imaging	
Technique	379
synchrotron topography	577

Т

Tanaka, Masataka, Koichi Nakamura,	
Eiji Mori, and Hideo Saisho,	
Determination of Traces of	
Uranium and Thorium in Microelectronics	
Constituent Materials	398
Tang, C. P., M. R. Lee, S. C. Chang, and	
T. S. Kao, Studies of Limit of	
Detection on 2,4,6-Trinitrotoluene	
(TNT) by Mass Spectrometry	428
Tanner, James, Wayne Wolf, Rolf Zeisler,	
and Iyengar Venkatesh, Development of	
Multi-Purpose Biological Reference	
Materials	360
Taylor, John K., The Importance of Quality	
Assurance in Trace Analysis	232
Taylor, H. E., and J. R. Garbarino,	
Assessment of the Analytical	
Capabilities of Inductively	
Coupled Plasma-Mass Spectrometry	433
Taylor, E. H., V. Lorch, L. J. Moore, J. E. Parks,	
M. T. Spaar, and D. W. Beekman, Ultra-Trace	
Elemental and Isotopic Quantification for	
Neonatal Nutrition Studies	328
Technical Difficulties Associated with the	
Formation of Carbon-11 Labelled Carboxylic	
Acids	338
temperature	85
temperature protection circuit	533
temperature-regulated oven	533
Thayer, Donald W., Jay B. Fox, Jr.,	
Ronald K. Jenkins, Stanley A. Ackerman,	
and John G. Phillips, Effects of Ionizing	
Radiation on Nutrients in Foods	364
thermal energy analyser	249
thermal radiation	61
thermistor	603
thermometry	85
Thompson, R. E., J. R. Tuschall, and T. M. Anderson,	
U.S. EPA Reference Standards and Ouality	
Assurance Materials for the Analysis of	
Environmental Pollutants	237
Thompson, J. N., Accurate Measurement of	
Vitamins in Foods and Tissues.	362
Thompson, G., J. Smith, and S. Ahuja,	
Trace/Ultratrace Analyses of Unstable	
Compounds: Investigations on Hydrazobenzene	
and Azobenzene	344
thorium and uranium in microelectronics	
constituent materials	398

Tilford, Charles R., International	
Comparisons of Pressure Standards:	
A Status Report	545
TNT	428
Tomboulian, P., S. M. Walters, and	
K. K. Brown, Trace Level Quantitation	
of Phenyltin Compounds Using HPTLC	301
TOPO coated glassy carbon electrode	493
Torres Llosa, J. M., H. Ruf, K. Schorb,	
and H. J. Ache, Stripping Voltammetric	
Assay of Trace Technetium with a TOPO	
Coated Glassy Carbon Electrode	493
toxic chemicals	412
Trace Analyses of Impurities in Povidone	
by Square Wave Voltammetry	487
trace analysis	75 409
trace analysis accuracy	217
Trace Analysis by Degrees.	211
An Academic Persnective	187
trace analysis inorganic	410
Trace Analysis, inorganic	417
in Natural Samples by Shadiskii	
Englateranopu	441
Specific scopy	441
trace analysis, pharmaceutical	242
trace analysis, quality assurance.	232
I race Biogenic Amine Analysis with	
Pre-Column Derivatization and with	
Fluorescent and Chemiluminescent	
Detection in HPLC	504
trace characterization of high	
purity materials	400
trace constituents	390
trace element analysis	318
Trace Element Determinations in Biologicals	
Using Atomic Absorption Spectrometry	350
Trace Element Speciation in Food: A Combined	
Enzymolysis – SEC-ICP-MS Approach	349
trace elements in Methamphetamine	
Hydrochloride	469
trace elements in Uranium Oxide (U_3O_8)	452
trace level, accuracy	520
Trace Level Quantitation of Phenyltin	
Compounds Using HPTLC	301
trace metal analyses, clinical-biomedical	334
trace metals in marine environments	321
trace metals in precipitation	312
trace organic pollutants	281
trace quantitative analysis	419
Trace Radiocarbon Analysis of Environmental	
Samples	289
trace technetium	493
Trace/Ultratrace Analyses of Unstable	
Compounds: Investigations on Hydrazobenzene	
and Azobenzene	344
Transferring Accuracy to the Trace	
Level and Then to the Field	520
trends	321
tributyltin	277
Trusler, J. P. M., T. J. Edwards, J.B. Mehl.	-
R. S. Davis, and M. R. Moldover. Measurement of	
the Universal Gas Constant R Using a	
Spherical Acoustic Resonator	85
Tung, M. S., N. Eidelman, B. Sieck.	
and W. E. Brown, Octacalcium Phosphate	
Solubility Product from 4 to 37 °C	613

Turgel, Raymond S., Phase Meter	
Calibration at NBS	53
Tuschall, J. R., T. M. Anderson, and	
R. E. Thompson, U.S. EPA Reference Standards	
and Quality Assurance Materials for the	
Analysis of Environmental Pollutants	237
two dimensional metrology	41

U

ultratrace analysis	462
Ultra-Trace Elemental and Isotopic	
Quantification for Neonatal Nutrition	
Studies	328
ultraviolet	21
Umāna, Mirtha, Jess Waller, Mansukh Wani,	
Carol Whisnant, and Edgar Cook, Enzyme-	
Enhanced Electrochemical Immunoassay for	
Phenytoin	659
Unger, M. A., F. A. Espourteille, C. D. Rice,	
and R. G. Huggett, Determination of Tributyltin	
in the Marine Environment	277
Uniform Concept for Error Estimation	
in Gamma-Ray Spectrometry, A	481
unit-cell dimensions	557
Universal Gas Constant	85
unstable compounds	344
uranium oxide (U_3O_8)	452
uranium and thorium in microelectronics	
constituent materials	398
U.S. EPA Reference Standards and Ouality	
Assurance Materials for the Analysis of	
Environmental Pollutants	237
Use of Cryogenic Size Reduction to	
Improve Purgeable Priority Pollutant	
Analyses in Soil Samples. The	292
use of GC-GC-high relolution MS to	
identify photo- and oxidative	
degradation products of BPA-Polycarbonate	394
Uses of High Resolution GC/MS for Obtaining	
Accuracy in Lipid Measurements	331
Polycarbonate	394
•	

v

vacuum standards	545
	21
Van Borm, W., P. Van Espen, and	
K. Janssens, Increased Accuracy in the	
Automated Interpretation of Large EPMA	
Data Sets by the Use of an Expert System	260
Van Espen, K. Janssens, and W. Van Borm,	
Increased Accuracy in the Automated	
Interpretation of Large EPMA Data Sets	
by the Use of an Expert System	260
Vanballenberghe, L., A. De Kesel, J. Hoste,	
B. Wallaeys, J. Vandenhaute, and J. Versieck,	
Biological Reference Materials for Trace	
Element Analysis: What is New?	318
Vandenhaute, J., J. Versieck,	
L. Vanballenberghe, A. De Kesel,	
J. Hoste, and B. Wallaeys, Biological	
Reference Materials for Trace Element	
Analysis: What is New?	318
· · · · · · · · · · · · · · · · · · ·	210

Veber, M., V. Francetic, R. Durst, and S. Gomiscek, Electrochemical Studies of Dithiocarbamates and Related Compounds	496
J. Hoste, B. Wallaeys, and J. Vandenhaute, Biological Reference Materials for	
Trace Element Analysis: What is New?	318
vitamins in foods and tissues	362
voltammetric assay of trace technetium	493
Voltammetric Sensors Using Chemically	
Active Electrode Materials.	488
voltammetry	489

W

Walker, James H., Robert D. Saunders,	
John K. Jackson, and Donald A. McSparron, The	
NBS Scale of Spectral Irradiance	7
Wallaeys, B., J. Vandenhaute, J. Versieck,	
L. Vanballenberghe, A. De Kesel, and	
J. Hoste, Biological Reference Materials	
for Trace Element Analysis: What is New?	318
Waller, Jess, Mansukh Wani, Carol Whisnant,	
Edgar Cook, and Mirtha Umana, Enzyme-Enhanced	
Electrochemical Immunoassay for Phenytoin	659
Walters, S. M., K. K. Brown, and	007
P. Tomboulian. Trace Level Quantitation	
of Phenyltin Compounds Using HPTLC	301
Wang, C., T. Kuwana, T. Kawasaki and	501
O Wong Trace Biogenic Amine	
Analysis with Pre-Column Derivatization	
and with Elucrescent and Chemiluminescent	
Detection in HPLC	504
Wang Joseph A depentive Stripping	504
Voltammetry A New Electroprolutical	
A vorue for Trees A relucie	400
Wenter V. I. D. I. and Cattle and	489
Wang, I. L., K. Levi-Setti, and	
J. Crabala, imaging Microanalysis	
of Materials with a Finely Focused	~~~
Heavy Ion Probe	377
Wani, Mansukh, Carol Whisnant, Edgar Cook,	
Mirtha Umana, and Jess Waller, Enzyme-	
Enhanced Electrochemical Immunoassay for	
Phenytoin	659
Warner, I. M., G. Nelson, G. Patonay,	
L. Blyshak, and S. L. Neal, Enhanced	
Multidimensional Luminescence	
Measurements Through Cyclodextrin	
Complexation	438
Watanabe, Ikuo, Sequential Automated	
Analysis System for Lower Oxygenated	
Organic Compounds in Ambient Air	299
water	603
water vapor	551
Watters, Robert L., Jr., Raymond J. Carroll,	
and Clifford H. Spiegelman, Heteroscedastic	
Calibration Using Analyzed Reference	
Materials as Calibration Standards	264
waveform analysis	643
Wegscheider, Wolfhard, Hugo M. Ortner.	0.0
and Markus Michaelis, Improving	
Accuracy in Graphite Furnace Atomic	
Absorption Spectrometry Through	
Peak Shape Monitoring	467
	τ υ/

Wegscheider, Wolfhard, Chemometrics	
in Europe: Selected Results	257
D Scott Wright H Brian Halsall	
William R. Heineman, and Sarah H. Jenkins.	
Electrochemical Enzyme Immunoassay	491
Wehry, E. L., Fluorescence Spectrometric	
Determination of Nonfluorescent	
Compounds via Molecular Fragmentation	437
weighing	202
Weighing errors	202
Uncertainty Limits to the Mass	
Determination of a Piston-Gage Weight	565
Welch, M. J., A. Cohen, P. Ellerbe, R. Schaffer,	
L. T. Sniegoski, and E. White V, The Development	
of Definitive Methods for Organic Serum	~ ~ ~
Constituents.	341
Westgard, James O., Design of Cost-Effective	218
Whisnant, Carol. Edvar Cook, Mirtha Umāna.	210
Jess Waller, and Mansukh Wani, Enzyme-	
Enhanced Electrochemical Immunoassay	
for Phenytoin	659
White, D. R., J. F. Alofs, and D. E. Hagen,	
Condensation Method for Humidity	
Measurement in the UMR Cloud	551
White F V G D Burd and	221
L. T. Sniegoski. Determination of 3-	
Quinuclidinyl Benzilate in Urine	293
White, E., V, M. J. Welch, A. Cohen,	
P. Ellerbe, R. Schaffer, and L. T. Sniegoski,	
The Development of Definitive Methods for	• • •
Organic Serum Constituents	341
and I. M. Miller. An Isotone Dilution Mass	
Spectrometric (IDMS) Method for the	
Determination of Vitamin C in Milk	367
White, J. G., P. R. Dluzneski, J. S. M. de Wit,	
J. W. Jorgenson, R. T. Kennedy, and	
R. L. St. Claire III, Open Tubular Liquid	
Chromatography and the Analysis of	402
Single Neurons	405
Steven D. Brown, and Todd O. Barker.	
Multicomponent Analysis in Static and	
Flow Systems Using Digital Filters	253
Williams, D. B., Prospects for Trace	
Analysis in the Analytical Electron	
Microscope	369
Williams, Maria C. L., and Seegopaul Purneshwar,	220
Wills Michael P. John Sayon Michael Kinter	239
David A Herold and Judy C. Hundley, Use	
of High Resolution GC/MS for Obtaining	
Accuracy in Lipid Measurements	331
Winer, Arthur M., Janet Arey,	
Barbara Zielinska, and Roger Atkinson,	
Analysis of Gaseous and Particle-Associated	
YAH and Nitroarenes in Ambient Air	279
and lames Tanner Development of Multi-	
Purpose Biological Reference Materials	360

Wong, O., C. Wang, T. Kuwana, and	
T. Kawasaki, Trace Biogenic Amine	
Analysis with Pre-Column Derivatization	
and with Fluorescent and Chemiluminescent	
Detection in HPLC	504
Wright, D. Scott, H. Brian Halsall,	
William R. Heineman, Sarah H. Jenkins,	
Kenneth R. Wehmeyer, and Matthew J. Doyle,	
Electrochemical Enzyme Immunoassay	491
Wright, John C., High Resolution	
Nonlinear Laser Spectroscopy	440

х

xenobiotics	419
XQQ instruments	431
x-ray diffraction pattern	557

Y

Yeung, Edward S., Applications	
of Lasers in Bioanalytical	
Chemistry	502

Z

Zagyvai, Péter, Lajos György Nagy, and	
Jozsef Sólymosi, A Uniform Concept for	
Error Estimation in Gamma-Ray	
Spectrometry	481
Zeeman Effect	323
Zeisler, Rolf, Venkatesh Iyengar, James Tanner,	
and Wayne Wolf, Development of Multi-	
Purpose Biological Reference Materials	360
Zhang, Y., I. Cook, A. Cox, A.R. Date,	
Y. Y. Cheung, and C. W. McLeod, Flow	
Injection-Inductively Coupled	
Plasma Spectrometry: A New	
Strategy for Ultratrace Analysis	462
Zielinska, Barbara, Roger Atkinson,	
Arthur M. Winer, and Janet Arey, Analysis of	
Gaseous and Particle-Associated PAH and	
Nitroarenes in Ambient Air	279