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1. Introduction 
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In a Miissbauer experiment, if a spa­
tiaJly-extended absorbing sample is ro­
tated relative to a moving y-ray source, 
lines of constant y-ray Doppler shift are 
generated through the absorber parallel 
to the motion of the source. As a result, 
resonant absorption takes place along a 
series of parallel lines cutting through 
the absorber, where a particular line is 
determined by the velocity of the 
source. The result is a series of measure­
ments of line integrals of the absorption 
coefficient through the absorber. An im­
age or spatial map of the absorption co­
efficient distribution may then be 
reconstructed using tomographic image­
reconstruction algorithms. Moreover, 
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when measurements are recorded both 
as a function of the source velocity and 
the absorber rotational velocity, spectral 
information may also be recovered as a 
function of position. Spatial resolution is 
proportional to the rate of rotation of 
the absorber, but is ultimately signal-to­
noise limited. 
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The Mossbauer effect is an important spectro­
scopic tool in materials science [1,2j1. In a typical 
Mossbauer experiment, 'Y-rays emitted by a ra­
dioactive source are allowed to impinge upon a 
sample of absorbing material; the transmitted or 
resonantly-scattered 'Y-rays are then subsequently 
detected (fig. I). Thus, in a transmission experi­
ment, a detector counts the number of 'Y-rays pass­
ing through the absorber, and in a scattering 
experiment the detector counts the 'Y-rays re-emit­
ted after resonant absorption. The Mossbauer ef­
fect, or nuclear 'Y-ray fluorescence, is made 

possible by the recoilless emission and absorption 
of the 'Y-rays in nuclei embedded in a solid lattice. 
As a result, the resonant Iinewidths, relative to the 
'Y-ray energy, are characteristically very narrow. 
Moreover, the resonant absorption can be "tuned" 
merely by moving the source at a small velocity 
relative to the absorber, which imparts some ki­
netic energy, or Doppler shift, to the 'Y-ray. 
Changes in source-absorber speeds as small as a 
few millimeters per second are often sufficient to 
destroy the resonance. In the conventional Moss­
bauer experiment, an absorption spectrum of the 
material under study is generated by moving the 
source relative to the absorber and counting the 
transmitted 'Y-rays (or resonantly-scattered 'Y-rays 
in a scattering experiment) as a function of the rela­
tive source-absorber velocity. 

About the Author: Stephen J. Norton is with the 
Metallurgy Division of NBS' Institute for Materi­
als Science and Engineering. 
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Detector Absorber Moving 
source 

Figure I-Conventional Miissbauer experimental arrangement 
with stationary absorber and moving source. 

In this paper, we propose the idea of Mossbauer 
imaging. An image is by definition some quantity 
or parameter of interest displayed as a function of 
position, i.e., a picture of the parameter as it is dis­
tributed in space. In Mossbauer imaging, the sim­
plest example of such a parameter is the Mossbauer 
absorption coefficient, and the aim would be to re­
construct and display its spatial distribution. A con­
ventional Mossbauer experiment measures only a 
bulk average of the resonant absorption coefficient 
over the absorbing specimen. Thus, spatial inhomo­
geneities within an extended absorber, due either to 
variations in the absorption cross section of a pure 
material or to the mixture of different nuclei within 
a composite material, are inevitably averaged out 
in the bulk measurement process. A Mossbauer 
imaging experiment, however, would permit the 
reconstruction of a two-dimensional map of the 
Mossbauer absorption coefficient, that is, a two-di­
mensional picture of the strength of the resonant 
absorption as a function of position. In another, 
somewhat more complex, version of an imaging ex­
periment, spectroscopic information as a function 
of position should also be recoverable, rather than 
merely differences in the absorption coefficient as a 
function of position. As a consequence, in the latter 
version, true M6ssbauer spectroscopy can be per­
formed in an imaging mode, so that heterogeneous 
or composite samples may be investigated. 

The idea of M6ssbauer imaging was inspired by 
the success of nuclear-magnetic-resonance (NMR) 
imaging, since NMR and the M6ssbauer effect 
share some fundamental characteristics, both being 
nuclear resonance phenomena. NMR imaging has 
recently found notable success in diagnostic 
medicine [3]. While there are no foreseeable appli­
cations of M6ssbauer imaging in medicine, applica­
tions to materials science are thought to exist. The 
ability to perform M6ssbauer spectroscopy in an 
imaging mode, i.e., to do spectroscopy as a func­
tion of position within a sample, rather than in 
bulk, should prove to be of value in the analysis of 
heterogeneous materials. Although NMR and 
Mossbauer imaging may have different applica-
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tions, it is instructive to compare the two tech­
niques. In NMR imaging, resonant-frequency 
information is translated into spatial information by 
imposing a magnetic field gradient on a system of 
precessing nuclear spins. In Mossbauer imaging, 
we will see that by rotating the y-ray absorber, a 
velocity gradient is imposed along the radial direc­
tion of the absorber and the resonance associated 
with a particular Doppler shift (analogous to a par­
ticular NMR precessional frequency) takes place 
along a family of lines perpendicular to the veloc­
ity gradient (analogous to the NMR magnetic field 
gradient). This process gives rise to a set of mea­
surements of the line integrals of the absorption co­
efficient, from which an image can be recovered 
using well-known tomographic image reconstruc­
tion algorithms. These algorithms are mathemati­
cally similar to those employed in both x-ray and 
NMR tomography [4,5]. A more detailed descrip­
tion of the process by which the line-integral mea­
surements arise is given in section 3. 

The basis of the imaging approach can be most 
easily described using a classical interpretation of 
Mossbauer absorption, which will suffice for our 
purposes. As noted earlier, in this description the 
relative source-absorber velocity imparts a 
Doppler shift to the y-ray. For purposes of illustra­
tion, consider the simplest case of a material with a 
single resonance line (neglecting isomer shifts); 
then resonance will take place at zero Doppler 
shift, or zero relative velocity between the source 
and absorber. By rotating an extended absorbing 
object relative to the source, lines of constant 
Doppler shift (or equivalently, of constant y-ray 
energy) are generated across the absorber. As a re­
sult, resonant absorption takes place along one line 
at a time, giving rise to one line-integral measure­
ment of the absorption coefficient. The location of 
the line is determined by three parameters: the ab­
sorber rotational velocity, the source velocity and 
the instantaneous position of the absorber during 
the measurement. From a complete set of such line­
integral measurements, a spatial map of the y-ray 
absorption can, in principle, be tomographically re­
constructed. We shall see that the spatial resolution 
within the reconstructed image is proportional to 
the ratio of the naturallinewidth of the resonance 
(in units of velocity) to the rate of rotation of the 
absorber, but is ultimately signal-to-noise limited. 
This means that, in principle, arbitrarily high reso­
lution can be achieved, but at the expense of 
rapidly increasing detector integration times. In 
particular, the integration time will increase in di­
rect proportion to the number of resolution ele­
ments (pixels) in the desired image. Thus, in a 
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two-dimensional image, doubling the linear resolu­
tion will square the number of pixels, which in turn 
will square the required integration time. As a con­
sequence, very high resolution will require exceed­
ingly long integration times unless sources of high 
intensity become more readily available. 

At this stage one might observe that the equiva­
lent line integral measurements could be generated 
merely by directing a collimated beam of y-rays at 
the absorber over a wide range of incident angles. 
This approach is analogous to conventional x-ray 
computerized tomography in a transmission experi­
ment or to single photon emission tomography in a 
scattering experiment. The advantage of the pro­
posed method is that an extended source can be 
used rather than a collimated source, which implies 
a substantially greater incident y-ray flux and a 
corresponding enhancement in the signal-to-noise 
ratio. 

In the following three sections, we consider the 
idealized case of the y-rays incident parallel to the 
x -axis. This can be achieved by moving the source 
sufficiently far away so that the source subtends a 
small angle at the absorber. The assumption of par­
allel incidence simplifies the analysis considerably 
and permits an analytical solution to the image re­
construction problem; it also allows the analytical 
inversion of the complete M6ssbauer spectrum at 
each point (section 3). Moreover, the parallel­
incidence case also permits the closed-form 
derivation of the image point spread function, 
which is defined as an image of a point object 
(Dirac delta function) and characterizes the resolv­
ing power of the imaging technique (section 4). In 
section 5 we consider an extended source which 
gives rise to y-rays incident over a range of direc­
tions that are no longer parallel. In the latter case, 
the image reconstruction cannot be inverted ana­
lytically as for parallel incidence, but the recon­
struction can nonetheless be performed using 
iterative algebraic reconstruction techniques [4,5]' 
Although such iterative reconstruction methods of­
ten fail to provide the insight and intuition of ana­
lytical solutions (which permit, for example, the 
closed-form derivation of the image point spread 
function), such methods are often more flexible in 
incorporating a priori information into the inver­
sion algorithm. An important example is the incor­
poration of y-ray attenuation due to a variety of 
scattering and absorption (resonant and non­
resonant) mechanisms. For relatively thick objects, 
attenuation can no longer be ignored in the 
inversion. For the sake of tractability, we will, 
however, ignore attenuation in the next several 
sections. 
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2. Standard Experiment 

Suppose a y-ray emitted by a moving source is 
incident on a two-dimensional stationary absorber 
(fig. 2). For our purposes, it will suffice to describe 
the resonant absorption classically by modeling the 
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Figure 2-Two-dimensional absorber and distant moving source 
providing parallel y-ray illumination. 

nuclear resonance phenomenon, within a single ab­
sorbing nucleus, as a harmonic oscillator character­
ized by resonance frequency w. and linewidth T 

(analogous to the mean lifetime of the y-ray energy 
level) and driven by the electromagnetic field of 
the incident y-ray. Letting A (t) denote the re­
sponse of this elemental oscillator, we have 

" 1 . 
A(t)+-A(t)+w~A(t)=Ainc(t), 

T 
(I) 

where 

(2) 

is the y-ray electromagnetic field. In eq (2), v, is the 
velocity of the moving source, c is the velocity of 
light and Ao is a constant. Although one might also 
choose to include a finite linewidth in the y-ray 
field Ainc(t), we shall, for mathematical simplicity. 
lump alilinewidth effects into the parameter T in eq 
(1). Note that wovjc in eq (2) is just the classical 
Doppler shift due to the motion of the source. In 
an equivalent notation, wo=EoIft and r=ftIT. 
where Eo is the energy of the incident y-ray and r 
is the (energy) linewidth. Now in eq (I), set 

(3) 

where v. is a parameter (in units of velocity) that 
allows for shifts in the nuclear resonance of a given 
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nucleus. Thus, the "intrinsic velocity," Va, is char­
acteristic of different absorbing nuclei (or their en­
vironment). We will later allow Va to vary with 
position. The solution of the differential eq (1) on 
substituting eq (2) is 

A(/) (4) 

where 

(5) 

is the Doppler-shifted source frequency. Substitut­
ing eqs (3) and (5) into eq (4), and assuming v, and 
v.< <c, eq (4) becomes 

Ao e""" 
A (/)= 2wo (v.- vJwolc +i/2r' 

Classically, the intensity of the re-emitted y-ray is 
proportional to IA 12

, i.e., 

I(v.-v.)e /A /2 

(6) 

or, in an equivalent notation, 

which is the familiar Lorentzian (or Breit-Wigner) 
distribution [1,2]. 

Because the detection of the re-emitted y-ray is 
an incoherent process, we can regard eq (6) as pro­
portional to the probability of the y-ray re-emission 
as a function of the velocity difference V = v. - V,. 

To make eq (6) a valid probability density function 
in v, normalize eq (6) to have unit area when inte­
grated with respect to v, i.e., define 

(7) 

where 

is the linewidth in units of velocity. From eq (7), 
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One can also show that 

lim p(T)(v)=8(v), 
"-.0 

(8) 

where 8(-) is the Dirac delta function. 
Now let O'(x, y, va) denote the resonant absorp­

tion cross section as a function of space and the 
intrinsic velocity Va' Then the expected number of 
counts, denoted by f(T)(VS), is proportional to the 
function O'(x,y, va) weighted by the probability 
density function P(v.-vs) and integrated over v., 
and all space: 

In this and subsequent integrals, we shall assume 
that the limits of integration are from - 00 to + 00 

unless otherwise indicated. We can assume this by 
defining functions such as O'(x, y, vJ to be zero 
outside their support (Le., beyond the boundaries of 
the absorber and the domain of Va, and so on). 
Now, for convenience, suppose we temporarily 
consider the limit of very small VT (narrow resonant 
Iinewidth). As VT goes to zero, the probability den­
sity function P(T)(Va-vs) becomes highly peaked 
about Va = v" and in the limit vT--.(), we can use eq 
(8) in (9). Thus, defining 

we have from eqs (8) and (9), 

f(vs) = II dxdyO'(x,y, vJ, 

which is the expected result for the standard Moss­
bauer experiment, that is, f(vs) is the absorption 
cross section evaluated at Va = Vs averaged over the 
sample. 

3. Imaging with Parallel y-Ray Incidence 

Now let the absorber rotate clockwise about the 
z-axis at constant angular velocity n. Let (x,y) de­
note a stationary coordinate system and let 
(x',y') denote a moving coordinate system embed­
ded in the rotating absorber, as illustrated in figure 
3. At 1=0, let the stationary (x,y) and the rotating 
(x',y') coordinate systems coincide; at this instant 
denote the absorber's cross-section function by 
O'o(x,y, va). For 1>0, the absorber has rotated 
through an angle nt. Define O',(x,y, va) as the ab-
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sorption cross section relative to the stationary axes 
(x,y) at time t; then 

CT,(X,y, Va)=Uo(x',y', va), (10) 

where 

x'=x cos Ot-y sin Ot (lla) 

y'=x sinOt+y cosOt, (lIb) 

or, inverting, 

x =x' cos Ot + y' sin Ot (12a) 

y= -x' sin Ot+y' cos Ot. (12b) 

Again consider a y-ray incident parallel to the 
x-axis from a source moving at velocity v, in the 
positive x -direction (fig. 3). Resonant absorption 

Line of 
resonant 
absorption 

--t--..L..:>'k----/+- x ----1.1---1 

x' 

Condition for resonant absorption: RQ = Vs -va Source (distant) 

Figure 3-Rotating two-dimensional absorber with parallel ')'-ray 
illumination. Resonant absorption takes place only along a 
line of "sensitivity" parallel to the x -axis at height R, where 
R is defined by the condition R!l=v.-v •. 

will then take place when the total velocity v.+v: 
of a point on the absorber equals the source veloc­
ity v" where Va is the intrinsic material "velocity" 
and va' is the additional velocity contribution due to 
the motion of the absorber. Since the y-ray is inci­
dent parallel to the x-axis, va' will be the x-compo­
nent of the absorber velocity; thus, from eq (12), 

V.'=X=Oy. 

Note that va' depends only on y, so that resonant 
absorption takes place along lines parallel to the 
x-axis. For the stationary absorber, the resonance 
condition was Va=V,; for the rotating absorber, the 
resonance condition is modified to read 

(13) 
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Thus, for specific values of 0 and v" resonant 
absorption takes place along a line at height 
y=(v.-v.)/O parallel to the x-axis (fig. 3). 

Now, in view of eq (13), for the rotating ab­
sorber, we can replace v, in eq (9) by v,-Oy. giving 

(14) 

Now considering a very narrow resonance, we 
again take the limit v.-+O. Defining 

f,(V" O)==limft)(v" 0), ,.-00 

and using, from eq (8), 

1 
=n0[y -(v,-va)/O] 

in eq (14), we have 

f,(V" O)=~ II dxdvaCT,[x, (v,-va)lO, Va]. (IS) 

This is our fundamental equation from which we 
shall solve for the function CTJ.,X',y', va) from the 
dataf,(v" 0) recorded as a function of v" n, and t. 
Below, we consider four special cases of increasing 
generality: 1) one-dimensional imaging with no Va 
distribution (i.e., assuming a single spectral line at 
va=O); 2) two-dimensional imaging with no v. dis­
tribution; 3) one-dimensional image with an arbi­
trary and unknown Va distribution; and finally 
4) two-dimensional imaging with an arbitrary and 
unknown Va distribution. 

One-Dimensional Imaging with No v. Distribu­
tion. We consider the simplest imaging case here. 
Suppose the absorber is one-dimensionaJ and rotat­
ing. For convenience, assume the amorber is 
aligned with the (rotating) y'-axis, and suppo~ fur­
ther that the measurements are made at the in~t3nt 
the absorber rotates past vertical, i.e .• when the ro­
tating absorber coincides with the y-axis at 1=0. 
We then have 

CT,(X,y, Va)=CTo(y)S(X)S(v.). 

and eq (15) reduces to the simple result 
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1 
fo(v" fi)=n<To(vjfi). 

Thus, the spatial dependence of the one-dimen­
sional cross section <To(y) is given explicitly as a 
function of vjfi. 

Two-Dimensional Imaging (Tomography) with No Va 

Distribution. Here we let 

<T,(x,y, v.)=CT,(x,y)8(v.), (16) 

so that eq (15) becomes 

f,(v" n)=k I dx<T,(x, v.ln). (17) 

Recall that the measurementsf,(v., fi) are made as a 
function of time as the absorber rotates. To make 
the t-dependence in eq (17) explicit, rewrite eq (17) 
as follows. 

f,(v" n)=k ff dxdY<T,(x,y)o(y-vjfi) 

=~ ff dx'dy'CTo(x',y') 

·8( -x' sin fit + y' cos Ot - vjil), (IS) 

where eqs (10) and (l2b) were used in the last step. 
From eq (lS),f,(v" 0) is a line integral through the 
two-dimensional function <To(x', y') along a line 
parameterized by the radial distance vjO and the 
angle Ot from they'-axis. The inversion ofeq (IS) 
for <To(x',y') can be carried out by standard tomo­
graphic techniques. It is easiest to invert eq (IS) 
using Fourier methods, as follows. 

First define the one-dimensional Fourier trans­
form of f,(v" n) with respect to v, as 

J,(k, fi)== fd v,f, (v" O)exp( -ikv,). (19) 

Inserting eq (IS) into (19) and interchanging orders 
of integration. gives 

l,Ck. fi)= If dx'dy'<To(x',y') 

·exp[ikn(x' sin nt-y' cos Ot»). (20) 

Now the two-dimensional Fourier transform, 
Cro(k .. k,), of <To(.t',y') is 
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·exp[ -i(kxX' +kp")], (21) 

and, on comparing eqs (21) and (20), we have 

l,ck, fi)=o-o(-kO sin Ot, kO cos Ot). (22) 

Equation (22) is the well-known central-slice 
theorem in tomography [4,5]. In the present con­
text it states that l,Ck, 0), evaluated at time t and 
spatial frequency k, is the two-dimensional spatial 
Fourier transform, O-o(k" , ky), of uo(x', y') evalu­
ated on a line in the (k", ky ) Fourier plane through 
the origin at angle Ot with the k,,-axis. Thus, taking 
many revolutions of data and, during each revolu­
tion, stepping the value of v. will generate sufficient 
data to provide complete coverage of the 
(k", ky) Fourier plane, whereupon an inverse two­
dimensional Fourier transform of Cro(k", ky) yields 
the reconstruction <To(x', y'). Note that the re­
quired range of measured v. values is from 0 to 
fiRtnaJ., where Rmax is the largest radial dimension of 
the absorber. 

One-Dimensional Imaging with Unknown Va Distri­
bution. In this case, let 

<T,(X,y, va)=uo(y, va)8(x). 

For the one-dimensional absorber, again assume 
that the measurement is made as the absorber ro­
tates past vertical at t =0. Then, substituting 
<T,(x,y, 'Ya} into eq (15) and setting t=O, gives 

fo(v" 0)= A f dV.<To[(V.- va>/n, vJ. (23) 

We wish to solve for the two-dimensional function 
<To(y, val, which has one spatial dimension (y) and 
one spectral dimension (va>. Rewrite eq (23) as 

Substituting into eq (19) and interchanging orders 
of integration, gives 

lo(k, 0)= JJdYdVa<To(v, va)exp[ -ik(!ly + v.)]. 
(24) 

Now writing the two-dimensiona1 Fourier trans­
fOrol of <To(y, va), 
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.exp[ -i(ky)' +k,va)], 

and comparing to eq (24), we see that 

lock, O)=cro(kO, k). 

This result resembles the central-slice theorem en­
countered earlier. Here lo(k, 0) is equal to the 
two-dimensional Fourier transform, cro(ky , k,), of 
CTo(y, va) evaluated on a line in the (k" k.) Fourier 
plane through the origin at angle tan-t(O) from the 
k,-axis. Thus, by varying both k and 0, complete 
two-dimensional coverage of croCk"~ k,) in Fourier 
space can be achieved. The reconstruction of 
CTo(y, va) then follows on taking the inverse two-di­
mensional Fourier transform of croCk"~ k,). 

Two-Dimensional Imaging (Tomography) with Un­
known Va Distribution. Here we wish to recon­
struct the three-dimensional function CTo(X', y', vJ. 
This is the most general inversion problem consid­
ered. Now rewrite eq (15) as 

/r(V., O)=A fff dxdydvaCTt(x,y, va) 

·8[y -(Vs-Va)/O] 

=A III dx'dy'dvaCTo(x',y', vJ 

.8[ -x' sin Ot +y' cos Ot -(vs-va)/O] 
(25) 

~sing eqs (10) and (12b) in the last step. Substitut-
109 eq (25) into eq (19) then gives 

It(k, 0)= fff dx'dy'dvaCTo(x',y', va) 

. exp[ikO(x' sin Ot-y' cos nt)-ikvJ. 
(26) 

Writing the three-dimensional Fourier transform of 
CTo(X',y', va) as 

.exp[ -i(kxX' +k.JJ" + k.v.)] , 

and comparing to eq (26), we have 
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It(k, n)=uo(-kn sin nt, kn cos nt, k). 

This is the generalization of the central-slice 
theorem to three-dimensions. Thus, by suitably 
varying the three parameters v" nand t, full 
coverage in the three-dimensional Fourier space 
can be achieved, and an inverse Fourier trans­
form of uo(k", ky, k.) yields the reconstruction 
CTo(x',y', vJ. 

4. Spatial Resolution and the Image Point 
Spread Function 

In previous sections, we considered the idealized 
case of an infinitesimally narrow linewidth vr • This 
simplifies the mathematics, but implies that spatial 
resolution can be arbitrarily small. In this section, 
we show that spatial resolution is controlled by the 
naturallinewidth vr ; in particular, spatial resolution 
is proportional to the ratio of Vr to the rotational 
velocity n of the absorber. 

Below we derive the point spread function 
(PSF) of the two-dimensional tomographic recon­
struction problem, with no v. dependence for sim­
plicity (the second case above). The PSF is by 
definition merely the reconstructed image of a two­
dimensional Dirac delta function, or point object, 
and its width provides a reasonable measure of im­
age resolution. Alternatively, the reconstructed im­
age may be regarded as the true image convolved 
with the PSF. 

To derive the point spread function in two di­
mensions, we repeat the above derivation using eq 
(14) in place of eq (15). Substituting 

CT,(X,y, V.) = CT,(X, y)8(v.) 

into eq (14) gives 

jt)(v" 0)= II dxdYCT,(x,y)pl"(ny-v.) • 

which is the first line of eq (18) with 8(·) replaced 
by p(rl(.). Now write this as 

f,'l(V" fi)= II dx'dy'CTO<x',y') 

·Pl''[fi( -x' sin fit +y' cos nt)-v.}. 
(27) 

Writing the Fourier transform of f,"( .... n) with 
respect to v" 
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substituting eq (27) into (28) and interchanging or­
ders of integration, results in 

where 

. exp[ikfi(x' sin fit -y' cos fit)] 

= P(T)(k)Cro( -kfi sin fit, kfi cos fit), 
(29) 

is the Fourier transform of P(T)( -v.). Equation (29) 
is merely eq (22) multiplied by P (T)(k). 

We can evaluate P(T)(k) by inserting eq (7) into 
(30); integrating, the result is 

Thus, the Fourier transform, Cro(k", ky), of 
O'o(x', y') is weighted by the exponential radially­
dependent function exp( - kvT). The point spread 
function is obtained by setting Cro(kx , k,)= 1 in eq 
(29); as a result, the PSF is just the two-dimen­
sional inverse Fourier transform of P(T)(k). Since 
k fi is the radial coordinate in the Fourier plane, 
P(T)(k) has radial symmetry and the resulting PSF 
also has radial symmetry. Hence, the inverse two­
dimensional Fourier transform of p(r)(k) can be 
evaluated in polar form: 

fi
2 J"' = 217' 0 dk k exp( -kvr)Jo(fik,') 

v. 1 
=217' [(,')l+(vr /fi)lJlIl' (31) 

where Jo(') is the zero-order Bessel function and 
,'= v' X,I + y'2. This is the desired point spread 
function whose width gives the image resolution. 
Let ro' signify the full width at half maximum of eq 
(31); then 

rrJ =0.76 vTIO. 

The important thing to note is that '0' is inversely 
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proportional to the rotational velocity fi. Finally, 
one can show that PSF(,') becomes a two-dimen­
sional Dirac delta function in the limit vT-D, as 
required. As an example, for typical linewidths, v" 
of less than a mm/s, this result shows that '0' is on 
the order of a tenth of a millimeter when the ab­
sorber rotates at one revolution per second 
(0=217') . 

5. Imaging with an Extended Source 
(Non-Parallel Incidence) 

In the latter two sections, we assumed parallel 
y-ray incidence in the direction of the x-axis. Par­
allel incidence is easily achieved by placing the 
source far enough away so that it subtends a small 
angle at all points on the absorber. This is practical 
when the source is sufficiently strong to provide a 
y-ray flux intercepting the absorber that results in 
an acceptable signal-to-noise ratio. Unfortunately, 
arbitrarily strong M6ssbauer sources are not avail­
able, so that moving the source close to the ab­
sorber to maximize the incident flux rnay be 
important. 

In the latter case, the source must be regarded as 
spatially extended, say, in the y-direction (fig. 4), 
and the incident y-rays are no longer parallel. As­
sume that the extended source is moving in the x­
direction at velocity v. and that the absorber rotates 
with angular velocity fi as before. Also, for sim­
plicity, assume that the intrinsic velocity v.=O. In 
this geometry, one can show that the component of 
velocity of a point on the rotating absorber and of 
a point on the source in the direction of the line 
joining them (i.e., along the line of flight of a y-ray 
passing between the two points) are equal to each 
other (the resonance condition) if and only if the 
line defined by the two points passes through 
(x=O,y=v.lfi) in the stationary (x,y) coordinate 
system. To see this, refer to the line L in figure 5, 
which we suppose is the path of a y-ray emitted 
from point A on the source. Suppose this path in­
tersects the y-axis at height R, as shown. Then L is 
tangent to a circle around the axis of rotation of 
radius R cos (), where () is the angle between Land 
the x-axis. From previous arguments, all points in 
the absorber lying on L have the same component 
of velocity in the direction of L, namely OR cos (). 
But the additional component of velocity of the 
incident y-ray along L due to the motion of the 
source is v. cos (), as can be seen from figure 5. The 
resonance condition is then obtained by equating 
the absorber and source components of velocity 
along L; thus setting OR cos () = v. cos () results in 
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R =vJ'O. Consequently, only those 'Y-rays moving 
along paths through (x =0, y =vJ'O) are resonantly 
absorbed. 

The complete set of lines passing through this 
point and intercepting the source generates a sec­
tor, as shown in figure 4, where the boundaries of 
the sector are the two lines intersecting the end 
points of the extended source and coming together 
at the point (0, vJ'O) in the (x,y) system. The den­
sity of lines peaks at the point (0, vJ'O) and falls off 
in proportion to 1I1x I in the x-direction (fig. 6). 
Through the peak in the y-direction, the width of 
this function is much narrower; in particular, the 
width in the y-direction can be shown to be vTIO, 
which is approximately the width of the point 
spread function derived previously for parallel in­
cidence. Neglecting, for the moment, attenuation 
of the 'Y-rays through the absorber, the line-density 
function sketched in figure 6 may be equivalently 
interpreted as the probability density function of 
resonant absorption events per unit area, which is 
just proportional to the inverse of the sector area 
shown in figure 4. 

The highly peaked distribution of the probability 
of resonance events is significant, since it implies 
that merely by varying Vs and counting absorption 
events as a function of time, it should be possible to 
generate a blurred image even without image re­
construction. Figure 4 shows that, by rotating the 
absorber, the 'Y-rays are effectively "focused" 
through the point (0, vJ'O). This focusing-like ef­
fect can be used to create a blurred image without 
further processing. A complete or deblurred image 
reconstruction cannot in this case be carried out 
analytically, but the reconstruction nevertheless 
can be performed using iterative algebraic recon­
struction techniques (ART) [4,5]. The ART al­
gorithms assume an initial estimate of the unknown 
image and then, on the basis of this estimate, re­
compute the measurements (line integrals of the 
resonant absorption coefficient). The recomputed 
measurements are then subtracted from the true 
measurements, giving rise to a set of error terms, 
which are then used to systematically adjust the 
current image estimate to reduce this error. When 
this iterative procedure is continued, it can be 
shown that the overall error tends to zero and, in 
the absence of measurement uncertainty and in­
complete data, the reconstructed image converges 
to the true image. Such iterative approaches also 
make it relatively easy to incorporate attenuation 
effects in the algorithm. 

In the above discussion, we assumed for simplic­
ity that the extended source was one-dimensional 
(Le., extended along the y-direction). If the source 
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has some depth as well as height (Le., some exten­
sion in the z-direction), the additional degree of 
freedom arising from variations in the x-compo­
nent of the 'Y-ray velocity will broaden somewhat 

Sector of 
resonant 
absorption 

-Q y 

:.-..-+---t---'''<tnt-- x _ vs 

.... 
" " " " ...... 

Source (nearby) 

Figure 4-For an extended source (non·parallel 'Y-ray incidence), 
the line of sensitivity broadens into a sector of sensitivity 
bounded by lines subtending the source and intersecting at the 
point (x=O,y=R), where Rfi=v.-v,. 

-Q 

_v. 

Figure 5-The line L signifies the path of a 'Y-ray emitted from 
one point on the extended source. 

x 

Figure 6-Probability distribution of r~nant abwrption pc-r unjt 
area over the sector of sensitivity in figure 4. The dl\tribution 
falls ofT as IIlx I along the x-axis and is approximately of 
width v,/fi along the y-uis. 
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the region of sensitivity beyond the sector illus­
trated in figure 4. To minimize this broadening ef­
fect, the source should be collimated in the 
z-direction as much as practical with a suitable ar­
rangement of slits in this direction. A three-dimen­
sional absorber could then be reconstructed on a 
"slice-by-slice" basis, as in two-dimensional x-ray 
tomography. 

6. Applications 

Applications of the technique to interior imaging 
appear to be limited to lighter materials, or ab­
sorbers of small size, that permit sufficient y-ray 
penetration. One possibility is the imaging of com­
posite materials, in which a Mossbauer element is 
embedded in a lighter matrix. Another possibility is 
surface imaging, whereby the surface of a flat ab­
sorber is rotated about an axis normal to the surface 
and a one-dimensional extended source is displaced 
a small amount from the plane of the surface. If all 
the impinging 'Y-rays have the same (or nearly the 
same) z-component of velocity, the region of sensi­
tivity in which resonant absorption takes place will 
look much the same as the sector illustrated in fig­
ure 4. In this case, the value of v, used previously 
should be replaced by the component of the source 
velocity in the plane of the surface. 

Some potential high-resolution applications in 
materials science include the imaging of grain 
boundary segregation. the imaging of residual 
stress distributions, and the imaging of the distribu­
tion of magnetism in ferromagnetic materials due 
to perturbations in the Mossbauer spectra arising 
from variations in the magnetic hyperfine field. 

7. Conclusion 

In conventional M6ssbauer spectroscopy, the 
measurement is spatially integrated over the ab­
sorber. For parallel 'Y-ray incidence, a rotating ab­
sorber generates a line of "sensitivity" Over which 
resonant absorption takes place. where the location 
of the line is a function of the source velocity and 
the absorber rotational velocity. In particular, this 
line is parallel to the velocity of the source and 
passes through the point (x =0, y=v.lfl). For an 
extended source, the line broadens into a sector 
subtending the source and coming together at the 
point (x = 0, y = v.ln). For a highly extended 
source, the result is as if the 'Y-rays were effectively 
"focused" through the point (x = 0, y = v'/n). This 
focusing effect can be used to generate a blurred 
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image of the absorption coefficient distribution in 
the absence of further processing when the mea­
surements are recorded as a function of v, and time 
(or the instantaneous absorber rotational position). 
Furthermore, by exploiting the three measurement 
degrees of freedom, v" 0, and time (or rotational 
position), complete spectroscopic information can, 
in principle, be recovered as a function of position. 
Thus, Mossbauer spectroscopy can be performed 
in an imaging mode. Spatial resolution is propor­
tional to the ratio of the naturallinewidth VT to the 
rotational velocity fl, but becomes rapidly signal­
to-noise limited as the resolution increases. 
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