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1. Introduction 

Number 3 

Good weighing practice usually dictates 
that, when using double-substitution 
weighing to determine the mass differ­
ence between two weights, the nominal 
value of the sensitivity weight used to 
calibrate the optical scale of the mass 
comparator be at least four times greater 
than the difference of the two weights 
being compared. However, there are 
times when other considerations must 
override this rule. We examine the theo­
retical basis for the rule and the penalty 
for violating it. Finally, we propose a 
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modi-fied weighing scheme which im­
poses a much less stringent rule for the 
size of the sensitivity weight. The new 
scheme requires an additional balance 
reading, but does not increase the over­
all measurement time significantly. 
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Many precision mass comparisons, especially in 
the realm of metrology, still rely on mechanical 
balances. These balances may be either one-pan or 
two-pan. In both cases, however, weighing is done 
by double substitution between the unknown and 
an external standard. The procedure in use in most 
metrology laboratories is shown in table 1. 

The difference in mass between Y and X, /:;.M, 

(ignoring buoyancy corrections) is sometimes com­
puted as [1]1: 

(1) 

Table 1. Four observation scheme .. 

Operation Load on Balance 
Balance Indication 

Y II 
2 X 12 
3 X+d IJ 
4 Y+d I. 

where Y represents the standard, X the unknown, 
and d the sensitivity weight. We are assuming that 
for two-pan balances double substitution has been 
used rather than double transposition. The argu­
ments that follow apply with modification to the 
latter technique. 

We may think of eq (1) as the product of the differ­
ence between Y and X in scale units, 
(II -/2-/3+/4)/2, mUltiplied by the balance sensi­
tivity, md/(/3-/2)' The sensitivity is the propor­
tionality factor which converts differences in scale 
indication to units of mass. Here md is the known 
mass of d. 

About the Author: R. S. Davis is a physicist in the 
Length and Mass Division of NBS' Center for 
Basic Standards. 

IFigures in brackets indicate literature references. 
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Most balance indications drift with time. Often 
the time dependence of the drift can be assumed to 
be linear. Based on this assumption, one usually 
tries to make the time intervals between the four 
weighing operations equal. If this is done, the esti­
mate of M, the difference between Yand X in scale 
units, will be unbiased by the drift. This will not be 
true of 13-/2 however. The latter quantity esti­
mates M d , the value of the sensitivity weight in 
scale units. 

In order to remove the bias, a modified equation 
is used: 

(2) 

This is the equation found in the NBS MASS­
CODE [2] and has been advocated for general use 
if the added computational complexity can be han­
dled by computer [3]. 

2. Variance of 4M 

There is a general rule [1,3] which states that the 
metrologist should take care that 

M 
Md < 0.25 . (3) 

If the rule is violated, the NBS MASSCODE 
prints a warning message along with the final cal­
culation [2]. Since the author has not found a rigor­
ous theoretical basis for the rule in the literature, 
one will now be given. 

Each reading of scale indication is subject to ran­
dom error. Let us assume this error can be charac­
terized by a variance a} which is the same for all 
measurements. Then the variance of aM as com­
puted by eq (2) using first order propagation of 
error techniques is 

var(L\i\!) = S2U/ [1 + 5 (tiJ 2 ] (4) 

where S = 2md/(/J - 31z + 3/J - 14) is the nominal 
value of the balance sensitivity (the quantity md is 
treated as a constant in this computation since its 
variance is usually much smaller than u/). There­
fore, the rule represented by eq (3) implies that the 
variance in a single measurement of AM should not 
be allowed to increase by more than a factor of 
J .31 above its minimum value. The choice of 1.31 
is, of course, somewhat arbitrary. Reasonable peo­
ple might aJ) agree that a factor of 2, for instance, 
would be intolerably large, while a factor of 1 1 
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would be impractically small. We choose 1.31 be­
cause it is the de facto choice of the NBS MASS­
CODE. The important point is that we now have a 
rational criterion by which to compare various 
weighing procedures with respect to their demands 
on the value of the sensitivity weight. 

The absence of a term linear in M / Md in eq (4) 
shows that the estimate of iiI is uncorrelated with 
the estimate of AId. It is also evident that the vari­
ance of aM increases monotonically as the ratio 
M / Md becomes larger. In particular, if AI / Md is 
of the order of 0.5 then the variance of aM in­
creases to 2.25 times its minimum value. This is 
unacceptably large in many cases. A value of 0.5 
for AIl AId was the unavoidable case, however, for 
a series of important measurements made several 
years ago on our best kilogram comparator [4]. In 
order to cope with such a large value of AIl Md it 
was necessary to use a modified weighing scheme. 

3. The Five Observation Scheme 

The weighing scheme used is identical to that of 
table 1 except for the addition of a fifth operation 
which is a repeat of the first. 2 The scheme is shown 
in table 2. 

Table 2. Five observation scheme. 

Operation Load on Balance 
Balance Indication 

1 Y II 
2 X 12 
3 X+d h 
4 Y+d 14 
5 Y Is 

The apparent difference in mass between Y and X is 
then estimated as follows: 

AU 11-12- / 3+14 
u..i.Y.I. - md - -12+13+14-15 • 

(5) 

Equation (5) is also unbiased for a linear drift 
between measurements (though eq (5) is not the 
least squares solution for a linear drift model). The 
real virtue of eq (5) is that it is also an unbiased 
solution for a model which assumes only that the 
drift between operations 1 and 2 equals the drift 
between operations 3 and 4; and that the drift be-

2 To the author's knowledge, the first reported use of this 
weighing scheme was in a 1967 paper by Bowman, Schoonover, 
and Jones [8]. These authors used a five-observation scheme to 
compare an external object with the built-in weights of a single­
pan, mechanical balance. 
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tween operations 2 and 3 equals the drift between 
operations 4 and 5 [5]. The first drift occurs be­
tween operations which exchange the test weights 
on the balance pans. The second drift occurs when 
the sensitivity weight is added or removed. This 
model frees the operator from having to wait equal 
times between all measurements. Since the addition 
or removal of the sensitivity weight is a faster oper­
ation than the exchange of test weights, it is usually 
possible to accomplish the scheme of table 2 
(where one need not wait equal intervals between 
operations) in about the same time as it takes to 
carry out the scheme of table 1 (where one must 
take measurements at equally spaced intervals). 

When one computes the variance of aM based 
on eq (5) one discovers a remarkable result: 

(6) 

The appearance of a term linear in MI Md indi­
cates that, unlike eq (2), the estimate of M in eq (5) 
is not independent of the estimate of Md. The re­
sult of a negative term in eq (6) is that the variance 
of aM is insensitive to the ratio MI Md for ratios 
between 0 and 0.5. Within this range, the variance 
of aM is actually below what it would be if the 
ratio MI Md were zero (table 3). The minimum 

Table 3. Comparison of variances with respect to 1::J/1::J" for 
results derived from eqs (1, 2, and 5). 

1::J/1::Jd eq (1) eq (2) eq (5) 

0 1.00 1.00 1.00 
1/4 1.12 1.31 0.94 
1/3 1.22 1.54 0.94 
1/2 1.50 2.25 1.00 
1 3.00 6.00 1.50 

value for the variance of aM occurs for the ratio 
MIMd =0.25, although this minimum is only 6 
percent below the variance for a ratio of zero. Fi­
nally, if we want to ensure the variance of aM not 
exceed (1.31) ·S2cr/, we would make the rule that 

M 
~d < 0.86 

This should be compared with eq (3). 
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4. Averaging 

One of the ways to lessen the dependence of re­
sults obtained from table 1 on the ratio MI Md is by 
averaging. For N double substitutions at the same 
nominal load, one can average the N estimates of 
sensitivity and use the average value in the calcula­
tions of the various aM's. The NBS MASSCODE 
takes this approach and amends the rule for the 
ratio of MI Md to: 

1M 
N I12 Md < 0.25 (7) 

to cover cases where N> 1. 

The amended algorithm leads to the following 
variance: 

(8) 

There are two possible objections to this approach. 
First, although the quadratic term in eq (8) is a 
factor of liN smaller than the same term in eq (4), 
it has been converted from a "within" to a "be­
tween-time" component [6]. Second, and more se­
rious, the sensitivity of precision mechanical 
balances may be a function of time. This is cer­
tainly the case for NBS-2, the kilogram comparator 
which was designed and built at NBS and is now in 
use at the International Bureau of Weights and 
Measures (BIPM) [7]. In such cases, use of an aver­
age value for the sensitivity is unjustified. 

5. Conclusion 

The usual admonition that the ratio a/I Md not 
exceed 0.25 ensures that the variance of a double 
substitution does not grow by more than 31 percent 
above its minimum value. We have examined a 
five-operation weighing scheme and have shown 
that use of this scheme relaxes the rule to the ratio 
MI Md not exceeding 0.86. We have also argued 
that the five-operation scheme can usually be per­
formed in the same amount of time as the more 
usual four-operation scheme. 

As a final comment, we emphasize that this anal­
ysis applies to un-servoed mechanical balances. For 
balances under servo control, the linear range of 
the scale is usually so large that it is never a prob­
lem to meet the conventional ratio rule. In addi-
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tion, the sensitivities of servo-controlled balances 
are usually very stable over the course of a series of 
measurements. 
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