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The reader . .. will have seized my 
meaning if he perceives that the different 
situations in which uncertain inferences 
may be attempted admit of logical distinc­
tions which should guide our procedure. 
Sir Ronald Fisher [I] I 

Following the widespread adoption of 
new approaches to the combination of 
experimental uncertainties, two theories 
of error are identified and their possible 

Number 3 

justifications assessed. They are the 
"orthodox theory" based on the familiar 
distinction between random and system­
atic errors and the "randomatic theory" 
which dispenses with the distinction and 
treats all errors as the orthodox theory 
treats random errors. The orthodox 
theory suffers from a number of impor­
tant confusions about the nature of its 
central distinction, about the combina­
tion of uncertainties, and about which 
populations of results can correctly be 
said to contain random errors. These 
confusions are clarified and the central 
distinction is argued to be objective. 
Three justifications are developed for 
the randomatic theory: 1) that it is im­
plied by the generally accepted law of 
error propagation, 2) that all so-called 
systematic errors belong to popUlations 
characterized by hitherto unnoticed fre­
quency-based distributions, and 3) that 
they belong to subjectivist prior distri­
butions. But, upon examination, the ar-
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gument in terms of the law of error 
propagation is found to beg key contro­
versial questions, the frequency-based 
distributions are found not always to be 
of suitable form, and the subjectivist dis­
tributions are found to be unrealistic. 
Thus the randomatic theory remains un­
justified by objective standards. More­
over, its use could lead to the under­
estimation of uncertainties in the usual 
sense of the maximum possible or con­
ceivable error in the result of a particu­
lar specified experiment. The concept of 
systematic error is argued to be indis­
pensable and new recommendations are 
formulated which are orthodox in gen­
eral character. 
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1. Introduction 

Foundational questions in statIstIcs are notori­
ously controversia1.2 Nowhere is this more true 
than in error theory which presents special prob­
lems not usually encountered in other fields of 
statistical practice. In particular, it often invites the 

I Numbers in brackets indicate literature references. 
2 Editor's note: As the author readily acknowledges, error 

theory is a controversial field and his views are at odds with 
some recent thinking on uncertainty evaluation intended to se­
cure international consensus. Yet it is believed that this paper is 
a valuable contribution to the literature on measurement uncer­
tainties presenting a closely argued case for one of the standard 
positions on the subject. An alternative view will be presented 
by R. Colle in a subsequent issue of this Journal. 
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experimenter, when estimating experimental uncer­
tainties, to assess probabilities in the absence both 
of statistical data and the prospect of data. In view 
of this it is, perhaps, not surprising that confusion 
on the subject is widespread among experimental 
scientists, most of whom are specialists in fields 
other than statistics and unfamiliar with its founda­
tional controversies. 

About the Author: A. R. Colclough serves with 
the National Physical Laboratory's Division of 
Mechanical & Optical Metrology. 
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Yet there is no dearth of advice about what sim­
ple procedures are to be followed in estimating un­
certainties. The problem is rather that the experts 
disagree with one another. One reason for their dis­
array is of course the deeply confusing nature of 
the questions involved. Another is that their advice 
has to serve a variety of needs. Metrologists and 
others making fundamental physical measurements 
arguably require a rigorous and objective (Le., 
demonstrably realistic) theory of errors on which 
to base accurate estimates of uncertainty. With<?ut 
this it would be impossible to rule on the existence 
of discrepancies between the results of primary ex­
periments. In contrast, many scientific and indus­
trial activities require only rough-and-ready 
"uncertainty" estimates, and simple methods of ar­
riving at them may be preferred to reliable ones 
based on objective principles. Thus the national 
calibration services of a number of countries em­
ploy procedures that are quite different from the 
traditional ones based on the distinction between 
random and systematic errors which most students 
still learn. Books, standards, codes of ~ractice, offi-

cial directives, and the like could now be cited de­
scribing them and they have much in common (e.g. 
[2-5]). 

In recent years a great service has been done for 
error theory by the Bureau International des Poids 
et Mesures (BIPM) which has consulted very 
widely on the matter and produced a set of clear 
and concise recommendations for the estimation of 
experimental uncertainties that appear to be 
broadly in line with the widespread new proce­
dures mentioned above [6-9]. These have provided 
a stimulus and a clear focus for renewed discussion 
of error the~ry which, however, remains as contro­
versial as ever. They are set out in display box 1 for 
ease of reference and may be compared with the 
representative set of orthodox recommendations in 
box 2 [10]. 

Controversy arising from the different needs and 
interests of various users is probably inevitable. Its 
origin lies in practical considerations which are 
bound to be subject to value judgments of all kinds 
and this must preclude an uncontroversial ruling 
on universally appropriate procedures for the esti-

Box 1. The BIPM's Recommendations for the Combination 
Of Experimental Uncertainties 

1. The uncertainty in the result of a measurement generally consists of several components which may be 
grouped into two categories according to the way in which their numerical value is estimated: 

A - those which are evaluated by statistical methods, 
B - those which are evaluated by other means. 

There is not always a simple correspondence between the classification into categories A or B and the previ­
ously used classification into "random" and "systematic" uncertainties. The term "systematic uncertainty" can be 
misleading and should be avoided. 

Any detailed report of the uncertainty should consist of a complete list of the components, specifying for each 
the method used to obtain its numerical value. 

2. The components in category A are characterized by the estimated variances, s?, (or the estimated "standard 
deviations" 5.) and the number of degrees of freedom, Vi. Where appropriate, the estimated covariances should be 
given. 

3. The components in category B should be characterized by quantities u/, which may be considered as approx­
imations to the corresponding variances, the existence of which is assumed. The quantities u/ may be treated like 
variances and the quantities Uj like standard deviations. Where appropriate, the covariances should be treated in a 
similar way. 

4. The combined uncertainty should be characterized by the numerical value obtained by applying the usual 
method for the combination of variances. The combined uncertainty and its components should be expressed in 
the form of "standard deviations." 

5. If, for particular applications, it is necessary to multiply the combined uncertainty by a factor to obtain an 
overall uncertainty, the multiplying factor used must always be stated. 
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mation of uncertainties. But, given any clear, natu­
ral, and physical definition of "experimental uncer­
tainty" it should be possible to state unequivocally 
what the correct procedures are for its estimation 
even though they may not be well suited to all 
practical needs. The lack of consensus about what 
these are ought to be a matter of concern, and the 
purpose of this paper is to attempt to define a philo­
sophically-neutral, physically correct and rigorous 
error theory without regard to practicability. In 
fact it is arguable that the principles to be identified 
for uncertainty estimation are not markedly less 
practicable for most purposes than are those now 
becoming widely adopted. ' 

The concept of uncertainty to which the follow­
ing discussion relates is, in informal terms, the 
range within which the result of a particular speci­
fied experiment is uncertain as defined by its maxi­
mum possible or conceivable error. This entails 
that, when the experiment is faithfully repeated by 
different workers using the apparatus and proce­
dures specified, their uncertainty bounds always or 
nearly always embrace the true value of the quan­
tity to be determined and overlap each other. 
Moreover, when discrepancies do occur, they 

should always or nearly always be small compared 
to the uncertainties themselves. These require­
ments are intended to be met in a literal physical 
sense and uncertainty estimation procedures which 
do not guarantee this will be regarded as failing to 
implement the chosen concept. This is the concept 
required when jUdging the consistency of results. It 
also has the merit of not presupposing any philo­
sophical position as would, for example, a defini­
tion in terms of standard deviations intended for 
application to all error types. Moreover, when "un­
certainty" is defined in terms of quantities such as 
expected error or standard deviation, it is often be­
cause these terms are thought to give an easily 
calculated order-of-magnitude estimate for uncer­
tainty as defined above and not because they ex­
press the most relevant concept themselves. 

The recommendations of boxes I and 2 raise a 
number of fundamental questions, the more impor­
tant being: 

• What is the nature of the distinction between 
"random" and "systematic" quantities and how 
does it relate to that between Types "A" and "B"? 

• Is it objective and useful or merely a distinc­
tion without a significant difference? 

Box 2. Representative Orthodox Recommendations for the Combination 
Of Experimental Uncertainties [10] 

The uncertainty on a measurement should be put into one of two categories depending on how the uncertainty 
is derived: a random uncertainty is derived by a statistical analysis of repeated measurement while a systematic 
uncertainty is estimated by nonstatistical methods. 

When combining the uncertainties on individual measurements in a complex experiment involving measure­
ments on several physical quantities the two categories of uncertainties should be kept separate throughout. 

In such an experiment the total random uncertainty should be obtained from the combination of the variances 
of the means of the individual measurements together with those associated with any constants, calibration factors, 
etc. 

The component systematic uncertainties should be estimated in the form of maximum values or overall limits to 
the uncertainties. 

In reporting measurements of the highest accuracy, a full statement of the result of an experiment should be in 
three parts, the mean corrected value, the random uncertainty, and the systematic uncertainty ... The compo­
nents that have contributed to the final uncertainty should be listed in sufficient detail to make it clear whether 
they would remain constant if the experiment were repeated ... The estimate of the total systematic uncertainty 
should be stated ... Each component of the systematic uncertainty should be listed, expressed as the estimated 
maximum value of that uncertainty ... The method used to combine these component (systematic) uncertainties 
should be made clear. 

The combination of random and systematic uncertainties to give an "overall uncertainty" is deprecated. but if 
in a particular case this is thought to be appropriate then it should be given in addition to the two uncertainties. 
together with the method of combination. 
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• Is it legitimate to represent all uncertainties, 
including those evaluated by other-than-statistical 
means, by statistical or quasi-statistical quantities? 

• Is it legitimate to combine uncertainties of 
different types as though combining variances of. 
random variables of zero mean? 

Different answers to these questions will be ob­
tained depending on the general theory of errors 
that is adopted and how the various concepts re­
ferred to are defined within it. Two general theo­
ries will be identified below, clearly formulated 
and used to derive answers to these and related 
questions. They will be referred to as the "ortho­
dox" theory which retains the distinction between 
random and systematic quantities and the "rando­
matic" theory which dispenses with it and treats all 
errors and uncertainties on an equal footing. It is on 
the latter theory that the BIPM recommendations 
appear to be based. 

In formulating the two theories, it will be neces­
sary to be clear about the objectivity of various 
error populations to be considered and the proba­
bility distributions to be defined over them. No se­
rious controversy need arise about the physical 
status of popUlations of results and their corre­
sponding errors when they are produced by repeat­
able measurements according to a well-defined 
experimental specification that permits random 
variations about nominal conditions. Nor is there a 
problem about errors which are sampled at random 
in some physical sense from a pre-existing error 
population (perhaps when an instrument with a 
certain zero error is chosen from a population of 
similar instruments in which a corresponding popu­
lation of zero errors exists). But the objectivity of 
popUlations cannot be countenanced when an ex­
perimental specification is too loose to produce 
properly controlled results or when pre-existing 
populations are not unambiguously identified. 

All schools of philosophy accept the notion that 
probability e~'alualions based on the frequencies ob­
servable in an objective statistical population are 
themselves objective. This is true irrespective of 
the particular view held of the concept of probabil­
ity itself (for example, that it is a long-run fre­
quency or a subjective "degree of belier'). Thus 
frequency-based probability evaluations are philo­
sophically neutral and so unproblematic in error 
theory as in other fields of statistics. 

But there is one school of statistical thought and 
practice of particular relevance to error theory 
where probability evaluations that are not fre­
quency-based are employed freely with those that 
are. In subjectivist statistical method a "prior prob­
ability distribution" describing a subject's "degrees 
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of belier' in the various possible outcomes of some 
trial before results are obtained is estimated, per­
haps in a vague way on the basis of general experi­
ence. When statistical data are subsequently 
gathered this prior probability distribution is "con­
ditionalized" by the application of Bayes' theorem 
to produce a frequency-based posterior distribution 
which, given sufficient data and not-too-wild a 
choice of prior distribution, agrees closely with 
that obtained by other statisticians (see section 3.3). 
If the subjectivist's prior degrees of belief are based 
on correct, but approximate, physical information, 
his prior distribution will be approximately physi­
cally objective as well as being, presumably, psy­
chologically objective. If, on the other hand, it is a 
mere unfounded intuition or a guess, it will not 
generally be physically objective. Nor will it, if, in 
acknowledgment of ignorance, the subjectivist as­
signs equal probabilities to all possible values be­
cause he has no reason to prefer one to another 
(Bayes' postulate). Where the latter types of proba­
bility evaluation are employed in error theory, 
there will be a serious question about the objectiv­
ity of uncertainty evaluations calculated from 
them. 

2. The Orthodox Theory of Errors 

Although orthodox error theory is characterized 
by a central distinction between "random" and 
"systematic" errors, the exact definitions of these 
key terms are vague, and confusion exists about 
what methods of combination are correct for the 
corresponding types of uncertainty and about the 
correct classification of error types arising from 
various causes. A clearer statement of the orthodox 
theory will therefore be formulated with which 
most orthodox error theorists would be in general 
agreement. Those adhering to it will be referred to, 
purely for convenience and in a narrow sense only, 
as "conservatives." 

2.1 The Formulation of the Orthodox Distinction 
Between Systematic and Random Uncertainties 

There are three possible approaches to the classi­
fication of errors as systematic or random. Defini­
tions may be cast in terms of ... 

1) how they would behave if an experiment were 
repeated (e.g., in terms of the forms which their 
distributions would take), 
2) how their causes would behave upon repetition 
of the experiment or the nature of their causes (e.g., 
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scale errors, rounding, fluctuations of one kind or 
another, mistakes), and 
3) the way they are treated (e.g., by statistical 
means or on the basis of a theoretical estimate). 

Confusion often arises in elementary accounts of 
the nature of errors because these various ap­
proaches are not clearly distinguished. In this sec­
tion the classification of errors will be based 
initially on their behavior when an experiment or, 
perhaps, some associated "trial," is repeated 
[approach 1) above]. The combination of uncer­
tainties will be dealt with mainly in the following 
section. The important practical question of how 
error types as defined by their behavior are to be 
identified in terms of their known causes will be 
discussed in section 2.3. In the interest of brevity, 
the term "experiment" will stand in what follows 
either for a single measurement; a set of measure­
ments, some of which may be repetitions; or for a 
whole experiment as usually understood. The term 
"result" will be used for the value obtained from an 
experiment in any of these three senses. 

The Fundamental Four-Fold Error Classification 

When an experiment is repeated many times, 
four types of behavior are possible in the observed 
results as shown in figure 1 ... 

1) each result may differ from the true value by the 

P(LlX) 

1 

o a 

a. A class 1 error 

F(LlX) 

same amount and with the same sign, i.e. the error 
is constant, 
2) each error may vary randomly realizing a stable 
random distribution with a non-zero mean, 
3) each error may vary randomly realizing a stable 
distribution with a zero mean, or 
4) each error may vary non-randomly (e.g., cycli­
cally or by failing to produce convergent frequen­
cies). 

These four classes of error are doubtless capable of 
further division, but the classification as it stands is 
obviously unique in any given case and exhaustive 
since it consists of successive dichotomies or dis­
junctions of logical complements: constant error 
or varying error (non-randomly or randomly (non­
zero mean or zero mean». In other words, there are 
no errors which do not belong to one or another of 
these four classes and none belonging to more than 
one. Since the classification is exhaustive, any other 
classification of error-related concepts, including 
that in terms of systematic and random types, must 
embrace all four classes if it is also to be complete. 

The Definition of 'Random' and 'Systematic' Errors 

Although the exact nature of the distinction be­
tween systematic and random errors is often a mat­
ter of confusion, the practical motive behind it is 
clear enough. It arises from the perception that 
some errors, the "random" ones, can be treated 

t(LlX) 

o 
b. A class 2 error 

o 
c. A class 3 error d. Drifting class 4 error distributions 

Figure I-The four classes of error defined in the text. 
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statistically and in principle reduced to any desired 
level solely on the basis of results, while others, be­
cause of a tendency to act in one particular direc­
tion, cannot. The latter group of errors, the 
"systematic" ones, must therefore be assessed, and 
perhaps corrected for, independently of results. 

But however clear the motivating ideas may ap­
pear, there is a widespread and crucial confusion in 
orthodox error theory about what types of popula­
tion of results may be said to contain random er­
rors. Must the results be actually observed by the 
experimenter when repeating his experiment before 
the existence of random errors can be contem­
plated? Or is it sufficient that the results could be 
observed repeatedly, though the experimenter 
chooses to conduct a measurement just once? Can 
errors in the repeatedly observed or single results 
of others be regarded as random when the results 
are used to calculate that of one's own experiment? 
Could it ever be correct to regard the error in the 
single result of some "trial" associated with an ex­
periment, but not usually regarded by the conser­
vative as part of it, as random (e.g., a scale error in 
an instrument "randomly" chosen for use)? These 
questions will be addressed later, but here defini­
tions of "random" and "systematic" will be formu­
lated which could be applied to any population of 
results accepted as "statistical." For simplicity the 
initial discussion is cast in terms of results obtain­
able by repeating an experiment. 

Clearly a class 1 error could never be evaluated 
by contemplating a sample of results, however 
large, since, being the same for each result, it 
would lead to no differences in successive values 
from which its magnitude and sign could be in­
ferred. An error of this kind, caused perhaps by a 
constant unwanted and uncorrected physical ef­
fect, is often regarded by the conservative as the 
standard case of a systematic error. As such, it is 
contrasted with a class 3 error which can be as­
sessed in detail and reduced to any desired level by 
taking the average of a sufficiently large sample of 
results. This is the standard case of a random error. 

The relation of class 2 errors to the random ver­
sus systematic distinction is less straightforward. 
The conservative frequently likes to oppose sys­
tematic to random errors, yet here is a randomly 
distributed error which nevertheless introduces on 
average a non-zero error into results which cannot 
be reduced indefinitely solely by averaging a large 
sample. However, while it may not be obvious how 
to classify class 2 errors themselves, every class 2 
error can clearly be said to consist of a class 1 sys­
tematic component and a class 3 random one, the 
former component being identified with its mean 
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or expected value. 3 Indeed, since the evaluation 
and treatment of uncertainties is always carried out 
separately for each component, there is no practi­
cal necessity to classify class 2 errors themselves. 
Definitions of "systematic" and "random" might 
therefore be adopted which result in class 2 errors 
being one, the other, neither, or both according to 
taste. 

The above view of the mixed composition of 
class 2 errors need not, of course, imply an assump­
tion that their constant or systematic component 
corresponds to any single physical cause or group 
of causes different from those giving rise to the 
random variation. Although they can be produced 
by distinct class 1 and class 3 errors, generally both 
components will have a cause or causes in common 
and in that sense are part of the same error. For this 
reason formal definitions of "random" and "sys­
tematic" would need to refer both to errors and 
error components. 

Cast in terms of a result y instead of an error 
£ly ==y -Yo where Yo is the true result, the definition 
of systematic errors as class 1 errors or error com­
ponents is equivalent to that sometimes offered in 
terms of statistical bias: E (y ) -Yo. 4 

Class 4 errors are probably far more common 
than is generally realized. For example, any error 
that increases uniformly with time, even if "sam­
pled" at random intervals, would be of this kind. In 
spite of this their existence is not usually recog­
nized. Class 4 errors cannot, of course, be counted 
as random, but it is of little practical importance 
whether they are held to be systematic or are nei­
ther random nor systematic. 

In the light of these considerations "systematic" 
and "random" errors might be defined by the 
scheme set out in box 3 or by equivalent definitions 
which would not necessarily be cast in terms of the 
four-fold error classification. Class 2 errors, the 
categorization of which was seen to have no practi­
cal significance, have been arbitrarily taken to be 
neither random nor systematic and class 4 errors to 
be systematic. 

The definitions of errors of classes 1 to 4 were 
physical ones cast in terms of what behavior would 
be observed if an experiment were repeated many 

3 Such a resolution is always possible for any class 2 error Ilx. 
Setting Ilx=,...~,+llr, where J.L~,==E(~x) and the random vari­
able ~r==~x -1L.1, one has for its expected value 
E(llx)=IL.1,+E(~r). Thus E(llr) = 1L.l,-IL.1, =0 so that 
Ilx = "".1, + Ilr, Ilr being a class 3 error as asserted. 

4 Systematic error defined in terms of a class 1 error or error 
components ==1L.1y==E(~y)==E(y - yo)=E(y)-Yo==systematic 
error defined in terms of bias. 
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Box 3. A Possible Definition of 
'Random' and 'Systematic' Errors 

Orthodox Category 

Systematic 

Random 

Neither 

Error or Error Component 

class error 
class component 

of class 2 error 
class 4 error 

class 3 error 
class 3 component 

of class 2 error 

class 2 error 

times according to a clear experimental specifica­
tion. Thus what class an error belongs to is a com­
pletely objective matter when it arises in results of 
repeatable measurements. Since the definitions of 
"random" and "systematic" error of box 3 are cast 
in terms of error classes 1 to 4, they too are objec­
tive categories applicable to all such errors. 

It should also be noted that the sUbjunctive or 
"counterfactual" nature of the definitions 
(" ... would be ... if an experiment were . .. ") en­
ables single-reading errors to be called "random" 
or "systematic" even though the concepts are de­
fined relative to a large population of errors. This 
should not be a matter for concern, of course; 
physical properties are typically "dispositional" in 
this way. That is, they are manifested only under 
appropriate conditions, but are held to persist in 
their absence. This important point will be dis­
cussed further in section 2.3. 

The Definition of 'Systematic Uncertainty' 

Once "systematic error" is defined, "systematic 
uncertainty" can be defined in terms of it. There 
are several ways of doing this of which the simplest 
is the following: 

The "systematic uncertainty" in a given direction 
in the result of an experiment is the magnitude of the 
range of its possible values as defined by knowledge of 
its maximum possible systematic error or error com­
ponent in that direction. 

This concept of systematic uncertainty has been 
criticized because limits which are literally the 
maximum possible are often absurdly large and in 
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most practical cases there is an ineliminable ele­
ment of "subjective" judgment in assessing plausi­
ble ones. Indeed, it is at this point that some 
experimenters abandon orthodoxy and introduce 
probability concepts to confine the range of the er­
ror to lie within conceivable rather than possible 
limits (cf. the definition of "random uncertainty" 
below). 

But the conservative does not concede that it is 
appropriate to treat all errors as random errors. He 
usually prefers to abandon the definition of "sys­
tematic uncertainty" in terms of maximum possible 
error, but maintains that there are systematic errors 
which are not randomly distributed in his experi­
ment (e.g., errors due to the use of biased theoreti­
cal corrections required by its specification). 
Uncertainty is therefore to be treated in terms of 
what Eisenhart has called "credible bounds" [11]. 
These are often said typically to be less than the 
maximum possible bounds, but if probabilities are 
employed in jUdging them they are held not to con­
tribute to the random uncertainty of the final re­
sult. The conservative may also wish to maintain 
that there are some practical cases where admissi­
ble probabilistic information is lacking and where 
credible bounds are best replaced by maximum 
possible bounds. 

The Definition of 'Random Uncertainty' 

The expression "random uncertainty" is conven­
tionally defined in terms of "random error" as fol­
lows: 
The "random uncertainty" in a given direction in 
the result of an experiment is the magnitude of the 
range of its values as defined by a knowledge of its 
maximum conceivable random error or error compo­
nent in that direction. 

The use of "conceivable" here where "possible" 
was used in the previous definition, is in recogni­
tion of the common necessity of choosing a confi­
dence level of less than 100% probability which 
for many distributions corresponds to the 
range ± infinity. The justification of this proce­
dure, apart from necessity, is that everyone is pre­
pared to discount possible exceptions at some low 
level of probability. 

2.2 The Orthodox View of the Combination 
Uncertainties 

The law of error propagation states how various 
errors in an experiment combine to produce the 
error in its final result. Unfortunately the 
combining errors are not usually known, else they 
could be corrected for at source. What are usually 
known instead are their estimated maximum possi-
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ble values, credible bounds, variances, or other 
quantities related to their respective uncertainties. 
How does the conservative use this information to 
estimate the uncertainty of his final result? 

Orthodox 'Combination' of Random Uncertainties 

The estimation of the random uncertainty result­
ing from the combined effect of two independent 
random errors is unproblematic in principle. The 
distributions of the errors convolute and their stan­
dard deviations combine in quadrature (i.e., their 
variances add) to produce those of the resultant 
error. Resultant random uncertainty is to be esti­
mated from the resultant distribution relative to 
some choice of a confidence level close to one. It 
should be noted that in general random uncertain­
ties, as opposed to standard deviations, do not com­
bine in quadrature to yield a correct resultant 
random uncertainty. This may easily be demon­
strated by consideration of the combination of two 
similar, but independent, uniformly distributed ran­
dom errors, for example, which yields a resultant 
with a triangular distribution. The only exception 
to this rule arises from the combination of normally 
distributed errors which interact to form another 
normally distributed error; here uncertainties do 
combine in quadrature. But in general, unlike the 
expression "combination of errors," the phrase 
"combination of uncertainties" can be misleading. 

Orthodox Combination of Systematic Uncertainties 

Wavering conservatives sometimes entertain the 
notion that systematic uncertainties can be com­
bined in quadrature to obtain a resultant systematic 
uncertainty [10, 11]. This view may arise from feel­
ings that it would be improbable that many system­
atic errors would all pull in the same direction or, 
more specifically, that p( + )=p( - )=0.5 (Bayes' 
postulate applied to signs); that in ignorance of 
their values they are uniformly distributed between 
bounds (Bayes' postulate applied to errors); and 
that credible bounds must be something like stan­
dard deviations because they are assessed from 
probabilistic considerations. However, combina­
tion in quadrature of systematic uncertainties is 
fundamentally inconsistent with the orthodox the­
ory one of the first principles of which is that there 
exist constant errors and error components. That 
constant error-like quantities combine in a linear 
way is accepted by everyone. There is no dispute 
that when the distributions of combining random 
variables are convoluted to produce a resultant dis­
tribution, the mean of this distribution is simply the 
arithmetical sum of those of the combining vari­
ables. This is true in error theory as in other fields 
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of statistics and applies in particular to class 2 er­
rors. To the consistent conservative the rationale 
for this is that the means are to be regarded not as 
random variables but as constants of the experi­
ment of unknown sign and magnitude (or "con­
stants of nature" in general statistical parlance). 
This is because they are parameters of particular 
error populations explicitly or implicitly identified 
by any complete experimental specification. As 
such, the means cannot be said in any physical 
sense to be drawn from a population and are undis­
tributed except, perhaps, in the form of a delta 
function at some unknown location between credi­
ble bounds. Since no probabilities can be assigned 
to their various possible values the upper limit to 
be placed on the sum of the means can only be 
obtained from the sum of their individual upper 
limits, however defined. This becomes a simple 
point of logic where upper limits are defined to be 
maximum possible values. But even when credible 
bounds are employed, they are still intended to 
confine the conceivable values of unknown, undis­
tributed constants which are agreed to combine in 
a linear way and could all pull in the same direc­
tion. Thus the consistent conservative permits him­
self no recourse to statistical procedures in such 
cases and must recommend that systematic uncer­
tainties be combined in a linear way. Even if it 
were thought that systematic quantities were ran­
domly distributed, uncertainties as opposed to sys­
tematic "standard deviations" would not be the 
appropriate quantities to combine in quadrature as 
argued above (cf. box I, recommendation 3). 

Orthodox Combination of Random With Systematic 
Uncertainties 

How are uncertainties corresponding to "mixed" 
(class 2) errors to be evaluated on the orthodox 
view? Little guidance on this important matter is to 
be found in conservative literature, but a procedure 
is easily devised. In the case of a class 3 error, un­
certainties u + and u _ are obtained from a confi­
dence level PL applied to a single class 3 
distribution. In calculating u + and u _ for a class 2 
error, the consistent conservative must consider 
not one distribution, but two different worst-case 
distributions as shown in figure 2. These arise in the 
following way: 

- the form of the distribution of the purely 
random component of the error is observed or in­
ferred as it might be for the case·of a class 3 error, 
but its mean /-Lily is unknown, 
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Figure 2-The orthodox method of 
calculating uncertainties corre­
sponding to class 2 errors apply­
ing a confidence level to two 
worst-case distributions. 

+~~ ymax I1Y 

- the maximum positive limit on its mean, 
/-LA}mm is obtained by summing its component limits 
in the way argued for above, 

- similarly, a minimum negative limit on its 
mean, -/-LA}mim is calculated, 

- one worst-case distribution is obtained by 
setting /-LAy = + /-LA}max simply because this represents 
one of the two worst conceivable situations. 

- similarly, the other worst-case distribution is 
obtained by setting }.tay = - }.ta}min· 

The probable presence of large positive errors im­
plies the necessity of a large negative uncertainty. 
Thus in order to obtain a value for U_, the conser­
vative now "slides" a vertical boundary out along 
the positive error axis until a small fraction 
(1-PL)/2 of error values is enclosed beneath the 
curve to the right of the line. A similar process 
conducted in the opposite direction will yield U +. 

(The convention of choosing a value of PL to ex­
clude a fraction (l-pd/2 rather than (l-pd en­
sures continuity with the usual convention for class 
3 errors as }.ta}max and }.ta}min both approach zero.) 

This procedure covers cases where positive and 
negative systematic uncertainties or the random 
components of errors or both are disposed asym­
metrically. But it does not, of course, allow proba­
bilities to be associated with u + and u _ as with the 
uncertainties corresponding to class 3 errors be­
cause none was associated with }.tAymax and /-LA}min. It 
might be said that at least an estimated fraction PL 
of the results of a repeated experiment would lie 
between Y - u _ and y + u H but not that an esti­
mated fraction 1 - PL would lie outside this range. 
For this reason no probabilities can be associated 
with the compatibility of two experimental results 
Ya and Yb(> Ya) where either or both have mixed 
errors. They agree if U+a+U-b>Yb-Ya. If 
U+a+U-b<Yb-Ya, they disagree. On the orthodox 
view, there is no more to be said. 
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No analogous analysis of error-related quantities 
other than uncertainty is offered here. The estima­
tion of expected values of errors, of their expected 
absolute values or of rms values requires that /-LAy or 
E(}.tAy) is known. The conservative believes that 
they are equal because the former is a constant and 
not a distributed random variable. But since it is an 
unknown constant he is bound to regard the 
derivation of expressions for expectations to be of 
no practical use. It will be seen later that support­
ers of the randomatic theory take a different view 
and that E(/-LAy) is assumed to be calculable even 
when /-LAy is not known with certainty. 

2.3 Error Types and Their Identification on the 
Orthodox View 

It has already been noted that there is often con­
fusion about what populations can legitimately be 
said to contain random errors for the purpose of 
estimating uncertainties in experimental results. 
Since the "combination" of uncertainties depends 
on the identification of the corresponding error 
types, this is a matter of some practical importance 
and the confusion needs to be resolved. 

At the beginning of section 2.1, it was pointed 
out that the distinction between systematic and ran­
dom errors was sometimes based upon error causes 
[approach 2)], rather than upon the behavior of er­
rors as experiments were repeated [approach 1)]. It 
will be clear that equivalent definitions of "system­
atic" and "random" could be cast in terms of 
causes, provided allowance was made for any non­
linear dependence upon them of the resulting 
errors. 

While the above possibility is widely intuited, it 
has never been developed to the author's knowl­
edge. It nevertheless seems tacitly to underpin a 
different and much less satisfactory type of exercise 
intended to define systematic errors in terms of 
their causes. Here systematic errors in results are 
defined by an enumeration of systematic causes. 
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Some typical cases are shown in box 4. But such 
enumerations amount only to definition by example 
and so cannot be fundamental. Without a prior 
criterion stating how causes are to be related to one 
category or the other, the classification would not 
be possible. In the absence of a statement of the 
criterion the procedure remains obscure and, 
equally important, there is no way of telling if it is 
complete. It seems clear, however, that in each 
case the vague underlying notion is that such errors 
are class 1 or constant errors. Unfortunately the 
errors listed in box 4 do not always behave as class 
1 errors when the relevant trial is repeated, as will 
be argued below. The enumeration is based on sim­
plistic rules-of-thumb which are no substitute for a 
physical analysis of the way their causes operate. 
In what follows, errors defined in this way will be 
referred to as "so-called" systematic errors to dis­
tinguish them from those defined in terms of their 
behavior (cf. box 3). 

Also mentioned at the beginning of section 2.1 
were definitions of "systematic" and "random" 
cast in terms of how errors or uncertainties are ac­
tually estimated or treated in a given case, rather 
than in terms of what is possible or proper in view 
of their nature [approach 3)]. When such defini­
tions are offered it is sometimes unclear whether it 
is intended that the method of evaluation or treat­
ment determines what category errors fall under or 
vice versa. Here it will be assumed in the interest of 
objectivity that it is the nature of the error which 

determines the correct method of evaluating its 
corresponding uncertainty, so that no definition 
purporting to be fundamental need ever mention 
the actual methods of evaluation employed in 
given cases. The opposite view is again related to 
the aforementioned confusion about which popula­
tions of results can be said to contain random er­
rors. The errors of box 4 frequently arise from 
random processes and so arguably contain a ran­
dom component. But such components will have a 
constant effect when combining with errors in the 
results of other measurements, no matter how of­
ten, the latter are repeated. From this it is some­
times concluded that the errors of box 4 cannot be 
held to contain a random component for the pur­
pose of calculating an uncertainty in one's own re­
sult. Thus one author, having given examples of 
systematic errors, writes, "There is no strict defini­
tion of systematic errors, since what is systematic 
for one experiment may not be for another" [12]. 
Another states, "One has to remember that some 
errors are random for one person and systematic 
for another" [13]. This outlook may have led to the 
mistaken view that the central orthodox distinction 
is mutable and that the labeling of errors as "ran­
dom" or "systematic" is somehow conventional. 
Credence has thereby been lent to the notion that 
what is actually done is as important as why it is 
done. Fortunately the confusion can be removed 
by resolving certain more fundamental ones about 
probabilities and it can be stated definitively what 

Box 4. An Orthodox Definition of 'Systematic Error' 
By Enumeration of Causes 

('So-called' Systematic Errors) 

"Systematic errors" are those owing to: 

• Single readings 
- rounded 
- interpolated 

• Instrument errors 
- calibration errors 
- other scale errors 
- errors due to "subclinical" malfunction 
- errors due to bad practice 

• Residual correction errors arising from inexactness in correcting for known systematic effects 

• External errors arising from results taken from other experiments 
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populations can correctly be said to contain ran­
dom errors. It will then be clear that the distinction 
between random and systematic errors is an objec­
tive one and that the nature of any given error is 
fully determined once a complete experimental 
specification has been formulated. 

The confusion is well illustrated by the much­
discussed problem case of external errors. Two 
possibilities exist for their treatment. The error in 
an external quantity might be taken to be entirely 
systematic, even where the worker producing the 
result can be said to have correctly assessed it as 
being entirely random or part random and part sys­
tematic. The alternative is to take over the error 
assessment, assumed correct, of the original worker 
in deriving the uncertainty of one's own result. The 
justification of the former view is that no matter 
how often the main experiment is repeated, errors 
in the external result will always affect the answer 
in the same direction and to the same degree; i.e., it 
is a class 1 error. Thus one experimenter's random 
error is another's systematic error. But the oppos­
ing view notes that if the external measurement had 
been conducted by the "borrower," it would be 
regarded as an ancillary measurement in his own 
experiment and no question would arise of chang­
ing any random component in its uncertainty to a 
systematic component. Who did what is held to be 
an unphysical consideration which could not 
change the nature of an error and so the original 
worker's analysis is to be retained. 

The position will be adopted here that the latter 
argument is the correct one. While the random 
component of an external error certainly will affect 
the result of the experiment in hand with a definite 
sign and magnitude (what other way is there?), this 
is true only in the sense that it is true for its own 
internal random error. The best estimate of the in­
ternal error introduced by an external random er­
ror component is zero with an uncertainty based on 
the latter's distribution (cf. Campion et aI., [14]). 

To see this more clearly some may find it helpful 
to consider a simple gaming analogy of a class 3 
error. Suppose a die, possibly loaded, is thrown re­
peatedly to estimate the unknown expected value 
/Ln ===E (n) of the outcome n (l to 6). Here /Ln is 
analogous to a true value to be determined by mea­
surements, n to the observed (digital) results, and 
n - /Ln to a class 3 error. After a single throw the 
"error" n - /Ln is, like a measurement error in a sin­
gle reading, physically determined, but unknown. 
Nevertheless, everyone would accept that some 
unknown, but objective, probability was in princi­
ple to be associated with it and that this would be 
the same whether one threw the die oneself or 
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someone else threw it. For example, in the case of 
a fair diep(n-/Ln)= 116 for any n where /Ln=2116. 

Suppose further that it is desired to assess the 
uncertainty in an estimate il of /Ln obtained as the 
mean of 100 outcomes, one of which was provided 
by an outsider. Would it be correct to calculate 
random uncertainties ±u in ~n /100 at, say, the 
95% level of confidence for 99 throws and then to 
augment these by maximum error limits, 
u+ =(il-l)/IOO and u=(6-il)/I00, corresponding 
to the single "external" result? Of course no one 
would proceed in such a way. The uncertainties 
would be calculated at the 95% level of confidence 
for the full 100 throws. Thus "external" random 
quantities are to be treated no differently from "in­
ternal" ones as asserted. 

This justification for the ruling that external ran­
dom errors are not to be distinguished from inter­
nal ones is easily generalized and so provides a 
basis for the resolution of the question of which 
populations of results can legitimately be said to 
contain random errors. It means that in principle 
any error determined by a random process, 
whether under the management of the experi­
menter or not, is to be treated as a random or part­
random error even if it occurs in a single result. 
This accords with universally accepted statistical 
principles as applied in the above gaming example 
and licenses experimenters to treat many so-called 
systematic errors, or components of them, as ran­
dom. Thus random errors in the result of an exper­
iment can arise from external results, from 
calibrations and, if an experimenter's instrument 
can realistically be said to be sampled at random 
from some population, from instrumental imperfec­
tions which do not change in the course of his mea­
surements. Similarly, if a conservative were, 
unusually, in a position to assess "credible bounds" 
for a so-called systematic error in his experiment 
using knowledge of the form of its random compo­
nent, these bounds too should be treated as partly 
or wholly random uncertainties. As a result of 
these reforms of orthodox practice, reductions can 
be made in many overall experimental uncertainties 
conservatively estimated on the incorrect assump­
tion that some of their components were purely 
systematic. This is so because combination in 
quadrature is permitted for the standard deviations 
of the newly identified random error distributions. 
However, as wi)) become clear in section 3, the 
fact that all assessable external random error com­
ponents are to be treated as such does not imply 
that all external error components are random. 

From these considerations it is clear that the 
identification of an error as random or systematic 
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or a mixture of both should be based on an analysis 
of the way its causes would operate upon repetition 
of the experiment or some associated trial. In par­
ticular it is necessary to identify all random mecha­
nisms which can affect it even though they are' 
normally regarded as being outside the experiment. 
The correct identification of error types will be en­
sured if attention is directed to the whole experi­
ment including those parts conducted by others 
and the random trials performed, perhaps unwit­
tingly, by oneself (for example, the choice of an 
instrument). Each repeatable operation in the 
whole experiment, whether actually repeated or 
executed just once, should have exactly the same 
status as one's own repeated measurements. This 
broad and rational outlook may be contrasted with 
the uncritical use of rules of thumb such as those 
illustrated in box 4. 

Six common related failings of conservative ar­
gument and practice have been encountered in this 
section. To summarize, they are ... 
- vagueness about the meaning and objectivity of 
the basic distinction between random and system­
atic quantities, 
- a confusion about scope: which populations can 
be said to contain random errors? 
- vagueness about the correct method of 
combining systematic uncertainties. 
- vagueness about the correct method of calculat­
ing uncertainties corresponding to mixed (class 2) 
errors. 
- the misidentification of error types by the naive 
use of rules of thumb, and 
- failure to notice the widespread existence of ran­
dom errors. 

The realization that the role of random errors in 
experiments is much wider than orthodox assump­
tions sometimes allow has doubtless been a stimu­
lus to the alternative view offered by the 
randomatic theory. And the fact that conservatives 
appear to have forgotten the reasons for orthodox 
practice has made the task of the randomatic the­
ory's proponents an easier one. 

3. The Randomatic Theory of Errors 

To those nurtured on the orthodox view, the 
randomatic theory of errors seems initially to be 
very radical. As the first main tenet of the theory, 
the distinction between random and systematic er­
rors is held either to be a merely conventional dis­
tinction without an objective difference or to be a 
real, but irrelevant, distinction for the purposes of 
determining uncertainties in practical cases. How-
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ever, which of these views is held by any given 
proponent of the randomatic theory (or "rando­
maticist," for ease of reference) may not always be 
clear. The second main tenet of the theory is that 
all uncertainties are to be calculated by statistical 
techniques, for example by combining "standard 
deviations" in quadrature irrespective of how a 
conservative error theorist would classify their 
corresponding errors. 

There can only be three main types of justifica­
tion of the new theory. The first, presented in sec­
tion 3.1, takes as its starting point the generally 
agreed law of error propagation and uses it to at­
tempt to show that random and systematic stan­
dard deviations, so-called, are logically required to 
be combined in quadrature [15-17]. That being the 
case, the distinction, whether originally valid or 
not, is shown to be irrelevant for arriving at an 
overall assessment of uncertainty. On this ap­
proach, the randomaticist's second tenet would ap­
pear to be the more fundamental. 

The second and third justifications of rando­
matic procedures depend not on the law of error 
propagation, but on the assumption or perception 
(depending on one's position) that all errors of in­
terest classified by the conservative as systematic 
can be associated with random variables having a 
parent population over which a probability distri­
bution can be defined. The conservative, on this 
view, has simply failed to notice something useful; 
namely that all errors are random and can, even 
according to his own beliefs, be treated statisti­
cally. It is thus implied that the central conserva­
tive distinction corresponds to no real difference 
and the first randomatic tenet plays the more fun­
damental role by providing a justification for the 
second. This type of argument can be fundamen­
tally different when cast in frequency-based terms 
(Justification 2 presented in section 3.2) from that 
cast in subjectivist terms (Justification 3 presented 
in section 3.3). A number of authors have proposed 
procedures for uncertainty estimation based on the 
assumption that all errors can be represented by 
random variables, but it is generally unclear 
whether Justification 2 or 3 is intended [18-21]. 

3.1 Justification 1: Randomatic Theory 
via the Law of Error Propagation 

The law of error propagation, which is quite un­
controversial, states that the error dy in the resulty 
of an experiment is given by 
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where the t:uj are the errors in the various individ­
ual or repeated measured values of Xj of the experi­
ment. To illustrate why it is thought that both 
random and systematic "standard deviations" are 
to be combined in quadrature the simple case will 
be considered where the required result of an ex­
periment is the mean of n similar results Xj: 
y ="i. xjln. Let the Xj suffer systematic errors +a 
and Xb with a random error Rj so that 
!:uj=a +(b -l)xj+Rj. Approximate corrections 
-(a-~a) and 7(b-~b) would generally be 
made to the observed Xj whereupon 
!:uj=~a +~bxj+Rj. It is easily shown that, pro­
vided the expectation E(~a ~bx)=O, the law of er­
ror propagation implies: 

where U x 2=E(R/) i.e., "standard deviations" of 
residual correction errors and random errors com­
bine in quadrature. It is assumed that in any well­
designed experiment significant systematic errors 
will always be corrected for and that this therefore 
provides a general rationale for practical rando­
matic procedures of the kind which those recom­
mended in box 1 appear to be. 

Problems with Justification 1 

The conservative, is unlikely to find Justifica­
tion 1 convincing for two reasons. Firstly he would 
not accept that systematic errors were always cor­
rected for in well-designed experiments. There are 
many cases where a systematic error is tolerably 
small and where a reliable correction is difficult to 
estimate. Here the experimenter will often prefer to 
leave it uncorrected and to estimate the uncertainty 
in terms of bounds. For the argument to work in 
such a case it would be necessary to assume not 
that E(~a~bxj)=O, but that E(a(b -l)xj)=O, 
which is only true in general if the errors +a and 
+(b -l)xj are uncorrelated class 3 ones like the Rj. 
But this is exactly what the conservative denies; it 
will be recalled that the existence of class 1 errors 
is the first principle of his theory. If anyone repeat­
ing the experiment according to the same experi­
mental specification could be expected to 
encounter the same constant values of a and b, then 
it would be the case that E(a(b -l)xj)=a(b -l)x; 
More generally, if the errors +a and X b were al­
ways drawn from the same two respective popula­
tions with unknown non-zero means J.la and J.lb, 
then E[a(b -l)xJ = J.la(J.lb -l)x*O. 

The conservative's second objection would be 
that, even where corrections are made for system­
atic errors, different residual correction errors are 
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not generally statistically independent class 3 er­
rors either. For example if a and b arose from two 
corrections made for systematic effects on the basis 
of simplified theoretical models which all experi­
menters following the specification would be ex­
pected to use, then ~a and 6.b could be constant 
class 1 errors in which case E(6.a 6.bx)=~a ~bx. 
From this it follows that 

E(6.y2) = (6.a +6.bX)2+ux 21n 

which is the usual conservative formula with sys­
tematic errors combining together in a linear way. 
The enlightened conservative believes that typi­
cally residual correction errors, like most so-called 
systematic errors, would be of class 2 so that 
E(~a 6.bXj) = J.lt.aJ.lt.ui*O as before. It is therefore 
the case that Justification 1, though perfectly cor­
rect given certain randomatic presuppositions, can­
not be used to establish those presuppositions on 
pain of circularity. The conservative will see the 
argument as begging certain key questions as con­
troversial as Tenet 2 itself. The same applies to any 
justification employing a statistical proof that stan­
dard deviations combine in quadrature and which 
implicitly assumes that all errors are random vari­
ables of zero mean (e.g., [22]). It will become clear 
that Justification 1 is implicitly dependent on the 
reliability of Justification 2 or 3. 

3.2 Justification 2: Randomatic Theory via 
Frequency-Based Statistical Distributions 

This justification depends upon the assumption 
that every systematic error belongs to a well-de­
fined stable population which can be generated by 
repeated measurements or by some other repeat­
able trial associated with the experiment. For ex­
ample a barometer zero error might be said to be 
long to and be sampled from the popUlation of zero 
errors realizable by constructing an infinite popula­
tion of barometers to the same engineering specifi­
cation and perhaps subjecting them to the same 
calibration procedure. The error would thus be 
fixed for any given experimenter executing the ex­
perimental procedure, but would be a random vari­
able analogous to a single reading (cf. the 
discussion of conservative attitudes to such quanti­
ties in section 2.3). From this it might be argued 
that all errors were random errors. 

Problems with Justification 2 

The results of measurements repeated according 
to a clear experimental specification, and the corre­
sponding errors, belong to well-identified popula­
tions; those defined in advance by the specification. 
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But what population do those systematic errors 
"outside" the experiment belong to? It might be 
argued that if a systematic error could be assigned 
to more than one population equally naturally with 
no means of identifying the "right" one, different 
but equally correct standard deviations and uncer­
tainties could be derived. They could not therefore 
be objective quantities (cf. Ayer [23]). For exam­
ple, does a barometer zero-error belong to 1) the 
population of zero-errors realized by repeated con­
structions to the same specification or to 2) the dif­
ferent population of zero-errors to be found in 
barometers available for use in (say) British labora­
tories? Since randomaticists do not identify their 
populations, but simply invoke distributions or 
even just standard deviations, their calculated un­
certainties cannot in practice be objective fre­
quency-based ones. 

However, though this may be true of informal 
practice, there is no deep problem of principle here 
for the randomatic theory. So-called systematic er­
rors really can belong to several natural popula­
tions from which they are simultaneously sampled. 
The experimenter may use his approximate knowl­
edge of these to choose or define the population 
characterized by the smallest errors as the basis of 
his calculation of uncertainties, provided that the 
population involved really would be randomly 
sampled by repetition of the error selection proce­
dure actualJy employed in his experiment (e.g., 
through the purchase of a barometer by his organi­
zation). If. for example, he judges that zero errors 
of British barometers in general would only very 
rarely exceed ±30 Pa, but that his particular de­
sign would limit this to ± 10 Pa, then it is legitimate 
to use the latter information ignoring the former. 
Different experimenters may draw their barome­
ters (and their zero errors) from the same or differ­
ent popUlations. But if these are properly identified 
and their corresponding distributions or bounds 
plausibly assessed. uncertainties will be correctly 
estimated in each case. Because the popUlation 
sampled is a determinant of the experimental result 
and its error. it will be supposed in all that follows 
that it must be explicitly or implicitly identified in a 
complete experimental specification and is not to 
be regarded as a matter "outside" the experiment 
(cf. section 2.3). 

But there is a more serious objection to Justifi­
cation 2 than the charge that randomatic popula­
tions of systematic errors are not uniquely 
identifiable. This states that their distributions are 
not generally of class 3 having zero means. As 
noted in the previous section, unknown non-zero 
means for residual correction errors are only to be 
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expected. And this is true in general of the fre­
quency-based distributions characterizing gen­
uinely physical error populations. For example, 
there is no reason to suppose that the populations 
1) or 2) above have zero means. Indeed there exist 
many errors which can only have one particular 
sign and for which corrections are not made. Thus 
if randomatic procedures are to be justified, it can­
not be in terms of frequency-based distributions. 

To avoid this conclusion it would have to be 
demonstrated that the means of class 2 systematic 
error populations (so-called) were themselves class 
3 random variables appearing with different fre­
quencies in some physical population sampled by 
the experiment. Then it would arguably be appro­
priate to convolute the distribution of the mean 
with that representing the purely random variation 
of the so-called systematic error to yield a fre­
quency-based class 3 resultant distribution as re­
quired by the randomatic theory. But, the view 
that means (systematic errors proper) are dis­
tributed in the sense of appearing with different fre­
quencies in some physical population would betray 
a misconceived identification of the relevant exper­
iment and popUlation. It has been noted that com­
plete experimental specifications must identify, 
albeit implicitly, a particular so-called systematic 
error population as an essential feature of the ex­
periment. While the corresponding distribution and 
mean are not known, they are determined through 
the definition of the experiment and not through 
some external random trial. Different workers in­
dependently following exactly the same experimen­
tal specification will therefore sample the same 
error population, producing results with a random 
variation, but all sharing the same bias from the 
true value. Thus the mean of the error is clearly 
sampled from a population of just one value. Since 
experimenters are ~nterested in estimating the maxi­
mum possible or conceivable error in a particular 
specified experiment, the conservative is right to 
regard the mean as an undistributed quantity or as 
being "distributed" as a delta function at some un­
known location. Of course, if the error population 
were investigated statistically, an estimate for its 
mean could be obtained and the error in the esti­
mate characterized by a random distribution, The 
mean would be corrected for and the error in the 
mean would be treatable as random. However, the 
mean would then, by definition, not be a systematic 
error, but a measured quantity. 

The randomaticist, if he seriously invokes a 
frequency-based distribution for the uninvestigated 
mean, is implying that it is in a literal sense singly 
sampled from some wider population once-and-for-
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all on behalf of all the independent experimental 
repetitions which could ever be conducted. Per­
haps the population envisaged would be that of 
systematic errors, positive and negative, encoun­
tered in experiments in general, with the credible 
or maximum bounds re-scaled and re-dimensioned 
in each case to match those of the experiment in 
hand. Apart from the problematic question of 
whether this "super-population" of means itself has 
a zero mean, there would be no objection to rando­
matic procedures if this experiment were like that 
for which an uncertainty is required. But it is quite 
different from the conception of the experiment 
normally held. If this experiment were repeated, 
there would be a grand prefatory sampling of the 
error mean on each occasion followed by repeti­
tions of the experiment as normally conceived. The 
results and the errors would then be different from 
those of the experiment for which an uncertainty is 
sought. 

The constancy of the unknown mean which the 
conservative takes so seriously is therefore of quite 
a different nature from that of the determined out­
come of a prefatory single sampling. It is built into 
the common concept of an experiment as a definite 
specified trial. As such there is no frequency-based 
rationale for treating uninvestigated systematic er­
ror means statistically and any justification of ran­
domatic principles must hang on subjectivist 
arguments. 

3.3 Justification 3: Randomatic Theory via 
Subjectivist Statistical Distributions 

Modern subjectivist statisticians frequently iden­
tify probabilities with rational "degrees of belief." 
Their general method is 1) to assign prior probabil­
ities p (x) to the possible results Xj' of some trial 
reflecting their beliefs prior to making observa­
tions, and 2) to modify these in the light of evi­
dence E (observed frequencies) using Bayes' 
theorem to yield posterior probabilities: 

In this way posterior values converge with those 
evaluated conventionally and they "realize" the 
same distributions as others. These wiIJ of course 
be different in general from their prior distribu­
tions. 

In many subjectivist treatments of statistics, the 
psychological concept of a "degree of belier' is de­
fined in terms of the betting odds which a subject 
would just be prepared to accept on such-and-such 
being the case. This notion, together with certain 
weak rationality constraints, for example betting in 
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such a way as to avoid becoming the victim of a 
Dutch book, are held to be sufficient for deriving 
the axioms of probability theory.s 

A familiar example of intuitive subjectivist prac­
tice is afforded by the situation where an experi­
menter has no information on whether a so-called 
systematic error is positive or negative and knows 
nothing about its magnitude except that it cannot 
exceed 'a ,. Having no reason to believe any value 
in the range ±a more or less probable than an­
other, he invokes a uniform Laplacian distribution 
of magnitude 1/2a between ±a. Such a distribu­
tion is of course of class 3. 

It has already been noted that it is essential to the 
randomatic theory that any distribution used to cal­
culate uncertainties is of class 3. This is because a 
standard deviation, the only recognized "measure" 
of uncertainty, is defined relative to its distribution 
mean and so cannot reflect uncertainty arising from 
an unknown and unobservable non-zero distribu­
tion mean. (Co variances too, like those invoked in 
box 1, are defined relative to means and so can only 
allow for bias arising from correlation between 
purely random components of errors.) Unlike fre­
quency-based distributions for systematic errors, 
subjectivist distributions are generally of class 3 be­
cause the sign of a systematic error is typically un­
known. Where the distribution is not of class 3 
corrections are sometimes applied to make it so. 
That subjectivist distributions are of class 3 is the 
great strength of Justification 3 compared to Justi­
fication 2. 

However, because class 3 prior distributions 
which are not frequency-based are by definition 
undetermined by evidence, they are not objective. 
Different subjectivists will invoke different prior 
distributions and so calculate inconsistent standard 
deviations and uncertainties. More importantly, 
they will disagree in general from those which 
could be realized by repetition of the relevant trial. 
If they were to agree, it would be because there 
was sufficient knowledge to calculate approximate 

5 The most detailed foundational development of subjectivist 
theory in terms of rational betting and Bayesian conditionaliza· 
tion has been undertaken by de Finetti [24.25]. Useful reviews of 
his work may be found in Gillies [26.27). Clear statements of 
subjectivist ideas have also been presented by Savage (28.29] 
who in the latter gives a schematic subjectivist account of a 
physical measurement (the weighing of a potato). Two wide­
ranging collections of subjectivist and Bayesian papers are 
"Studies in Subjective Probability." edited by Kybcrg and 
SmokIer [30]. and "Bayesian Analy!>is in Econometrics and 
Statistics." edited by Zellner (31]. A modern mathematical text 
extending the tradition in a philmophically consciou'i way is 
"Statistical Decision Theory" by Berger (32]. A well· known 
critique of subjectivist methodology was presented by Fi .. her in 
"Statistical Methods and Scientific Inference."[I] 



Journal of Research of the National Bureau of Standards 

frequencies in advance. But then frequency-based 
distributions would have been invoked which are 
not generally of class 3 (cf. the preceding section). 
Randomaticists sometimes depend on class 3 sub­
jectivist distributions to justify their recommended 
procedures for calculating uncertainties, but then 
make the incorrect assumption that their uncertain­
ties are objective as they would be had their in­
voked distributions been frequency-based. 

The lack of objectivity of prior distributions ap­
pears to some to be a fatal flaw in subjectivist statis­
tics. In contrast, subjectivists see it as no great 
problem. They accept nowadays that such prior 
distributions are often non-objective best guesses or 
unbiased starting points for a Bayesian inference 
and are prepared to engage in mathematical analy­
ses of "robustness" with respect to their uncertain 
features (roughly, how insensitive the posterior dis­
tribution is to any lack of realism in them) [e.g., 
33V' Objectivity is achieved through evidence and 
the process of Bayesian conditionalization. Unfor­
tunately systematic error distributions are by their 
nature never investigated statistically and condi­
tionalized. In this respect error theory differs cru­
cially from other fields of statistical practice where 
Bayesian methods are employed. Thus even subjec­
tivists would regard subjectivist prior error distribu­
tions and a randomatic theory based on them as 
non-objective. 

With the failure of this justification, it is seen that 
in spite of its attractive features the randomatic the­
ory lacks an objective foundation. Moreover, if un­
certainties are defined to be maximum possible or 
conceivable errors in the results of particular speci­
fied experiments, the lack of objectivity can be ex­
pected to result in underestimated uncertainties on 
occasions. For example, two equal systematic un­
certainties ±a would combine to yield a resultant 
uncertainty of ±2a. By treating the corresponding 
errors as being normally distributed, say, on the 
grounds that smaller errors are generally to be ex­
pected more often than larger ones, and associating 
the credible bounds ±a with some confidence 
level close to one, the randomaticist will calculate 
an uncertainty corresponding to the resultant error 
of ± 1.4la at the same level of confidence. Under 
unfavorable circumstances both combining errors 
could be close to the same bound so that their re­
sultant would virtually always lie outside the ran­
domatic uncertainties. Although some experi-

, Early subjectivists sometimes regarded Bayes' postulate or 
some variant thereof as an unchallengable axiom; this view led 
to well·known logical difficulties and is not generally held by 
modern subjectivists [34]. 
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menters have a compelling intuition that such unfa­
vorable occurrences are "improbable," especially 
where larger numbers of systematic errors com­
bine, it is impossible to provide a physical rationale 
for this if systematic errors cannot be random vari­
ables in any objective sense. After all, none betting 
on the joint outcome of several particular dice 
known to have various undetermined biases would 
assume that the biases had zero expectations unless, 
unlike systematic errors, they had been randomly 
selected from a population in which this was true. 
The psychological origin of the intuition is no 
doubt the desire to believe that probabilities will 
always provide a basis for rational inference and 
action in the face of uncertainty, (cf. Fisher [35]). 
But if the preceding arguments are correct, this 
would appear not to be so. 

4. Conclusions and Recommendations 

It has been argued that the distinction between 
random and systematic errors is, when properly 
formulated, a clear and objective one applicable to 
all error populations. Moreover, which category 
an error falls into should determine whether it is 
treated statistically or not. Thus there is no room 
for a different fundamental distinction between er­
ror types A and B based on the method of treat­
ment employed in given cases (cf. box 1). 
Frequently, conservatives have automatically 
taken so-called systematic errors like those of box 4 
to be entirely systematic when they have in fact 
contained an assessable random component. Con­
versely, randomaticists have implicitly assumed 
that all so-called systematic errors are class 3 ran­
dom errors having zero means. Thus both typical 
conservative and randomatic practices are based 
on unrealistic principles. 

Given that many so-called systematic errors do 
contain both a random and systematic component, 
how are their corresponding uncertainties to be as­
sessed? The formal answer to this question has al­
ready been given in section 2.2 where a procedure 
was recommended for estimating the uncertainty 
corresponding to a class 2 error (cf. fig. 2). How­
ever, this procedure is very often difficult to apply 
because insufficient information is available to 
characterize separately the class 1 and class 3 com­
ponents of class 2 errors. 

In dealing with such cases, experimenters of all 
persuasions often feel able to judge maximum pos­
sible or credible bounds beyond which the un­
known distribution is certain to cover zero or a 
negligible probability. The bounds will often be 
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symmetrical about zero, but it should not be sup­
posed that they correspond to equal confidence in­
tervals of the real distribution or license the 
experimenter to invoke a symmetrical or other 
class 3 distribution spanning them. As they are esti­
mated from the worst possible or conceivable com­
bination of physical effects it may well be that the 
incidental physical influences on the parent error 
population cause one or both tails of the distribu­
tion to become negligible well within their respec­
tive bounds (cf. the three curves shown in fig. 2). 
Thus many distributions are consistent with the 
choice of bounds and the mean of the real distribu­
tion could in principle lie anywhere between them. 

Typically the experimenter will be unable to par­
tition his uncertainty as defined by the bounds ex­
actly into random and systematic components. 
Guided by the definition of uncertainty as maxi­
mum possible or conceivable error, the rigorous 
worker will adopt as the basis of further calcula­
tions a model derived from the maximum appor­
tionment of uncertainty to the systematic category 
judged possible or conceivable. This is because re­
sultant uncertainties calculated on the basis of an 
overestimated random component would be too 
small as random components combine in quadra­
ture rather than additively. His judgment of the 
maximum apportionment of uncertainty to the sys­
tematic category will require him to assess the 
maximum range in which the mean of the actual 
distribution could lie. Thus, just as credible bounds 
were initially placed on the so-called systematic er­
ror distribution itself, so narrower credible bounds 
are placed on its mean, the systematic error as 
properly defined. Like the outer bounds, the inner 
bounds will not correspond to confidence limits 
and do not confine the mean in that sense; there is 
no pre-existing statistical sample to enable an esti­
mate of the mean and the standard deviation of the 
estimate to be made. (If there were the mean would 
be like a measured quantity and it would be proper 
to correct for it and treat the remaining component 
as a class 3 random error). However, much vaguer 
information, perhaps that in the given experimental 
context smaller errors are more common than 
larger ones, can sometimes justify restricting the 
range of possible values of the mean. Where the 
information required for this is lacking, the inner 
credible bounds will become coincident with the 
outer which then become the systematic uncertain­
ties they have so often been taken to be. 

It may at first sight be thought that making such 
judgments is hopelessly arbitrary and the problems 
have to be acknowledged. But experimenters usu­
ally design their experiments so that the difficult 
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uncertainties to evaluate are the least significant. 
Then some inaccuracy in judgments is tolerable. 
The difficulties are in any case largely common to 
all theories of error: judgments of maximum limits 
or credible bounds for the conservative and of sys­
tematic standard deviations for the randomaticist 
are often arbitrary in problem cases. However, 
their simple rules of procedure only disguise the 
difficulties without removing them. The approach 
recommended above brings them into the light 
and, while it calls for an additional judgment ap­
portioning uncertainty between random and sys­
tematic categories, this is not markedly more 
difficult than those already required. More funda­
mentally, if the approach is realistic, as has been 
argued, it should be physically correct. 

With these points in mind the following proce­
dures are recommended for the estimation of ex­
perimental uncertainty. 

Recommendations for the EJ'aluation of Experimen­
tal Uncertainties 

1 The whole experiment should be defined (cf. 
section 2.3). All measurements, corrections, 

calibrations, external results, and single random 
samplings contributing to the final result of the ex­
periment should be listed. All significant sources of 
error in the experimenter's own part of the whole 
experiment should be identified. The nature and 
magnitude of uncertainties in all other results 
should be ascertained. 

2 Choose a confidence level (e.g., 95 or 99% 
probability) beyond which possibilities are re­

garded as being inconceivable. This level should be 
clearly stated. 

3 Decide to which class, 1 to 4, each error be­
longs. This decision should be made irrespec­

tive of whether the measurement or trial was actu­
ally repeated or not; the definition of these classes 
is in terms of what would be observed on repetition 
(cf. section 2.1). Where measurements have not 
been repeated, it should be possible to identify the 
class of any error from the specification of the mea­
surement concerned giving the nominal conditions 
and procedures required for its execution and their 
permitted variations. In the case of single trials as­
sociated with an experiment (e.g., the selection of 
an incompletely characterized instrument or mate­
rial) relevant error popUlations should be identified 
and one chosen as a basis for uncertainty estimation 
which minimizes the uncertainty (cf. section 3.2). 

4 If some subsidiary result of the experiment is 
observed to be subject to a significant class 

4 error (so introducing a class 4 error into other 
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results which it is used to calculate), attempt to 
identify the weak aspect of the control of the ex­
periment which allowed it to occur. This may be 
done by experimental tests or by analysis of the 
experimental specification or both. When identi­
fied, repeat the experiment with better control if 
practicable. Alternatively, estimate the maximum 
range of values which the uncontrolled causative 
condition or conditions could possibly or conceiv­
ably take, and use these to compute maximum pos­
sible or credible errors in the quantities concerned. 
Treat these as systematic uncertainties according to 
the procedure of paragraph 5. If the source of the 
class 4 error cannot be identified, then of course no 
final uncertainty may be calculated. 

5 Estimate the maximum possible or credible ab­
solute values in each direction of the class, 

1 errors and of the constant components of the 
class 2 errors. Again, this may be done by reference 
to presumed measurement specifications or identi­
fied pre-existing error populations. Multiply each 
uncertainty by the coefficient oy lax} in the law of 
error propagation to obtain corresponding uncer­
tainty components in the final result of the experi­
ment. Add these together to obtain an overall 
systematic uncertainty in the final result. 

6 Identify those class 2 and 3 sources of random 
error which contribute directly to the final 

result. Multiply the observed or estimated standard 
deviation of each by the coefficient oy lax} to ob­
tain corresponding components for the final result. 
Combine these in quadrature to yield a standard 
deviation for its random component of error. 

7 Having observed or inferred the form of the 
random component of error in the final 

result of the experiment, use the systematic uncer­
tainties of paragraph 5 to define upper and lower 
limits for its mean, J.l.ll'mu and - J.l.l>min' thus obtain­
ing two "worst-case" distributions. Use the confi­
dence level of paragraph 2 to calculate corre­
sponding uncertainties, u + and u _, according to the 
procedure of section 2.2 (see fig. 2). These overall 
uncertainties should be quoted together with 1) 
their systematic components, 2) their common ran­
dom component, 3) the confidence level, and 4) 
any useful additional statistical information e.g., the 
number of degrees of freedom in calculated means 
or fitted curves (cf. Campion et al. [10]). 

Although the responsibility for the views ex­
pressed above remains his alone, the author grate­
fully acknowledges his debt to many others with 
whom he has agreed or disagreed on the subject 

including Dr. K. G. Birch, Mr. 1. E. Burns, Dr. 
P.l. Campion, Dr. E. Richard Cohen, Mrs. Mary 
C. Croarkin, Prof. 10n Dorling, Dr. K. R. Eber­
hardt, Mr. D. R. Fisher, Prof. P. Giacomo, Dr. 
Donald A. Gillies, Dr. Harry H. Ku, Dr. K. T. 
Maslin, Dr. 1. W. Mueller, Dr. B. W. Petley, Prof. 
H. R. Post, Dr. K. C. Shotton, Prof. 1. Skakala, Dr. 
T.l. Quinn, Mr. F.l. Roberts and Prof. Dr. K. 
Weise. 
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