
Journal of Research of the National Bureau of Standards 

Ideal Gas Thermodynamic Functions 
For Water 

Volume 92 Number 1 January-February 1987 

Harold W. Woolley 

National Bureau of Standards 
Gaithersburg, MD 20899 

The calculation of ideal gas thermody- 
namic properties for steam to 10,000 K 
is examined. Centrifugal effects are in- 
cluded using spectroscopic data for 
the lowest vibrational levels, with ex- 
tension to higher bending levels based 
on estimates from a bending model. 
Modifications are examined for rota- 
tional and vibrational cut-off effects. 
Uncertainties in obtaining a suitably 
regularized representation of energy 

versus bond stretching vibration in ap- 
proaching the dissociation energy re- 
gion appear relevant to the reliability 
of the extrapolation. 
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Introduction 

A calculation made in 1979 of the ideal gas ther- 
modynamic properties for water [1]' is the back- 
ground for this study on improving the 
extrapolation to higher temperatures. The proce- 
dure under consideration is to calculate the internal 
partition function and its first two temperature 
derivatives, using direct summation over vibra- 
tional levels. 

Direct summation was also used for the 1979 
work. It was used not only for vibrational levels, 
but for rotational ones as well for temperatures up 
to 230 K. In the earlier work of Friedman and Haar 
[2], sums over vibrational levels were computed ac- 
cording to a procedure similar to that of Mayer and 
Mayer [3] for diatomic molecules. Such a formula- 

About the Author: Harold W, Woolley, a physi- 
cist, retired from NBS some years ago but contin- 
ues his affiliation with the Bureau as a guest worker 
in its Thermophysics Division, Center for Chemi- 
cal Engineering. 

'Figures in brackets indicate literature references. 

tion is in principle a low temperature form, 
analogous to a power series in increasing powers of 
temperature, and as such encounters questions of 
convergence in extension to very high tempera- 
ture. 

While it is not too difficult in such an approach 
to include effects of lowest order anharmonicities 
in their first power contribution, the inclusion of 
higher power contributions of even the lowest or- 
der of anharmonicities including cross product ef- 
fects and rotational dependence is more complex. 
The extension to cover still higher order terms 
such as might satisfactorily describe the approach 
to the energy of dissociation would involve too 
many terms of cross product power type for easy 
confidence in the adequacy of their enumeration. 
There is in fact no formal end to the number of 
possible orders of the expansion, and each succeed- 
ing order would be enormously more complex than 
the one before it. 

In the presentation that follows, the problem of 
the myriads of correction terms is circumvented by 
using direct summation over the three vibrational 
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quantum numbers for this triatomic molecule. The 
problems which remain are the physical ones of 
obtaining reliable energies for the vibrational levels 
and reliable rotational parameters, including the 
way in which the rotational energy behaves in the 
extension to high rotational quantum numbers. 

1) As a first step, this last item is discussed with a 
study of an empirical bending model, including its 
implications as to bending energy. 

2) The next topic to be covered is the implied 
centrifugal thermodynamic effect based on empiri- 
cal constants fitting the spectroscopically-deter- 
mined rotational levels as represented by a Watson 
Hamiltonian [4]. This applies to eight low lying vi- 
brational levels, extending up to 5331 cm '. 

3) Following this, the problem of extending the 
representation of rotational details to high energy 
and high temperature is considered, including the 
termination of rotational levels due to lack of bond 
stability. 

4) Finally, considerations are introduced pertain- 
ing to a suitable extrapolation for energies of vibra- 
tional levels in approaching the dissociation region, 
a problem that is not regarded as solved. 

The calculation range of new estimates for ideal 
gas thermodynamic functions for water is from 200 
K to 10,000 K. It uses 

Q=I,Q, eKp(^Gyhc/kT), (1) 

with V indicating all sets of values for v,, Vj and Vj 
giving stable vibrational states. Gv is the vibrational 
energy in cm^' units. Q, is the rotational partition 
function for the given vibrational state. This is 
taken as 

0.=G,V.4dQ, (2) 

with the usual semi-classical relation 

0,°=7r''' (kT/hcf' (A^BvCO""' o--' (3) 

where the symmetry number cr is equal to 2 for the 
H2O molecule. A,,B, and C„ are the principal rota- 
tional constants and dQ, is a "low temperature" 
quantum correction such as that of Stripp and 
Kirkwood [5] as used in reference [1]. The centrifu- 
gal distortion and stretching effects are here repre- 
sented by the factor/,, related to the "Wilson [6] 
centrifugal effect constant p," by /v = exp(/iO, 
where h,=p,T. The treatment of centrifugal ef- 
fects for eight of the lowest vibrational levels is 
based on spectroscopic data interpreted with a 
Watson type rotational Hamiltonian. The extension 
to high bending quantum number is made on the 
basis of model estimates. 

An examination is also made as to plausible mag- 
nitudes for effects of rotational cut-off in the disso- 
ciation region. Ad hoc adjustments in the approach 
to the dissociation energy region have been made 
to preserve approximate symmetry versus v, and V3 
quantum numbers. 

For temperatures upward of 200 K, the data and 
empirical representations of Camy-Peyret et al. [7] 
could be used for seven vibrational levels above 
the ground state for which detailed parameters for 
rotational Hamiltonians are available. These in- 
clude values for the principal rotational constants 
Ay, By and C„ and for G,, the energy for the vibra- 
tional level at zero rotation. Their reported values 
for G, were used also for four other vibrational 
levels. Their G, data for the (1,1,1) state were not 
used, as its partner in resonance, (0,3,1), had not 
apparently been similarly covered. A placement es- 
timate for a (0,4,0) level based on a resonance shift 
from Benedict [8] was used to complete G, values 
for the resonating triad including the (2,0,0) and 
(1,2,0) levels. For the ground vibrational state, 
however, the slightly differing results of the more 
recent analysis by Kyro [9] were accepted in the 
later calculations. The overall course of vibrational 
energies versus vibrational quantum number was 
taken to follow an empirical data fit by Benedict 
[8], but with some adjustment in the higher energy 
regions to be consistent with other data, such as 
dissociation and heats of reaction. 

The Bending Model 

On the basis of spectroscopic data it can be in- 
ferred that vibrational bending produces large ef- 
fects on f, and special effects on the total energy. 
The lack of extensive data and the impossibility of 
making reliable long range extrapolations of di- 
rectly fitted polynomial representations of data 
have led to the present numerical exploration based 
on a simple bending model. For this, somewhat 
crude evaluations of WKBJ integrals have been 
used, based on an approximate bending potential. 

The potential U is taken as the product of an 
empirical basic function Uo and an empirical cor- 
rection function Ur,, as 

U=U,-U^. (4) 

The basic function Ua here involves two Lorentz 
type terms, 

Uo^ki/{q,+x) + k2/{q2+x)~k^/q^~ki/q2      (5) 

with the correction function U. taken as 
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^[l-~B,(g + \)x\ (6) 

where x=((()^-4>/)/<|>,^ with (f> as the angle of 
bending of H-O-H out of a straight Hne as shown in 
figure 1. The even power of ((> in the definition of x 
gives symmetry about the angle for full barrier 
height, at 4>=Q. The subscript e refers to the equi- 
librium configuration. 

Figure 1-A schematic model of the water molecule. 

The calculations were made with bonds of fixed 
length "d," taking the atoms as point masses. The 
quantum phase integral 

V2+\/2 = mH'^^ d h — (1+cos <{>) 

Mmo/m» + 2)]'''[G^Uii)y''d4>    (7) 

may be put in the form 

V2+ 1/2 = (2'''V4IT)(1 +C0S <(),)^ 

X[l-(l+cos ((>)/(mo//nH + 2)]'''^ 

x{[G^U(i)]/B,y''d<^ (8) 

for which conventional wave number energy units 
are convenient. The quantities mo and WH repre- 
sent masses of the respective atoms. 

In the absence of rotation, U{i) is identical with 
U of eq (4). For rotation purely about the principal 
axes there are three cases: 

(/=£?): C/(a)=C/-f/„2^,(l-cos«J)e)/(l-cosc(>) 

(i = b):U{b)=U+Jh^B,(\+cos4>,y(l+cos<^) 

(i ^c): U{c)= U+J,' Q{1 +m„(mo+mH)^' 

cos<f.,]/[l + mH(wo+mH)"'cos4)].      (9) 

Evaluations were made using cm^' energy units, 
with 

Uo=40266.9[l/(l-0.21507x)-l] 

-(-13464.5[1/(1+0.6432A:)-1] (10) 

and 

K = (l-0.2467x -0,1526x'+0.5678x' 

+ 1.3708A:'')/(l + 1.7442;c*). (11) 

A value of 75.73 degrees was used for <^, in adjust- 
ing between A, and Bg indications of a preliminary 
data fit of Benedict [8]. 

Energy values on effective potential curves in- 
cluding rotation were approximated by 

f/(a)= t/-f 20.24/„V(1.0001-cos (()) 

C/(&) = £/-I-17.97/s7(1.0001+COS <()) 

and 

U(c)= t/-^9.5J//(l +0.0593COS ^) 

(12) 

(13) 

(14) 

where 0.0001 has been added in two of the denom- 
inators to avoid accidental division by zero. 

Values of V2+I/2 were computed at 17 to 40 
suitably spaced values for energy "£"' or "G" up 
into the 100,000 cm~' region for these three cases 
of rotation about the principal axes, for several val- 
ues of each /,^ ranging from zero to 400 in the "a " 
and "c" cases and somewhat further in the "b" in- 
stance. Four point Lagrangian interpolation was 
then used to obtain energies corresponding to in- 
teger Vi values at each of the chosen /,^ values. 
Effective values for the principal rotational con- 
stants were estimated according to 

R,—(Eji, —EQ)/JI, 

C, = iE,^-E,)/J,\ 

(15) 

(16) 

(17) 

Figures 2, 3, and 4 show results from these calcula- 
tions. Extrapolation to zero rotation appears reli- 
able for B, and C, and for A, for vi small. 
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100 

Figure 2-Dependence of the effec- 
tive rotational constant AK or 
Aje on JJ- or K'. 

200 300 400 

K^ 

Jb/lOO 

Figure 3-Dependence of tlie effective rotational constant Bj« on 

Estimates for the centrifugal effect contribution 
associated with rotation about separate principal 
axes were obtained in the following way. In the 
case of the "J?" rotation, for example, and empiri- 
cal representation for B versus Jt^ was used for 
each of various v^ values. Numerical quadratures 
were performed for a partition function contribu- 
tion as 

(Q)B '-     exp(- 
J 0 

0BJ,')dJ, (18) 

for various temperatures where fi=hc/kT. This 
determined an effective B according to 

5e,r=77/(4^(e)/). (19) 

The corresponding contribution to the Wilson cen- 
trifugal effect constant then followed as 

(Pefr)B = (271^'ln(5o/5e„). (20) 

A similar procedure was used for the "A " rotation. 
No appreciable contribution came from the "C" 
case. 

The combined contributions to the Wilson cen- 
trifugal effect constant based on the rigid bender 
model are shown in figure 5 for values of vj ranging 
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Figure 4-Effective values for the 
rotational constant Cjc- 

by unit steps from 4 to 9 and also for 10, 15, 20, 25, 
and 35. (The sizes of symbols in the figure are not 
intended to indicate relative importance of the 
plotted values.) Corresponding curves are shown 
for the empirical representation 

10'p=(Ao+6,r +62rV(l +dtt+d2t\ (21) 

where t~T/1000. For these, the numerical 
parameters that follow are based on combined esti- 
mates as from eq (21), fitted approximately by in- 
spection and graphical processes. With v 
representing vt, the constants *, and rf, were taken 
as 

6o=2.2616(l +0.242V +O.O37v'+0.0OO83f') 

^(l-0.0175v+0.0033v^)-f8/[l+0.8(v-7.3)'] 

i>,= l/{.122 + [-1.6+1 

-;-(0.31+0.02V+0.0019v'-^ 0.000028v0f} 

i2=l/[1.3+0.106(12-v)^ + (l£-06)(12-v)'" 

+(2E-08)(12-v)V/[5+14-3(8.3-v)^] 

rf,= 12.6/[35. + (v-5)'] 

rf2 = 3./[25.+(v-ll)^] 

as an approximate representation of the calculated 
values. 

Values for ^„ 5„ and Q as interpreted via data 
of figures 2, 3, and 4 are shown in figures 6, 7, and 
8 by solid circles. The solid curves are from a fit of 
spectroscopic data by Benedict [8] running up to 
V2=4, with Vi and Vj also extending up to 4. 

The X 's in figure 6 show individual estimates at 
the quantum number ^" = 1, indicating that for A, 
extrapolation above V2 = 7 encounters some imper- 
fection in the traditional representation. 

The dashed curves in figures 6, 7, and 8 are given 
respectively by 

/i =27.8847(^1+{0.0895v+0.0228v^+(0.0022v=' 

+ 0.00012v'-0.000185v*+0.35£'-04v' 

-OJE -06vV[(l -0.17v +0.008v') 

X(l-0.15v+O.0O7v')'+l£-O6v']}]     (22) 

B = 14.5118{(1.0012771 +0.05266v +0.00779v^) 

^(1 +0.04V +0.008v2)-|-(2.51£ -08v'-t-6.4£: 

-O6v*-)-6.3£'~06vV(l+0.04v+0.0O8v2) 

-f 0.009(1- -7)/[(0.00032)'-|-(v -7)']}       (23) 

C = [9.2806+0.0073v(v - l)]/il+H +H'+B^) 
(24) 

with 7^=0.1473v/9.2806, where v represents V2. 
The expressions for A, and B, are roughly repre- 

sentative of the directly indicated model results as 
shown by the solid circles. For C„ the equation 
here is basically a rearrangement of Benedict's 
equation, although the model results suggest that a 
different curve might be better. 

The open circles show values that have been ad- 
justed from the solid circles according to an al- 
lowance for bond stretching based on OH bond 
data. The effects may be summarized in part as due 
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Figure 5-Wilson stretching con- 
stant for HiO versus tempera- 
ture and bending vibrational 
quantum number. Curves are by 
eq (21), points by quadratures. 
Values of Vi for points are 

T/noo 

4, 

O 
5, 

6, 

o 
7, 

8, 

o 
9, 

10, 

o 
15, 

20, 

0 
25, 

35, 

to the "effective" Vj value, Vj (eff), being less than 
the true V2 in accord with 

V2(efO = v2/[l+(1.60£~03)v2 + (6.12£--05)v22 

-(5.81£ -07)V2' + (9.7JE: -09)V2'], (25) 

This causes the adjusted value for the "true" v cor- 
responding to each model estimate to occur for a 
larger value than the v (efQ. The change in bond 
length also reduces the magnitudes of principal ro- 

tational constants from the model according to the 
square of the same ratio. 

An indication via the bending model as to the 
dependence of vibrational energy on the Vj quan- 
tum number is also given directly by the Vj+l/l 
values versus Eo values from the WKBJ integrals 
with Ji^ = 0. The results are shown graphically in 
figure 9 by the large open circles, obtained directly 
using the bending model without any bond stretch- 
ing  allowance.  Ad  hoc  adjustments  for  bond 
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Figure 6-Estimates for the rota- 
tional constant ^,2 versus V2 — 
solid circles via rigid bonds, 
open circles with bond stretch. 
The dashed curve is by eq (22), 
the solid curve via Benedict. 

20 

Stretching were then taken from vj +1/2 differ- 
ences between the small open circles for free rota- 
tion without bond stretch and the small solid 
circles for free rotation with bond stretch obtained 
with bond data transferred from the OH bond of 
the OH diatomic molecule. 

As to the curves of figure 9, the one labelled 
"a" is for three terms in v, when v, = V3 = 0, from a 
fit by Benedict with 2v,'s up to 4. Curve "c," as 

G = 1608.034V2-11.748v/-^ 1.643vj' + 0.0937v2^ 
(26) 

is obtained versus V2 alone from basically the same 
data with a fourth term included in the fitting. 
Curve "b," used in the ideal gas calculations of 
1979 [1], was obtained from "a" by adding the two 
terms 

0.05vj(vj-l)(yj-2)(vj-3) 

- 0.00051 vj,(v2 - l)(vj - 2)(V5 - 3)(V2 - 4). 

Curve "d" is represented by a rational function 
with coefficients chosen to fit the large open circles 
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2 
V' 

^   o Figure 7-Rotational constant B,^ 
for rotation about intermediate 
axis - solid circles via rigid 
bonds, open circles with bond 
stretch. The dashed curve is by 
eq (23), the soUd curve via 
Benedict. 

^Vo^ 

CM" 

Figure 8-Estimates for 
the rotational constant 
Cv2 versus Vj solid cir- 
cles via rigid bonds, 
open circles with bond 
stretch. The dashed 
curve is by eq (24), the 
solid curve via Bene- 
dict. 
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"^   30.000 

10,000   • 

Figure 9-Vibrational bending en- 
ergy, Small circles: free rota- 
tion. Large circles: with 
bending potential. Open circles: 
rigid bonds. Solid circles: with 
bond stretch. Curves: (a) 3 term; 
(b) with 2 terms added to (a); (c) 
4 term fit, eq (26); (d) rational 
function; (e) for (d) with stretch; 
(f) combined locus, eq (27). 

V2 

from the potential model without bond stretch. 
Curve "e" is also by a rational function, but fitted 
only to the large solid circles at low quantum num- 
ber. The last curve, "f," involves a combined locus 
asymptotic to a rational function curve at low Vi 
and to a straight line at large Vj. It is given by 

G={a +b)/2 + [{a --by+4c'V^^/2-d (27) 

where fl=2300(v ^7), c = 16(X), cf = 157.4661132, 
and b = 1601.337v(l - 0.4105368v + 0.0706926v' 

-O.CX)6001528v'-f 0.0002295548V*)-;-(1 - 0.4028641 
V +0.06850098v'-0.005819278v'-f 0.0002301345V*) 
where v represents V2. It is this curve that repre- 
sents values used in the present calculation of ther- 
modynamic functions. 

In comment on the many digits used for these 
constants, this is to be attributed not to any extreme 
accuracy, obviously, but at least in part to a regard 
for correlation between coefficients and to a desire 
to retain significance in difference type effects. 
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It is perhaps well to admit at this point that great 
accuracy is not claimed for the bending potential 
used. The application of the bending model is seen 
as quite successful, however, in providing a clear 
indication of the rather moderate magnitude of 
change in distant extrapolation as compared with 
the results for free rotation. Still, the uncertainty in 
these extrapolations must be very appreciable. 

Centrifugal Data 

As shown in an earlier publication [1], the effects 
on the rotational partition function for a given vi- 
brational state due to centrifugal distortion and 
bond stretching may be obtained in semi-classical 
approximation from the integral 

g = 87r' /i -' I j Lxp{-H/kT)dP, dP,. dPj     (28) 

with H=hciWo+n{), where fFo=2B,/',' and 
where H, represents the remaining part of the Wat- 
son-type rotational Hamiltonian. This uses Si = C„ 
B2=B, and B}~A„ the principal rotational con- 
stants, with P,—Px, Pi=Py and P}=P,. 

The present application of the method has been 
carried to the evaluation of five coefficients versus 
temperature. In the 1979 application of the method, 
the evaluation was made to three coefficients, only. 
The hope was that the added detail would provide 
a better overall representation of thermal effects 
implied by the spectroscopic data. 

There may typically be about 20 to 30 terms in 
current realizations of i/i, involving coefficients of 
various powers or products of powers of 
P^==P^^+P/ + P^\ '<p^i'-^p^i_pi^ and P,\ The 
factor e\\>{—hcHx/kT) may be expanded as a Tay- 
lor series in powers of //,. With 20 terms in H^, 
running generally up to the 10th power in P/s, but 
with a 12th power in P,, there are found to be 98 
terms in Hy and 35 in i/,' in the range through the 
12th power in P,. When the terms mp^ and P^y" are 
expanded in powers of P;,', Py'^ and /'^^ the number 
of separate terms to use in evaluating Gaussian in- 
tegrals becomes quite large. For each, the inte- 
grand is a product over i = \, 2, and 3 of F,^"' 
exp{—hcB,Pi^/kT). As a result, each separate term 
is of the form 

e. = 0v" ,^n ^ F(«,) {kT/hcB,r (29) 

where F{n,) = T'"' (2n,)!/«,!. Q° is for a classical 
rigid rotator for the level (v,, Vi, Vj), symbolized by 
"v" as indicated earlier. The F(n,) constants are 
simple fractions that are functions of «, such as 

F(0)=1, F{\)=\n, F(2)=3/4, F(3)-15/8, F(4) 
= 105/16, F(5) = 945/32, F{6)= 10395/64, etc. 

A computer program has been arranged for car- 
rying out the preparation of the correction factor 
as a series in powers of temperature using the em- 
pirical constants of the Watson-type Hamiltonian. 
With terms up to the 5th power of Hy covered, the 
corresponding coefficients are computed to give 
the logarithm of the correction factor as a series 

h,=p,T{\+a, T^a^ T'+a, T'+a, T). (30) 

In practical application, this has not appeared to 
provide a well-behaved form when used for mod- 
erately high temperatures. Accordingly, the pro- 
gram next computes the corresponding coefficients 
in a Fade approximant or rational function form, 

K=p,n\+c,T+c^Ty{\+d,T+d^T\ 

or 

K={bo T+b, T' + b2 Ty(\+d, T+d2 T').   (31) 

The coefficients in the Fade form follow from 
those preceding according to the relations 

c?i=(ai Qi-Qi ai)/{ai-ax a,} 

d2 = (aj^-a2 a^)/(a2'—ai a^) 

Ci^ay+dj 

c, = a2 + aidi+di.. 

The Fade form appears to be much better 
adapted to computation in ordinary circumstances. 
For some higher vibrational states, however, there 
can still be comphcations such as the occurrence of 
negative values for the coefficients Cj and di which 
are for the highest powers of T. Happenings of this 
type appear to be somewhat dependent on the 
source of the empirical Hamiltonian constants 
used. 

The program is interactive in asking for values 
for the principal rotational constants, A, B, and C, 
and then for the highest power of temperature to 
be covered (up to 6 as set up). It then asks progres- 
sively, in a selected order for values for 30 coeffi- 
cients in the Watson Hamiltonian, identifying each 
by a coefficient name in "string-variable" form, 
e. g., DELJ, etc. These happen to be in the order 
shown schematically by: 

H= -DELJ*J*M-DELJK*JZ**2*J**2 

-DELK*JZ**4-2*SDLJ*JXY**2 
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-SDLK*(JZ**2*JXY**2 

+JXY**2*JZ**2) + HJ*J**6 

+ HJK*JZ**2**J*M + HKJ»JZ**4*J**2 

+ HK*JZ»*6 + 2*SHJ*JXY**2*J**4 

+ SHJK*(JZ**2*JXY**2 

+JXY»*2*JZ**2)*J**2 

+ SHK*{JZ»*4*JXY**2 + JXY**2»JZ»*4) 

+CLJ*J**8+CLK*JZ**8 

+ CLKKJ*JZ**6*J**2 

+CLJK*JZ**4*J**4 + CLJJK*JZ**2»J**6 

+ 2*SLJ*JXY**2*J**6 

+ SLK«(JZ**6*JXY**2 + JXY**2»JZ**6) 

+ SLKJ»(JZ*»4»JXY**2 

+JXY**2*JZ**4)*J**2 

+ SLJK*(JZ**2*JXY**2 

+JXY**2*JZ**2)*J**4+CPK*JZ**10 

+ CPKKJ*JZ**8*J**2 

+ CPKJ*JZ**6*J**4 

+ SPK*(JZ**8*JXY**2+JXY**2*JZ**8) 

+ Z12*JZ**12 + Z10P2*JZ**10*J**2 

+ Z14*JZ**14 + Z16*JZ**16 

+ Z18*JZ**18. (32) 

Table 1. Constants for low-lying vibrational states from Watson-type Hamiltonian data. 

where J**2 is JX**2+JY**2 + JZ**2 and JXY**2 
is JX**2-JY**2. 

Values for the Pade constants as obtained from 
the available Watson Hamiltonian constants for the 
eight observed vibrational levels, based largely on 
the work of Camy-Peyret and Flaud [7] are given 
in table 1. 

A listing of the program is included in the ap- 
pendix. Further discussion of the results will be re- 
served for a later section dealing with table 
comparisons. 

Rotation at High Temperature 
While the Pade form for centrifugal effect seems 

better adapted for calculation than the simple 
power series form which encounters convergence 
problems of an erratically varying sign type, there 
are other consideration if extrapolation to very 
high temperature is required. 

The rotational quantum numbers can increase up 
to some limiting large values as "/„," "/*," or "Z^," 
beyond which centrifugal force would cause the 
molecule to break apart by bond rupture. The lim- 
iting rotational energy for rotation about any prin- 
cipal axis would be of a general magnitude 
indicated by 

DR=B.Ji' (33) 

where 5, refers to ^v, B, or C„, according to the 
axis involved. However, the affected moment of 
inertia at bond rupture would be appreciably in- 
creased by bond stretching over its ordinary value. 
A semi-classical OH bond model study on the prin- 
cipal rotational constants at zero vibration suggests 
that the ratio "r" between principal constants at 
maximum versus at low rotational quantum num- 
ber should be about 0.195 as r^ for A, 0.260 as r^ for 
5, and 0.310 as re for C. 

(V) Gv Av Br Cv *0 Al bl </l d2 

000 0000.0000 27.8806 14.5216 9.2777 2.4518 3.5538 1.0949 1.5266 0.5377 

010 1594.7450 31.1284 14.6875 9.1291 3.2111 2.1258 1.0101 0.7945 0.3886 

020 3151,6301 35.5867 14.8415 8.9745 4.3691 -.7474 3.1192 .01296 0.7349 

100 3657.0532 27.1222 14.3048 9.1046 2.4668 -1.0581 0.6651 -.3572 0.2392 

001 3755.9296 26.6480 14.4313 9.1382 2.4097 -.8892 0.5480 -.3130 0.2144 

030 4675.1750 42.1323 14.9714 8.8350 6.8534 -4.9258 10.668 -.3500 1.5033 

110 5226.5870 30.1712 14.4139 8.9520 3.1892 -1.0880 1.8797 -.2125 0.5829 

Oil 5331.2798 29.5226 14.6136 8.9931 3.0160 -.6923 1.1666 -.1653 0.4035 

This includes Pade type Wilson centrifugal effect parameters B{I) and D{I) for exp(pr), where 

p={B{0)+T*[B(l)+T*Bi2)]}/{l + T*[D(l) + T*D(2)]}, with BiO)=bO/\.OE + 5,B(\)==bl/].OE + $, B(.2)=h2/\.0E+ n,D(l) 
= dl/l.0E + 3, D(2)=rf2/1.0£+6 
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This leads to the interesting inference that if a 
limiting partition function would be equal to the 
"volume" of an ellipsoid with semi-axes /„. Jb and 
J„ one may estimate the volume as 

0„ = (4/3)7r(r '(D«/^,)'^^(£)«/5,)''^ 

X(i)«/C,)"'R (34) 

where R, the factor of centrifugal increase, is esti- 
mated as 

R={rATgrc)-'^'' = %.0 (35) 

for low vibrational states. For high vibrational 
states, where little additional rotational energy is 
needed to bring about bond breaking, the ratio 
needed may be much nearer to unity. A form 

R=[l+iRo^l)iD,/Don (36) 

with Ro=i.O and possibly 5 = 1 may be a useful 
speculation as to plausible behavior. Here D, is the 
additional energy Do—G,, to reach dissociation for 
the vibrational state without rotation. 

As to acceptable values for DR for higher vibra- 
tional states, it appears useful, with DM as dissocia- 
tion energy including rotation, to note that by a 
logarithmic plot of y={DM-D)/D versus 
x={D-G,)/D for the OH diatomic potential, an 
approximate representation is y={l/9)x'^'*. Esti- 
mates of a similar magnitude can also be found 
from the expression;; ={\/A)x, which is a form eas- 
ier to use. The latter choice provides an approxi- 
mate relation Dn^D(x+y), or D=D-G, 
+ (D-G,)/4=1.25(£>-G,). 

As in the discussion leading to eq (34), an esti- 
mate for the rotational partition function may be 
based on an integral using an ellipsoidal shell with 
semi-axes n{E/Ay'\ M,E/BY^ and fi{E/CY\ The 
"volume" of the shell between energies hcE and 
hc(E+dE) is In fi' {ABCY^ E"^ dE. In the 

evaluation of density of states as measured by II 
(/»"' dpidqi), there is a factor 47r for orientation of 
the total momentum vector and Iv for position of 
the rotator in making one revolution. Thus the 
number of states available within the energy shell 
needs the factor STT^A"' to be included, giving 

dN = l{ABC)''^E'"-dE. (37) 

An additional factor/=(l-f2r,£') may represent 
the increase due to centrifugal effects. Integration 
to infinite energy gives 

QR = UQR =2(ABCy' ( tnpi-hcE/kT) 

X{\+2nE'}E'''dE (38) 

or 

Q^ =2(kT/hcy^\ABCr'^^ f exp(-jc)x' 
J 0 

(39) X[\ + I.n(kT/hcyx']dx 

The result is 

Q^ =Tr^'^ {kT/hcf'\ABC)-''^ 

XII + (3/2)r,(A;r//ic)+(3/2)(5/2)rj(fcr/Ac)' 

-H(3/2)(5/2)(7/2)r3(A;r/Ac)' +...] (40) 

Using r,={n[2/(2j+l)]}e,, this may be identi- 

fied with eq (41) 

Q^ =n"\kT/hcf\ABC)-''\\+l.ei(kT/hcy]. 
(41) 

The last factor is /, or exp(pr) for centrifugal 
effects according to eq (2). 

If the integration is extended only to a rotational 
energy E=D, or for x to x=hcD/kT, the result 
for each term involves an incomplete gamma func- 
tion. 

QS=l{kT/hcy'\ABCy\y{yi^,) 

+ 2r,y(/ + y2^,){kT/hcyi (42) 

The recurrence relation y (a +1 ,x)=a y (a ,x) 
—x''exp(—x) is used to relate all later terms to the 
first one. Values can be found for 7(3/2,x) 
= (7r'''V2)iif(z)—2 exp(—z^), where x=z\ using 
H(z)=l-7r-'^^exp(-z%+0.2)zl*[l-zl''(2.5803 
-2.8136 zl-f4.0745 zl^-1.2142 zP+I.1657 zl* 
-0.0091 z 1')], where z 1 = l/(z-1-0.l)'^l 
The result for a given rotational state may be writ- 
ten as 

QR''=Q\QJ,-Qd (43) 

with Q°==^n'^KkT/hcy'\A^,Cy)-"^ cr~\ as for a 
rigid rotator, tr being the symmetry number, with 

0, = 27r-'^^y(3/2,x,) 

and with/, representing exp(p7') as in eq (2) or as 
used for Q^. Thus/, might be used in any form that 
would appear suitable, such as with a Pade approx- 
imant, if acceptable. Q^ is a residual quantity 
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Q,=2iT-''''x/^' exp(-x,) le,{kT/hcy 

x(i{n[2/{2j+i)]}xA 

a form capable of further examination. 
As a variant study based on the derivation lead- 

ing to eq (38), one may remove the Boltzmann fac- 
tor exp{—hcE/kT) and consider the integration 
up to an energy E. 

Q''=2(AJB,Q) "''     il + le.E')E'''dE.        (44) 

This was tried on the ground state and some others. 
Conversion of the polynomial to a Fade-Wilson ex- 
ponential form 

f=exp[(bOE+b\E^ + b2E') 

M^+dlE+d2FJ)] (45) 

quieted a term-wise sign fluctuation effect. How- 
ever, in extension to very large E, a condition of 
excessively large computed Q"^ was encountered. 
This was due to the exponential factor becoming 
grossly over-sized. For the ground state, as E rises 
from \.E + 5 to l.£+6 cm"', the computed cen- 
trifugal factor rises from 6.5 to over l.E + 1. This 
result is contrary to the previous estimate of a limit 
for the centrifugal factor of the order of /? = 8 or 
less, as in eq (36). The catastrophe can obviously be 
avoided by enlarging the denominator by including 
a term fi?3 E\ with the ratio bl/di near to 2 or to 
In/?. 

Logically, the parameters should be chosen 
again in such a way that the expansion into a power 
series would remain unchanged through the first 
five coefficients. If s represents b2/d1, and with 
B\, B2,D\ and D2 to represent original values of 
b 1, b2, d\ and d2, respectively, the revised coeffi- 
cients can be obtained from 

s 1 = * 1 * * 3   2*bQ*b\''b2 \ b0**2*b2*dl 

-bO*bl**2*d\+bO**2*bl*d2 

S2=b0*b\*dl*d2-bl**2*b2-b0*b2*dl"2 

-bl*b2*d\+2*hQ*b2*d2-b2**2 

-b0**2*d2**2 

b2=B2/[l+{sl/s2)/s] 

d3 = b2/s 

d2 = b2*(D2~bl/s)/B2 

d\ = [b2*iD\-bO/s)-d2*Bl 

+D2*(B\-bO*D\)]/(B2-bO*D2) 

b\=B\-bO*Dl+bO*dl 

With parameters so modified, the computed cen- 
trifugal factor for the ground state at l.£-f5 and 
\.E+6 reciprocal centimeters showed reductions 
to 2.73 and 6.54, respectively. 

The same type of control adjustment should ap- 
parently be applicable to the Fade form in terms of 
temperature in a normal computation. However, in 
actual application to a multitude of levels, there 
could seem to be a possibility that the final Fade 
constants might not always be positive, due to nu- 
merical accident. A requirement that </3 and ^2 be 
positive can be met by using the absolute value of 
B2 for b2, with d3 = b2/s. The other parameters 
follow from 

bO=BO 

bl=[(Bl**2-^B0*B2)*(Bl-B0*Dl) 

-B0*B\*iB2-b2-B0*D2) 

+B0**2*iB0*d3~Dl*b2)]/DEN 

dl = [{Bl*Dl-B0*D2)*{Bl-B0*Dl) 

-B l*(B2-b2~B0*D2)+B0*iB0*di 

-D\*b2)\/DEN 

d2 = [iBl*D2-B2*Dl)*{Bl-B0*Dl) 

+iB2~B0*D2)*(B2-b2-BQ*D2) 

+ (BO*D 1 -B l)*iB0*d3-Dl*b2)]/DEN 

with DEN= (Bl**2 \ B0**2*D2-B0*B2-B0* 
Bl*Dl). 

This might preserve only four instead of five co- 
efficients of the series leading to a Fade develop- 
ment and no absolute guarantee is known to exist 
against occurrence of a zero denominator. 

Another simple scheme for keeping the rota- 
tional Q below the limiting QM value for a given 
vibrational level has been patterned after the famil- 
iar relation of a hyperbola to its asymptotes repre- 
sented as a combination of loci. With QM as an 
excessive rotational partition function without cut- 
off, an estimate with cut-off included might be 
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Q=(i/2mM+Qr)-(y2)[^QrQ.. 

(46) 

The quantity q is to be taken in a convenient form 
showing an acceptable temperature dependence. 
Results of a graphical study for rotations about 
principal axes, using bond stretching of the OH 
molecule, lead to a provisional suggestion that a 
usable form might be 

q=q\Z exp(—z) (47) 

where z—q2hcD/kT, with q\=OA and qi=\.%. 
Other representation schemes may reasonably be 
more suitable, however. 

It is conceded that direct rotational cut-off ef- 
fects are fairly small even for temperatures at the 
top of the range of the present tabulation. How- 
ever, an indirect effect in the extrapolation is not 
quite so negligible. In making evaluations based on 
the empirical constants of Benedict, it was found 
that gross differences in behavior between v 1 and 
v3 dependences were produced with vl or v3 
large, particularly as v2 was increased so as to be 
more than a small integer. This characteristic is at- 
tributed to the effect of the long range of the ex- 
trapolation with equations fitted to data at low 
quantum numbers only. A more uniform behavior 
has been obtained by a revised procedure for treat- 
ing the empirical vibrational energy. 

Energies for High Vibrational Levels 

In the last several years the method for estima- 
tion of high vibrational levels appears to be chang- 
ing, involving such new developments as are 
referred to as localized bond excitation and local 
mode description [10]. Special potential forms can 
be used for such calculations with constants con- 
verted [11] from empirical values found with a con- 
ventional valence bond system formulation and 
normal coordinate analysis [12]. Potential improve- 
ment based on direct comparison between com- 
puted and "observed" levels could be an ultimate 
objective. A hazard at the outset in this approach 
may be a sensitivity to the correctness of identifica- 
tion or assignment of spectroscopic data on which 
at least the original numerical constants are based. 
As to direct a priori quantum mechanical calcula- 
tion of levels for the molecule as a collection of 
nuclei and electrons, based on general physical 
constants, it appears that significant advances have 
been made on this intrinsically difficult endeavor. 

Somewhat approximate agreement with vibrational 
fundamentals has been obtained [13,14] but 
whether a similar quality of prediction could be 
achieved for higher vibrational levels may be in an 
area of pure speculation. A priori calculation ap- 
pears informative in regard to excited electronic 
states [15], in an energy domain beyond the range 
of the present treatment. 

Even if a local mode description will prove ulti- 
mately more reliable than the conventional ap- 
proach, it has appeared expedient to continue for 
the time being with the older formulation, for 
which the necessary parameters are at hand. It ap- 
pears plausible that newly and correctly calculated 
levels should on the average agree tolerably well 
with the old values of corresponding description. 
This is thought to be the usual situation for a group 
of "interacting levels" in a so-called resonance situ- 
ation. 

The vibrational constants used here are based on 
a formulation by the late Prof W. S. Benedict [8], 
described by him as preliminary. His result can be 
shown as 

G(vl,v2,v3) = 3692.5965 vl-l-1609.1113 v2 

-1-3803.6304 v3-41.5442 V\ VI 

-13.4642 V2 F2-48.0343 F3 F3 

-28.6309 VI Vl 

-164.2450 Fl F3 

-19.2960 Vl V3 

-1-0.0927 V\ VI V\ 

-0.9003 VI V2 VI 

-f 0.2690 F3 F3 F3 

-0.7760 V\ V2 V3 

+ 1.9316 Fl VI Vl 

+0.2325 Fl Fl F3 

+ 1.0522 Fl F2 F2 

+ 1.1192 F2 F2 F3 

+ 1.5269 Fl F3 F3 

-0.9318 F2 F3 F3, (48) 

48 



Journal of Research of the National Bureau of Standards 

for levels with resonance shifts removed as indi- 
cated earlier. 

The present proposed innovation in regard to vi- 
brational energy is to suppress the long range ef- 
fects of Benedict's fitting on the basis that the fine 
details of fit while relevant in the region of fit in 
the low quantum number range (v/<5) may still 
not be numerically reliable when extrapolated to 
large vi. For the various "small" quadratic and cu- 
bic terms, involving "v products" (=p), an extra- 
polation by replacement of "p" by p/[\+(p/a)'^ 
has been used with k=6 and with the parameter 
"a" chosen differently for terms quadratic and cu- 
bic in the v's. (65 versus 460) This causes these 
terms to become small in the approach to the disso- 
ciation region. 

For the estimation of vibrational levels in the re- 
gion of large v 1 and v3, the procedure adopted was 
to take the energy as given primarily by a quadratic 
jointly in vl and v3, much as in the case with a 
Morse potential in a diatomic molecule. Thus, in 
the case with v2=0, the form for this main part of 
the vibrational energy becomes 

GL(vl,0,v3)=i>l vl + »)3v3 -;cllvl(vl-l) 

^;c33v3(v3-l)-xl3vlv3. (49) 

The anharmonicities for this were chosen so as to 
agree with energies of dissociative reactions based 
on thermochemical data. For vl or v3 increasing 
singly with the other at zero, there is dissociation 
according to H20=0+2H at about 76721 
cm"'=£>. For vl and v3 equal and advancing to- 
gether, dissociation is taken to be according to 
H20 = H-KOH at about 41280 cm~'=Dm. 

In the cases of vl and v3 advancing singly, the 
energy is given as in 

G = i)v-xv(v-l). (50) 

With ^1 = 3651.145 cm ' from G (1,0,0)-G (0,0,0) 
and also with 03 = 3755.8651 cm^' from G(0,0,1) 
-G(0,0,0), the corresponding "anharmonicity" 
constants follow from Birge-Sponer type relations 
as 

x=2D~i>-[(2D~- \>f - i>^] '^l (51) 

For D = 76721 cm ', the long range estimates are 
j:ll=44.5045 and x33 = 47.1274 cm"'. These are 
raised by about 0.0004 cm^' in covering small 
residual effects from the suppressed higher order 
constants at dissociation, which appears to be 
where vl or v3 singly reach a value of about 41. 

A somewhat similar procedure using Dm 
= 41280 cm^' to estimate xl3 for vl = v3 = v im- 
plies the relation 

G=v>v-jcv^ (52) 

where i>=i)l-|-i>3-|-xll+jc33 and x—xll+xii 
+x 13. The usual Birge-Sponer relations by 

;c = i>V4Dm 0Txl3 = \>^/Wm -x 11 ~x33    (53) 

give X 13 = 248.95779 kaysers but the partially sup- 
pressed residual contributions of other constants at 
this dissociation energy (near vl = v3 —11) raise 
xl3 to 251.3489 cm-'. 

A multiplier factor [1^0.0028 v2- 0.00013 v2 
(v2—1)] has been introduced for i), vl+i>3 v3 to 
allow for a diminishing energy increment to disso- 
ciation as v2 advances upward above v2=0. All 
such adjustments are compensated for in the low 
quantum number range so as to preserve the behav- 
ior there according to the empirical data fit of 
Benedict [8], 

Thermodynamic Tables for H2O 

Two sets of tabular values have been included as 
prospective thermodynamic quantities for the ideal 
gas state of the light isotopic water molecule. 
These are here designated by their dates of compu- 
tation, which were 1982 and 1984. 

For the 1982 table, appearing here as table 2, 
parameter values used were influenced by results 
of computations for a rigid bender model, adjusted 
further for bond length increase by centrifugal 
stretching due to a rotational character of motion 
in the bending vibration. These included indica- 
tions as to the v2 dependence of the principal rota- 
tional constants, the extrapolation of vibrational 
energy to high v2 values, and the course of the 
ordinary centrifugal effects to high v2 and elevated 
temperatures, using a five parameter Fade formula- 
tion. 

The 1984 table, shown here as table 3, includes 
the innovations of the 1982 table, and a few others, 
also. In the approach to dissociation at high v 1 and 
v3, the behavior of Gv was taken as essentially 
quadratic in vl and v3, in resemblance to the 
known diatomic behavior with a Morse potential. 
Special functions were used to fade out the detailed 
higher order terms arising out of Benedict's Gv fit 
at low vibrational quantum numbers. For eight 
low-lying vibrational states, numerical values were 
inserted via the computer program for observed 
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Table 2. Thermodynamic quantities for light isotopic water (1982 version). 

T/K 
R if  "RT  

H'-H§ 
 RT 

ecut 
Q 

# 

200 4.01111 21.09225 17,11003 3,98222 0. 3 
300 4.04064 22,72269 18.72717 3,99552 0. 6 

400 4.12079 23,89493 19.87912 4,01581 0, 11 

500 4.23672 24,82647 20.77846 4.04801 0. 17 

600 4,36880 25,61043 21.52011 4.09032 0. 26 

700 4.50951 26,29436 22,15429 4.14007 0. 37 

800 4.65679 26,90607 22.71068 4.19539 0. 53 
900 4.80868 27,46330 23.20823 4,25507 0. 72 
1000 4.96224 27,97789 23.65978 4,31810 0. 95 

2000 6,17104 31.83102 26,85729 4.97373 0, 635 
3000 6,78260 34.46206 28,97640 5.48566 0. 2366 

4000 7,13354 36.46511 30,60809 5.85702 0. 4519 

5000 7,38773 38.08513 31,94658 6.13856 0. 6524 
6000 7,60934 39.45206 33,08648 6.36559 0. 8080 
7000 7,79162 40.63945 34,08250 6.55695 0. 9487 

8000 7,90299 41.68807 34,96896 6.71911 0. 10818 

9000 7,92822 42.62120 35,76836 6.85284 0. 12075 
10000 7.87725 43.45446 36,49608 6,95838 0, 13255 

The final coil amn gives the number of vibrational levels involved in the state sum. 

Table 3. Thermodynamic quantities for light isotopic water (1984 version). 

T/K 
R R RT RT 

Gcut 
Q 

# 

200 4.01111 21.09218 17,10996 3.98222 0. 3 
300 4.04065 22.72262 18,72710 3.99552 0. 6 
400 4.12080 23.89486 19.87905 4.01582 0. 11 

500 4.23676 24.82641 20.77839 4,04802 0. 17 
600 4.36895 25.61038 21.52004 4.09034 0. 26 
700 4.50993 26.29435 22.15423 4.14012 0. 37 

800 4.65779 26.90615 22.71063 4.19552 0. 53 

900 4.81075 27.46355 23.20820 4.25535 0. 72 

1000 4.96610 27.97845 23.65980 4.31865 0. 95 

2000 6.22473 31.84805 26.86066 4,98740 0. 651 

3000 6.83435 34.50332 28.98865 5,51467 3.290E-17 2369 

4000 7.13573 36.51478 30.62900 5,88579 3.328E-11 4774 

5000 7.34143 38.12993 31.97291 6,15702 2.054E-08 7063 

6000 7.52368 39,48479 33.11495 6,36984 4,151E-07 8973 

7000 7.67781 40,65664 34.11050 6,54614 9,326E-06 10678 

8000 7.77806 41,68916 34.99460 6,69456 3.320E-05 11899 

9000 7.80016 42,60601 35.79032 6,81569 2.384E-04 12183 

10000 7.76665 43,42708 36.51385 6,91322 4.060E-04 12183 

The final column gives the number of vibrational levels involved in the final state sum. The next to the last column gives the 
fractional reduction in the state sum due to rotational cut-off, according to the "locus-asymptote" estimate used. 
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values for vibrational energy, principal rotational 
constants, and their five member Pade centrifugal 
parameters, based on reported spectroscopic data 
analyses using the Watson Hamiltonian formula- 
tion. A rotational cut-off approximation of a "lo- 
cus-asymptote" type was also introduced, but with 
little apparent effect up to 10000 K. 

It is natural to see the difference in values be- 
tween the two tables as relevant to their uncer- 
tainty. It is presumed that the disagreement in 
values should be attributed to effects in changes in 
level distribution, which may reflect the ad hoc 
modification of level description for the later table. 

It had appeared reasonable to maintain a favor- 
able view of progress in raising the number of con- 
stants based on the Watson Hamiltonian data from 
three to five. However, it is now recognized in ret- 
rospect that some basis for reserve exists. As used, 
the program for finding Pade constants was able to 
produce the five parameters as desired even when 
the Hamiltonian parameters were not complete to a 
corresponding extent. This might be termed a 
"spill-over" effect akin to the forming of product 
terms in a series development. The highest power 
of r directly included as a contribution to "J times 
the Wilson constant" may be obtained by taking 
the highest net power of J's in the Hamiltonian, 
dividing by 2, and subtracting 1. On this basis, the 
ground state and first excited vibrational state, 
(000) and (010), may be "complete" through the 
5th power. The states (020) and (030) show fitting 
in the 4th power, and the states (100), (001), (110) 
and (Oil) include only into the 3rd power. One 
may hope that a moving of the Pade process into 
the Hamiltonian will lead to a more uniform 
treatment [16]. 

As comment on our present use of a "pre- 
liminary" 1972 data formulation received from 
Professor Benedict [8], we accepted his view that 
his was better than that of Khachkuruzov [17], of 
1959. We note that a more recent vibrational 
energy formulation presumably of comparable 
quality was published in 1983 by Bykov, 
Makushkin and Ulenikov [18], and could in all 
probability provide a similar basis for a table of 
thermodynamic quantities. 

It appears that greater consideration should be 
given to recent work such as that by Child and 
Lawton [19] on local mode representations of 
vibrational states. However, at this time it is not 
clear how energies for the entire manifold of vi- 
brational states would be reliably and conveniently 
given for the calculation of thermodynamic func- 
tions on such a basis. 

Conclusion 

The objective in this study has been to obtain an 
improved extrapolation of the ideal gas table to 
higher temperatures. The procedure has made use 
of direct data, augmented with numerical estimates 
based on simple physical models. It is hoped that 
this might provide a realistic approach to better 
sum of state estimation. 

Although the models have involved some nu- 
merical choices that were not at all rigorous, the 
results may allow such comparisons as may lead to 
an informed appreciation of the problems remain- 
ing for the reduction of uncertainties. 
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APPENDIX 

A listing of the interactive computer program, in BASIC, for carry- 
ing out the preparation of the correction factor as a series in powers of 
temperature using the empirical constants of the Watson-type Harmlto- 
nian: 

L, C-, O, £, 1,     O, ^   , , i, 0, 4, a, >?,  I, , 0, 3, 0 

ItZ!       PRS -:    PRINT 

NOVEMBER    17,     1983 

'CENTRI4'     QF   H,     W.     WOQ-LEY,     ^iuV.     1^ HiisT    ;    PRIIVT' 

Se      PRINT       TOB(    a); "THE    CENTHIFUGOL    EFFECT       OF    MD_ECULH)R    RDTRTiON   tm    IDE 
RL   GOG    PROPERTIES":    PR»    0 

3a       PRINT    "ENTER   COMMENTS"!     INPUT    C»:    PRINT    "Er4TER   NOME":     INPUT    fl»:    fRI'.T 
"ENTER   DHTE" :     IhiPUT    Df:    P'RINT    'ENTER    DfiTR   SOURCE":     IIMPur    y& 

iiS      PR*    1:    PRINT       TfiB <    SB I ; O*:    PRINT       TPlBt     =a>;D«:    PRINT       TAB!    OjC*:    PRINT 
rft& <    5> ;B*:    PR#   ^ 

5a       PRINT    "ENTER    RDTFlTIONflL   CONSTfiNTS   ft,     B    R    C" :     IflpUT   aZ,BX,CV 
60      DIM   W*!30) ,NT<35) , KF( 1301 , NK il30) , rjY(130> ,^li< 13«i) ,H(6, liZi) , CO (13iS > , CF 

( 7,5 > , HH ( 10 > , HL (1 0 )\ F < 1 5 > 
7lS       DIM   CN(40) , XX Cia) , YYdC!) , ZZ (40) 
aa   FF ( I )     ~    1:FF<^)     -    E:FF<3>,^-   £ : FF (4)     =^    E'4;F'F<5)    ^    1^0;rF<E>     ^-    7£0 
90       PRINT    "ENTER   POWER   OF    T    TO    BE   COVERED    (>7),     OS    i :>    £^    3''":     INPLi-    KH 
1130   F(ll     =     l!    FOR    I    =    £    -O    I5:F(I)    =    F<I 1>     i.     (tj    -»     1 3!     /    C:    NEXT    I 
liO       SOTO    ia0S 
200       REM    iPROLIFERRTICN   PT   BRSNCHING 
^-lliZt    IK    ^-    1 : lu   -    l;NCtii     -=    l:rL<KLj     ^    II 
££0    IK   '•    i.K    (     1:     IF    IK    >    KL    THEN   £60 
a3is       IF    ILriK)     =    lE^IK    -    i:     THEN   NC(IE?     -    NC<JU>     -^    1:    GOTO   ;2£C£= 
E-4a    lU   -^    lU    +    1:NC<IU)     -■    1 
aSB      IF   IK    <   KL   THEN   ££» 
£:60    IT   =    lU 
£70   FC   -    1:    FDR    lU   -    1    TO    IT ! F C   "■   FC    *    FFiNCdUj):    MEXT     lUjCT    --    F F ! KL >     / 

FC 
380   MX    ~    MX    +    XXCII):MY    =■    MY    +    YYdDsMZ    •=   r.Z    *    Z Z < II ) :'IT    ■=    MX    ■■•    wv    i-    mz 

-   3    -    KL 
£30    TR   -^       --    TR   *    CNCII)     /    KL:     IF    MT    >    KH    THEN    310 
300   H<KL,MT)    «   H!KL,MT)     *-   TR    *   F!MX>    •    F(MY)     »    F<MZ)     /    nz !MZ    -    1)     ,'    5 

X      ■    <M>:    -    1)     /    CV     ■■     (MY    -    1)     *    CT 
310       RETURN 
400       REM        ;RLiURNINB    TO   fi   PLPCE       OF    BRANCHING 
410   MX    ~    MX    -    XXSII):MY   ---   MY    -    YYlIDjMZ    =    MZ     -    ZZ(II):TH    =       -   TR    »   KL    / 

CN(I I) :    RETURN 
1O00       REM 
iai0   W»(l)     =    "DELJ":W*(2>    -    "DELJK" : y« <3)     =-    "DELK" : W* (4 >    =■    "SDLJ" : SJ» <5>    =- 

"SDLK":W*i6)     --    "HJ":W»(7)     =    "HJK" : Ull (S)    =■     "HKJ" 
1030    W*0)     =    »HK":K»<ia)    =    "SHJ":W*(11)     ~    " SHJK" : W* i IE)     -    "SHK":W*C13)     - 

"CLJ" :W1il 14)     =    "LLK":W»(15>    ==    "CLKK J " : W» < Ifc)     -=    "CLJK" 
S030    W*(17}     ^    "CLJJK":W»<ie)    -    "SLJ":W*(ig!     -    "SLK" : W» (;;:0)     --    "Fji  K J" : Uil (3 

1)    =    "SLJK"!W»<E3)     "    "CPK" 
1040    W»C£31     =    "CPKKJ" :W»(34)     =    "CPK J" :ij» <£5 )    =    "SPK " : w« (£&)     -    " Z 1,-" : WS i i: 

7)    =    "Z10P£":W«(a8)    =    " Z14" ; W« ! £'J)    =    "Z;e"!W«(30)    --    "ZlS" 
1050       DOTfi       1,&,"1,E', 0,1Z1, -1,0, 3.0, -1,0, 0,£,  -^, 1, 1,0,-;^, 1,0, 1,    i:,0, i, 1 
10E0       DATfi       E, 3,  -1, 1, 0, 1 , -1 , 0, i, 1, - I, 0, 0, £ 
1070       DftTO       3, 1,-1,0, 0,£ 
1060       DfiTf^       4, 4,-£, £, 0, 0, £, 0, F:, 0,-i=, 1 , 0, 1, L, 0, t , 1 
1090      DATn      5, £,    -£, 1, 0, 1, £, 0, 1, 1 
1 3 00       DATS       E, 10, 1,3, 0,0, 1,0, 3,0, 1,0,0, 3,3, £, 1,0, 3,3,0, 1,3, 1,3,0, 3,0,L, 1 

, 3, 1, 0,3, 3,0, 1,£, 6, 1, 1, 1  ' 
1110       DPTfl       7, b, 1, £, 0, 1, 1, 0, £, 1, 1, 0, 0, 3, 3, 3 , 1, 1,3, 1, 0, £, £, 0.  1, £ 
1130       DfiTR 8, 3, 1, 1, 0, £, 1,0, 1, £, 1, 0, 0, 3 

1130       DfiTO       9,1,1,0,0,3 
1140       DflTfi 10, a, £, 3, 0, t 

, -£, 0, 1, £, -4, 0, £, 1 
11^0      DRTfl       1 1, 4, £, £, 0, 1,-£, 0, £, 1, £, 1, 0, £,    £,0,1,3 
1160       DRTO       1£, £,£, 1,0,£, -£, 0, 1, £ 
1 170       Df^Tft       13, 15, i, 4, 0, 0, 1, 0, 4, 0, t, 0, 0, 4, 4, 3, 1, 0, 4, I, 3, 0, 4, 3, 0, 1 , 4, 0, 3, 

1, 4, 1,0, 3, 4, 0, 1, 3, 6, £, £, O, fe, £, 0, £, E, 0, £, £, l£, £, 1, 1, 1£, 1,£,  1, 1£, 1,  1 , 

1180       DATA 14,1,1,0,0,4 
1190       DOTH 15,3,1,1,0,3,1,0,1,     3,1,0,0,4 
13-00       DOTfi i6,S, 1, £.0, £, 1, 0, £, £, 1,0, 0,'4i£, 1, 1,£,£, 1,0,3, F.n,  1, 3 
1£10       DOTfl 1". 10. 1. 3, 0, :, 1,0, 3, 1, 1, 0, a, 4, 3, £, 1, 1, 3, 2, 0, £, 3," 1, a"]    3   a   £ 

, £, 3, 1, 0, 3, 3, 0, i , 3, E, 1,  1, a '     '"'     '' 
lase      Df!Tfi       IS,  1£, ff, 4, O, 0,'-£, 0, 4, 0, £,  1, 3, 3,  "£, 0, 1, 3, 4, 3, 1 , 0,   -4,     1,3,0,F, 

3, 0, I, -E, 0, 3, 1, &, E, 1, 1, -€,, 1, 3, 1, 6, E, 0, e, -6, 0,:=, £ 
1330      DfiTA 13, £, £, 1, 0, 3, -£, 0,  1, 3 
1£40      DOTO £0, 4, £, £, 0, £,-3, 0, ,3, p, ,=-,  i , a_ 3, _a, 0, 1, 3 
1250      DOTfi £I,S,£, 3,0, 1, £, £, 1, 1, 4, S,0, £,- £, i,£, 1,£, 1,0, 3,   -4    0   r-    =■    - =-   0 

, 1, 3, -£,0, 3, 1 '        ' 
1£E0      DPjTft ££,1,1,0,0,5 
1£70      DfiTA £3,3,1,1,0,4,1,0,1,4,1,3,0,5 
l£a0       DOTfi £4, £, 1, £, 0, 3, 1, 0, £, 3, 1, 0. 0, 5, £,  !, i, 3,£, 1, 0, 4, £, 0, 1,4 
l£g0      DPTfi £5, £, £, 1, 0, 4, -£, 0,  1,4 
i3?l0      DOTfi £6,1,1,0,0,6 
1310      DOTO £7,3,1,1,0,    5, t, 0,  1, 5, 1, 0, 0, F, 
13£0      DRTA £8,1,1,0,0,7 
1330       DATA £9, 1,1, 0,0, a 
1340      DfiTfi 30, 1, 1,0, 0,g 
1350      DOTfi      0,0,0,0,0,0,0,0,0,0, 
ij&a    1=0:    SPtfcU=   £00 
1370       REOD   NN,N9:     IF   NN   =    0    THEN    1420 
13B0       PRINT     :    PRINT 
1390      FOR   Kl    =    1    TO   Ng:I    =1*1 
1400  REOD KF(I) , NX<I), NY<I>,NZ<I) : PRINT "#";N,M;", "^ERMS : " ; r,-J ; " ,  COEF : " 

!KF<!);",  (NX,NY,NZi:  (" jNX < I > i "," jNY (1 );","; NZ ;!>,")" : NtXI KI-^Tf 
NN) - N9:LX = NN 

1410  60T0 1370 
14£0 KN = I: SPEED= £55 
1430  FOR N - 1 TO LX: PRINT "ENTER COEFFICIENT 'C=f";N;")'   OH ";W*!N1■ 

INPUT CF(N): NEXT N 
1440  PR# l! PRINT "CONSTBNTS IN THE HQTOTIONOL HfiMILTONIOM": FOR N - i  T 

LX: PRINT CF(N>,W*(N>: NEXT N: PRINT "R=-"ifiZ;".   F!=";F<X:"    r=."-rY- 
PR# 0 

14S0 1=0: FOR N = 1 TO LX:NB - NT(N) 
1460  FOR K = 1 TO NSsI = I + l:CO<l) = KF(1> » CF<N)j NEXT K:    NEXT N 
1470  FOR J = 1 TO 40:CN<J) = O: NEXT J 
1480 JM = 1;CN(1)  = C0<1):XX<1> = NX<1):YY(1> = NY<1)!ZZ<1) -= NZd) 
1490  FOR I = £ TO KNiKK = 0: IF CO(I) = 0 THEN 15&0 
1300  FOR J = 1 TO JM 
1510  IF <XX<J) - NX(I>» - £ + <VY(J> - NY<I)) -- £ + <ZZ<J>    MZ ! I j ) 

=- 0 THEN KK - 1 ; GOTO 1530 
1530  GOTO 1540 
1530 CN(J) - CN<J) * CO<I):J = JM 
1540  NEXT J 
1550  IF KK ^ 0 THEN JM = JM + 1:CN(JM! = CDCI);XX(JM) -' NX<I):YV(JM> ' 

NYil>:2Z(JM> = NZ(I) 
1550  REM 
1570  NEXT I 
1 see  FOR J = I TD JM 
15'30  PRINT "»"iJ;",  <XX,YY,ZZ):  ( " ; XX ( J) ; " , " : YY ( J) ; ", " ! ZZ < J ) ; " 1 " ; " , CDF 

F: ";CN<J) 
1600  NEXT J:KN =- JM 
1610  FOR MT = 1 TO 10: FOR KL = 1 TO &:H(KL,WT) = 0: NEXT KL:HH(mi) -= 0 

: NEXT MT 
16£e MX = 1:MY - 1:MZ = 1:TR = 1:MT = 0 
1S30      FOR    10   =   1    TO   KNsKL   =    1:11    :^    Ifl:    IF   CM ( 11 )    =   0   THEN    1-J30 
1640       PRINT    "Il=";Il5»,        TH=";TR 



I6S1S 
186® 
1670 
1680 
i£ga 
17013 
1710 
17£a 
17351 
174B 
175« 
17612 
1770 
1780 
1790 
1B01ZI 
1810 
laaa 
1830 
1848 
185H 
1 8fa0 
1870 
leaa 
1690 
igizie 
1910 
1920 
1930 
1940 
1950 
1960 
1970 

1990 
£■(2500 
c:-0 1 0 

2030 
=2040 

IF MT ) KH TH£N Ifl = KN: GOTO 1938 
IS    = 11: BOSUB £00: IF KH < KL + 1 THEN 1920 
FOR IB = Ifl TO KN:KL = £: I £• = IB: IF CN<I2) = a THEN 191ia 
IF MT > KH THEN JB = KN: 60T0 1910 

II ^ I£: GOSUB £00: IF KH < KL ^ 1 THEN 1900 
FOR IC = IB TO KN:KL = 3:13 = IC: IF CN(I3) = B THEN 1B90 
IF WT > KH THEN IC = KN: EOTQ 1S90 

IT = 13: GOSUB £l210: IF KH < KL + 1 THEN 1S80 
FOR ID = IC TQ KN:KL = 4:14 = ID:  IF Cr>J(I4) = 0 THEN 1070 
IF MT > KH THEN ID = KN: GDTO 1870 

II = 14: GOSUB 200: IF KH < KL + 1 THEN 1S60 
FDR IE = ID TD KN! KL - 5l 15 = IE: IF CN(I5) = 0 THEN 1 B58i 
IF MT ) KH THEN IE " KN: GOTO 1850 

II - 15: GOSUB £00;  IF KH < KL + 1 THEN 1340 
FOR IG = IE TO KNiKL = G:I6 = IG:  IF CNCIG)  " 0 THEN lBj0 
IF MT > KH THEN IG "    KN: GDTO 1830 

Ii = 16: GOSUB £00 
II = I6:KL = 6: 60SUB 400 
NEXT IG:MT = MX + MY + mi - £ - KL 

II '= I5:KL = 5: GOSUB 406) 
NEXT  Itlltl = mx 1- MY 1- m; - E - KL 

[I = 14:KL = 4: GOSUB 400 
NEXT IC:1»1T -- MX + MY + MZ - £ - KL 

II = I3:KL =^ 3: GOSUB 400 
NEXT IC:MT ^ MX + WY + MZ - £ - KL 

II = ia:KL = £: GOSUB 400 
NEXT le:ltT = MX + MY + MZ - £ - KL 

II = Il:KL = l! GOSUB 400 
NEXT Ifl 
FOR MT = 1 TO KH: FOR KL = 1 TO KH 

HH(MT) ^ HH(MT) + H(KL,MT) 
NEXT KL: NEXT MT 
PRt» 1: PRINT ; PRINT "COEFFICIENTS OF rROPORTIONOL HDDITIDNS TO Q, 
BY POWERS OF T/C£" 
PRINT "HH:1:"sHHiD;";£:";HH<£>;";3:";HH!3);";4i";HH(4);"!5:";HH(S 

) ; ■' :6: "HH(6! 
GOSUB saaa 
PRINT "ODDITIONS TO LOG E, BY POWFRS OF  T/C£" 
PRINT "COEFFICIENTS!".- FDR N = 1 TO KH: PRINT "POUER=" (N; ■,   COEF. 

=";HL(N); NEXT N 
C£ = 1.436786: FOR N ^ 1 TD RH:fi<M> = HL<N)  / C£  - N: PRINT "COEF. 
OF T'"iN)" !"in(N!! NEXT N 
IF KH < S THEN £090 

El = FI(S)  / fi<l>:Ba - B(3»  / fi(l):E3 = fi<4> / 0(1): B4 = fl<S)  / H<1» 

4) ♦ HH(1) 
HH ( 1 ) -■ 3 
1 )    6/6 

5130  RETURN 
6000  PR» 1: PRINT  TSB( 039)jD* 
6010  PRINT  CHRt <g);"60P"i 
60£0  LIST : PRINT  TSE( 039)jD« 

a + £ » HH(3) * hiH<;^>    * HH<i) + HN(£> ■■ 3    /    3   -   HHC3> * 
HH(£)  ■■' £ » HH<1)  ■- £ * 3 / £ -f HH(£> * HH < 1)  "' 4 - HH ( 

PRINT  CHR« (9): 

PR« 0: END 
NDMEMBER 17, 

(El « B4 £135®   DN    -   Ei£    ---   £ Bl    *    B3:D1 
D£ » B4)  / DN 

£060 Gl =■ Dl -1- El:6£ ■- D£ + Dl » El + B£ 
£07€i 61 " Gt « 0(I):6£ - G£ « 0(1) 
£080  PRINT ; PRINT "D LN Q = (";fl<1>;" * T + (" 

) * T -^ 3) / (1 -*- <";D1;") * T + C " ; D£; " ) * 
£090  PR» 0: END 
501ZIB  REW  LOB 
5010 HL(1) = HH(1) 
5a£e  IF KH < £ THEN 5150 
5030 HL(£) = HH<£) - HH ( 1 ) '- £ / £ 
5040  IF KH < 3 THEN 5150 
5050 HL(3) = HH<3) - HH<1) 
5060  IF KH < 4 THEN SI50 
5070 HL(4) = HH(4) - HH(£) 

HH ( 1 ) -■ 4/4 
50S0  IF KH < 5 THEN 5150 
5090 HL<5) = HH(5) - HH(£) 

HH(1) -■ £ ♦ HH<3) - HH(£> * 
Siae  IF KH < 6 THEN 5150 
5110 HL<6) = HH<6) - HH(3! - £ / 

B3) / DN:D£ <E3 

HH(£) 

a   / £ 

HH(1 ) 

HH < 1 ) 

HH<3) - HHIl) 
HH! 1 ) -■ 3 

HH<4) 
HHd) 

HH<5) + HH( 


