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DISCUSSION
of the Perone-Ham paper, Measurement and
Control of Information Content in Electrochemi-
cal Experiments

Herman Chernoff
Statistics Center
Massachusetts Institute of Technology

The Shannon theory of information has had a profound
impact in science and technology. Shannon defined infor-
mation in terms of the reduction of uncertainty which, in
turn, was measured by entropy. He was concerned mainly
with the use of information to measure the ability to transmit
data through noisy channels, i.e., channel capacity.

Statisticians have developed other, somewhat related, no-
tions of information. In statistical theory, the major empha-
sis has been on how well experimental data help to achieve
the goals in the classical statistical problems of estimation
and hypothesis testing. These measures serve two useful
functions. They serve to set a standard for methods of data
analysis, methods whose efficiencies are measured in terms
of the proportion of the available information that is effec-
tively used. They also serve to design efficient experiments.

For the problem of estimation, Fisher introduced the
Fisher Information which we now define. Suppose that it is
desired to estimate a parameter 0 using the result of an
experiment which yields the data X with the densityf(x 10).
The Fisher Information for 0 corresponding to X is given by
the matrix

J =x(O)=EO(Y YT) (1)

where Y is the score function defined by

Y=Y(X,0)=8[logfX(xi0)]1 (2)

If 0 is a multidimensional vector, J is a nonnegative definite
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symmetric matrix with the additive property

lX~z(n)=l%(n)+lz(n) (3)

if X and Z are independent. As a consequence

Ix~x .... x(O)=nls(O)=nJ (4)

if the left subscript refers to the independent replicaton of X,
n times. For such an experiment, it has been shown, under
mild regularity conditions, that the Maximum Likelihood
Estimate (MLE) 0 will be approximately normally dis-
tributed with mean 0 and covariance matrix J- '/n for large
n. Moreover, the Cram&r-Rao theorem states that one can-
not expect to find a reasonable estimate that does better.

Some implications of the above paragraph are illustrated
by three simple examples below.

Example 1. Mean of a Normal Distribution.

Let X be normally distributed with mean 0 and known
variance ar2, and let X1 ,X2 ,...,X, be a sample of n independ-
ent observations on X. It is easy to show that JX=o- 2 and
that the MLE TI=X=n- 1 (X 1+...+X,) is normally dis-
tributed with mean 0 and variance a.2/n. However, the
statistician, who fears for outliers and may wish to use a
more robust estimator than the sample mean, may prefer to
use T2, the sample median, It can be shown that T2 is
approximately normally distributed with mean 0 and vari-
ance rra2/2n for large n. The equation

r2 0`2 Tr1(5)

n, n2 2

implies nI/n 2=2/1r=.64 which is a natural measure of the
efficiency of T2, indicating that, with TI, we need only 64%
of the data to achieve the same accuracy as with T2. If the
effective waste of 36% of the data seems excessive, the
statistician can improve on efficiency with little sacrifice of
robustness, e.g., by using the upper and lower quartiles as
well as the median, or by using trimmed means.

Example 2. Experiments With Information Matrices.

Let 0 =(0 1 ,0 2 )T, and let X and Z be two experiments with
information matrices

Jx= 3 4 andJz=l43 -3|

It is desired to estimate 01 using replications of either (X,X)
or (Z,Z) or (X,Z). Let J1I be the upper left member of J1

which measures the (asymptotic) variance of 01, the MLE of
°1. Then

J% 16 8-1 '

J~Z=11 -86 -86 11 ,

Jxx =0.286,

Jzz =0.286,

and

Jxz =0. 125.

This clearly indicates, that in the presence of nuisance
parameters such as 02, one may squeeze much more useful
information out of a combination of two equally informative
experiments than by repeating one of these two or, in this
case, even four times.

Example 3. Estimate Safe Dose Level in Probit Model.

For an experiment at does level d, the probit model at-
tributes the probability of a response to be

p(d,O)=c1[(d -4)1/] (6)

where 0=(pL,ar)T, 'D is the standard normal cumulative dis-
tribution and the "safe" dose level to be estimated is defined
as IL-2.87a. If one is permitted to select a sequence of n
dose level, dI,d 2 ,...,d, with which to challenge n subjects,
the optimal choice or design, for estimating gi-2.87a can
be shown to assign about 23% of the doses at level
d= p.+ 1.57a and the remaining 77% of the doses at level
d=pg-l.570.

This optimal design illustrates several points.
1. This design is locally optimal, i.e., it requires a

knowledge of 0 to provide the best estimate of a function of
0. Superficially, it seems silly, for if we knew 0, we would
not need to estimate it. In fact, it indicates that as data
cumulates, one knows more about 0 and can sequentially
use that information to provide improved experiments.

2. In this experiment, the repeated use of one dose level
do would provide only an estimate of the function p (dO)
and would yield no other useful information about 0 or
xL-2.87a. At least two dose levels are required. What is

,somewhat surprising is that no more than two dose levels are
required for an optimal design. A more general theorem
states that if it is desired to estimate r functions of k parame-
ters upon which the distribution of the data depend, then an
optimal design can be constructed using at most k+(k-1)
+ ...(k -r + 1) of the available (elementary) experiments.

3. The optimal design is not necessarily a practical one.
Most investigators would be interested in using a variety of
dose levels as a means of checking the basic model. Theory
permits us to measure the loss of information inherent in the
use of practical, but suboptimal designs, so that one can
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decide on whether the loss is so extravagant that other alter-
natives should be considered.

We mention briefly that for testing hypotheses, there are
several measures of information which are of potential use,
depending on the type of problem. Perhaps the most useful
measure is the Kullback-Leibler Information (KL)

I; (0,Aw)=ff(xl0) log g dx (7)

which, measures two important aspects of the ability to use
a sample of n observations on X with distribution f(x), to
discriminate between the hypotheses Hpf(x)=f(xlO) and
H2 :f(x))=f(x14,).

The Kullback-Leibler Information is additive as is the
Fisher Information but it is not symmetric since, Ix(0,4,) is
not generally equal to Ix (4,,0). For large samples, it is
possible to find tests which, for fixed type I error probabil-
ity ax=P(reject H 1IHI), have the type 2 error probability
f3=P(accept HIjH 2) approach 0 at a rate determined by 1*.
We have, roughly

V-*eakmc~o (8)

Another property of KL is that for optimal sequential testing
as the cost c, per observation, approaches zero, the expected

costs R (0) and R (4') associated with the sequential proce-
dure when HI and H2 are true, satisfies

R(0)--c log c/lI(),4,)

R(4,)--c log cllx(4,O) (9)

This implies that if we suspect Hl is true, we should select
the experiment which maximizes I*(0,0 and if we suspect
that H2 is true, we should maximize I*(<>,0). Here again, as
in the estimation problem, we are in a position to improve
the experimental design as information cumulates, and our
belief in HI or H2 increases.

To return to chemical experimentation, one should point
out that an experimental set up which yields vast amounts of
bits of information is not very useful if the analysis of the
data does not make efficient use of the data. To discriminate
between two alternatives requires only one bit of effective
information in the Shannon sense. The choice between ex-
periments which yield 1,000 and 10,000 bits must involve
how much effective information is readily available from
the analysis.

Some bibliography on the uses of information in statistics
is contained in Chemoff (1972).

[1] Chemoff, H., Sequential Analysis and Optimal Design SIAM mono-
graph 8, SIAM, Philadelphia (1972).
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