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One of the most important problems in chemical analysis is the interpretation of analytical data. The difficulty of this

task has been further compounded by the data explosion. Chemical information relevant to the particular analysis

problem is hidden within excessive amounts of data, This problem could be alleviated through knowledge and control

of the information content of the data. Information theory provides a means for the definition, evaluation, and
manipulation of quantitative information content measurements. This paper provides a general review of some of the

basic concepts in information theory, including history, terminology, entropy, and other information content measures.
The application of information theory to chemical problems requires some modifications. The analyst is usually only

interested in a subset of the information (data) which has been collected. Also, this relevant chemical information is

dependent upon not only the informational goals of the problem, but the completely specified procedure as well. This

paper reviews chemical applications of information theory which have been reported in the literature including applica-

tions to qualitative analysis, quantitative analysis, structural analysis, and analytical techniques. Measures of informa-

tion and information content and figures of merit for performance evaluations are discussed. The paper concludes with
a detailed discussion of the application of information theory to electrochemical experiments and the empirical determi-

nation of the information content of electroanalytical data.
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Introduction

Data interpretation is one of the most challenging prob-
lems of chemical analysis. Both the data-rich and the data-

limited cases stress the need for efficient methods to extract

chemical information from the available data. Data-rich

analyses result from the ability of modem chemical instru-

mentation to generate enormous amounts of data in short

periods of time. The current trend towards more exotic
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hybrid instruments buries the chemical information even
deeper within the data. Alternatively, data-limited analyses
often result from limitations in appropriate sensors, accessi-
ble techniques, time, and manpower. The need for efficient

methods to extract chemical information is superseded only
by the need to acquire information-rich data.

Improving accessibility of chemical information empha-
sizes the importance of good experimental design and re-

quires a re-evaluation of the traditional approach to chemi-
cal analysis. The typical approach involves using

foreknowledge about the samples to choose an anlytical

procedure. The analytical procedure, which may involve
more than one analytical technique, is used to produce as
much data as possible which is collected for later analysis.
Data interpretation is performed by the analyst using as
much intuition and background knowledge as possible. In
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the data-rich case, emphasis is often on data reduction. The
data-limited case emphasizes information extraction.

A more efficient and desirable approach to chemical anal-
ysis would be to maximize the amount of information ob-
tained relevant to the current problem, while minimizing the
amount of analytical effort, time, and collected data, The
evaluation, selection, and optimization of analytical proce-
dures need to be investigated further, In order to study this
problem, a method for the quantification of chemical infor-
mation must be defined. This paper reviews some relevant
information theory concepts and describes applications to
chemical analysis. Illustrations have been taken from the
literature, as well as from our own recent work, to demon-
strate the value of applied information theory for optimized
chemical analysis methods.

Information Theory Concepts

Information theory [1-4]1 is concerned with the study of

information and its transmission. The earliest information

theorists studied the encoding and decoding of secret codes.
Modem work on information theory can be traced back to
the 1920's beginning with Carson's study of frequency

modulation. Nyquist determined the minimum bandwidth
required for the transmission of a definite quantity of infor-
mation. Hartley established a definite bandwidth-time
product required for the tranmission of a definite quantity of

information. However, most of the present work in informa-
tion theory is based upon probablistic models of communi-
cation developed by C.E. Shannon in 1948 [5]. Simply

stated, the basic principle is that a message with a high
probability of random occurrence conveys little informa-
don. The most information is conveyed by the message that

is least likely to spontaneously occur.
This principle is formalized by the concept of entropy

which equates information and uncertainty. Entropy is a
quantitative measure of the amount of information supplied
by a probabilistic experiment. It is based upon classical
Boltzmann entropy from statistical physics. Shannon's for-
mula, eq (1) defines the entropy or the average information

N

HaV=Iav= P(xi) log2 p(xi) , (1)

to be equal to the weighted average of the specific informa-
tion for each event in the system under consideration.
Specific information [61 is information conveyed by the
occurrence of a particular event and is quantified by the
-log 2 of the probability of the event (p(xj)). Entropy is
limited by a maximum of log2 N (Hartley's equation), where

Figurcs in brackets indicate literature references.

N is the number of events, when considering a set of mutu-
ally exclusive but equally probable events [1,6,7]. For ex-
ample, consider the measurement of three distinguishable
intensity levels. If the probabilities of measuring these lev-
els are 0.25, 0.30, and 0.45, respectively, the averge en-
tropy would equal 1.5 bits. The amount of specific informa-
tion conveyed by the measurement of each level would
equal 2.0, 1.7, and 1.1 bits, respectively. Notice that the
least likely level to be measured does indeed convey the
most information. The maximum entropy is equal to 1,6
bits. A thorough treatment of the mathematical basis of
entropy and its properties is given in a book by Mathai and

Rathie [21.
Redundancy [6] is the difference between the maximum

information and the average information eq (2). Relative

N

Id =10g2 N - p(xi) log2 p((x) (2)

redundance is the ratio of the redundance to the maximum
information [6]. Relative information content is the ratio of
the actual average information to the maximum information
[11. Redundancy can then be expressed as the remaining
fraction not due to relative information [1]. In the above
example there is 0.1 bit of redundancy and 0.062 relative
redundance. If the actual average information is equal to 1.4
bits, the relative information content is equal to 0.88 and the
redundancy equals 0.12.

Types of Information

The concept of information as used in information theory
refers to the choice or uncertainty of outcomes when regard-
ing distinguishable elements with respect to some random
mechanism. Information is a system based upon elements
that have been agreed upon for the representation of infor-
mation (characters) and the relationships between them
(codes). It is not a measure of meaning as used in the usual

sense, which implies a subjective evaluation. The concept
of information as used in chemical analysis encompasses the
uncertainty regarding the quantity, identity, chemical struc-
ture, or properties of the analyte of interest.

Preinformation or foreknowledge [1] is the prior knowl-
edge concerning the occurrence of events. The information
conveyed by the occurrence of more than one independent
event is simply the sum of the information conveyed by each
event individually. However, if the occurrence of a second

event is dependent upon the occurrence of the first event, the
foreknowledge of the first event reduces the amount of in-
formation conveyed by the second event. Therefore, the
amount of information conveyed by a series of events within
the system under consideration is always less than or equal
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to the sum of the information conveyed by each of the events
separately.

Preinformation is probably the most commonly used in-
formation theory concept in chemical analysis. Chemical
preinformation [8] is information that is known prior to
performing the current analysis. It may result from experi-
ence, preliminary analyses, etc. It is used to reduce the
effort required to solve the analytical problem. Preinforma-
tion may be quantified through the use of entropy-based
measures [8]. The uncertainty before the analysis for a dis-
crete variable, such as chemical identity, is quantified by the
use of the a priori probabilities for identification in Shan-
non's equation (eq 1). The uncertainty for a continuous
variable such as concentration or signal intensity is ex-
pressed by integrating the a priori probability density func-
tion over the range of interest eq. (3).

H(X)=-f p(x) 10g2 P(x) d (3)
xI

Joint information [I] is information that is provided by
more than one event. It can be quantified by substituting the
joint probability of occurrence for the events into Shannon's
equation (eq 1). In the case of independent events, the joint
probability of occurrence is simply the product of the a
priori probabilities of occurrence. For nonindependent
events, it is the product of the a priori probability for the
first event with the conditional probabilities for the other

events.
Mutual information describes the amount of information

in one event that determines the state of another event. It
may also be thought of as the average amount of information
required to distinguish members of different classes, Isen-
hour et al. [9] investigated the relationship between mutual
information and classification in the determination of chem-
ical functionality for 200 compounds based upon binary
encoded (peakino peak) infrared spectra. Mutual informa-
tion was calculated as the difference between the total aver-
age entropy and the average conditional entropy. The total
average entropy is the average amount of information re-
quired to distinguish between the 200 spectra under consid-
eration. It is calculated as a weighted average of the proba-
bility of occurrence of a peak maximum for each spectral
interval using Shannon's formula (eq 1). The average condi-
tional entropy is the average amount of information required
to distinguish between members of the same class. Average
conditional entropy is calculated as the sum of the class
conditional entropies weighted by class size. In the case of
two separable, equally probable classes, the independent
mutual information is equal to one bit. A value for mutual
information greater than one bit implies the inclusion of
redundant information in the data. The square root of mutual

information was shown to be linearly related to the maxi-
mum likelihood classification ability.

Figures of Merit

The application of information theory concepts to chem-
istry is most familiar in the evaluation of analytical methods.
Figures of merit such as accuracy, precision, and detection
limit have long been used to evaluate the attainment of
informational goals such as concentration, resolution, and
sensitivity, respectively. Figures of merit are measures of
goal achievement for completely specified procedures that
can be used for evaluating, selecting, and comparing analyt-
ical procedures. Other quantifiable factors that can be used
to determine the applicability of analytical procedures to a
particular problem include sensitivity, selectivity, speed of
analysis, personnel requirements, and cost of the analytical
procedure.

Grys [10] described five new functional concepts: accu-
racy, limit of detection, firmness, efficiency, and cost,
which result in judgements of acceptibility of analytical
methods. Accuracy is expressed in terms of recovery and
reproducibility. The contribution due to recovery can be
calculated by summing the percentage of different losses
throughout the whole procedure. Reproducibility is ex-
pressed by the ratio of the full range to 100 times the ideal
range.

Limit of detection is the concentration of a sample that
gives a reading that is equal to twice the confidence half-
interval for a series of ten determinations of the blank test
value determined to 99% certainty. It is measured in mg per
kg, or ppm, and is given by multiplying the standard devi-
ation by 2.17, a factor that is determined from the t test for
t0 01 and n = 10.

Firmness is an index of the effects of different factors
upon the results. It is equal to the total deviation from
expected values caused by the presence of equimolar
amounts of interfering substances or connected with 5%
changes in optimum reaction conditions such as acidity or
reagent concentrations.

Efficiency provides information about the time consump-
tion during the course of the whole procedure. It is ex-
pressed as the time of effective labor for one sample in
minutes divided by 100.

Cost is a measure of the expenditure of materials and
equipment used for the analysis of one sample by a new
method in relation to the least expensive method. The cost
of any desired method by which the analysis can be per-
formed may be substituted for that of the least expensive
method. It is given by dividing the ratio of the cost of the
new method to the old method by 1000.

Eckschlager [11] discussed two informational variables,
time-information performance and specific price of informa-
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don, which can be utilized in the evaluation and optimiza-
tion of analytical methods. Time-information performance
[12] can be rewritten as the ratio of information content to
the time required for the analysis, including the analysis
itself plus the time required to prepare the equipment for the
analysis of the next sample. The time required for analysis
can be partitioned into two segments, the basis time and the

time required for the performance of N parallel determina-
tions. The specific price of the information [11] is defined
as the ratio of the cost of the analysis to the amount of
information obtained through simultaneous determination of
N components.

Danzer and Eckschlager [13] defined a general measure
of information efficiency as the product of efficiency coeffi-
cients that are based upon the ratio of the value of the
variable characterizing the properties required for the solu-
tion of particular analytical assignments to the actual value
that the method provides. A ratio greater than one implies
that more of the property is required than is provided by the
method and the efficiency coefficient is assigned the value
of zero. Otherwise, the efficiency coefficient is assigned the
value of the ratio. They also defined a measure of infornia-
tion profitability as the ratio of the information efficiency to
the specific price of the information. Results for the deterni-
nation of manganese in low-alloy steels were tabulated for
seven analytical methods: titrimetry, potentiometric titra-
tion, photometry, atomic absorption spectrophotometry, op-
tical emission spectroscopy, optical emission spectrogra-
phy, and optical emission spectrometry. The results
demonstrated that information efficiency and information
profitability are not always correlated. For example, al-
though potentiometric titration has almost five times the
information efficiency of titrimetry, both methods have the
same information profitability when the duration of the anal-
ysis should be less than one day.

Informing Power

Informing power is a measure of the amount of informa-
tion available in a given analytical procedure. The concept
was developed by Kaiser [14] with respect to spectrochem-
ical methods of analysis eq (4) as a function of the resolving

Pimf= | R(v) log2 S (v) - (4)
fV. ~~~V

power, R(v), the maximal number of discernable steps for
the amplitude, S(v), and the spectral range, v. to Vb. If the
resolving power and the maximal number of steps are fairly
constant over the spectral range under consideration, in-
forming power reduces to eq (5). For example, a grating

Pinf=Rav logo SV, In (vbdv) (5)

spectrograph system with a resolving power of 2X 105, a
spectral range from 2000 to 8000 A, and 100 discernable
steps in measured intensity levels at each wavelength would
have an informing power of 2x 106 bits. It is obvious that
here the resolving power is the most important factor in
maximizing informing power. In the case of a nondisper-
sive, monochromatic method, resolving power between
peaks at different wavelengths is not applicable and inform-
ing power is simply the log2 of the number of discemable
amplitude steps at that wavelength. For example, 100 dis-
cernable intensity steps yields an informing power of 7 bits.
The informing power for the corresponding polychromatic
method is that for the monochromatic method multiplied by
the number of frequencies. If the number of steps is different
for each of the different frequencies, then the informing
power is the same as for a collection of monochromatic
methods, and the log2 of the number of steps is summed
over each of the different frequencies

Fitzgerald and Winefordrer [15] extended the application
of informing power to time-resolved spectrometric systems
with the addition of a second resolving parameter, R,. If
both resolving powers and number of discemable steps are
nearly constant over the range, then informing power re-
duces to eq (5) multiplied by R. In (t21t1 ). For example, an
atomic fluorescence spectrometer with an average resolving
power of 3000 over a spectral range from 200 to 500 nm

;with an averge of 200 discernable intensity steps has an
informing power of 5.7x 104 bits. The informing power is
increased to 9.7x Ihibits for a range of 10-9 (tj) to 10-6 se
with a measurement time limited by the lifetimes of the
excited species of 10' sec (t2) and a 8! of 10- 9 sec (R.
equals (t2 -,t)/Br). Comparisons of the inforning power for
a single beam molecular absorption spectrophotometer, nor-
mal molecular absorption phosphorimetry and time-
resolved phosphorimetry showed an increase in the inform-
ing power by a factor of two for the normal phosphorimeter
over the spectrophotometer. The addition of a time resolu-
tion element to phosphorimetry increased informing power
by a factor of 450. The addition of a time resolution element
to atomic fluorescence spectrometry increased the informing
power by a factor of 170. Informing power was also used to
compare analytical methods as well as to compare analytical
instruments. A general photon counter was shown to have
an informing power three times larger than that for an analog
synchronous detection system.

Yost extended the application of informing power to
tandem mass spectrometry [16,17], a method capable of
generating enormous amounts of data. In the case of a
quadrupole mass filter, the minimum resolution element, bx
is constant rather than the resolving power, R (x). Informing
power can then be calculated as shown in eq (6). A quad-
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P.f F -1092 S ( Xb )l-Xa I (6)
ax

rupole mass spectrometer with unit mass resolution, a mass
range of 1000, and an ion intensity range of 212 bits would
have an informing power of 1 .2X 104 bits. The addition of
another resolution element produces a double integral in the
informing power equation that is equivalent to the the
product of the informing power of the two elements. The
addition of a capillary gas chromatograph with a nearly
constant 105 theoretical plate resolution over a one hour
analysis time, results in 6.6X 106 bits of informing power.
The addition of a second quadrupole mass spectrometer with
the same characteristics results in 1.2 x 107 bits of informing
power. The combination of a capillary gc/ms/ms system
results in an informing power of 6.6X 109 bits, an increase
by a factor of 5.5 X 105 over the original quadrupole mass
spectrometer. The effect of experimental parameters on in-
forming power was also demonstrated by Yost [16,17]. The
variables associated with the collisionally activated dissoci-
ation process are potential resolution elements. Energy- and
pressure- resolved ms/ms has an informing power of
3.6x 109 bits.

The informing power metric can also be applied to elec-
trochemistry. Using a current range of -20 to +20 1iA that
can be measured to within .005 IiA yields 4X 103 discem-
able steps. Eq (6) can be used to calculate the informing
power for a cyclic staircase voltammetry (CSCV) experi-
ment in which each current pulse is sampled and analyzed.
An experiment with a staircase step of 13.5 mV (8x) and a
potential range scanned from 0.0 to -1.73 V yields
3.1 x 103 bits of information.

Boudreau and Perone [18] demonstrated quantitative res-
olution in programmed potential step voltammetry for over-
lapped peaks with 30 mV separation between half wave
potentials. If only resolved peaks are analyzed and the
smallest resolution is 30 mV, the informing power is
1.4x 103 bits. The addition of a time resolution element
increases the informing power for electrochemical methods.
Taking 45 equally spaced current measurements on each
step at a sweep rate of 1.00 V/sec for the CSCV experiment
increases the amount of information to 3.5x 107 bits. The
amount of information obtained from CSCV experiments
can be easily manipulated by changing or adding resolution
parameters.

Informing power can be used as a figure of merit for a
completely specified method or system. Although the in-
forming power of instrumental techniques may seem exces-
sive when compared to the maximum information as calcu-
lated by Hartley's formula, it must be remembered that
informing power is simply a measure of the maximal num-
ber of bits of information available in the procedure, not
necessarily the useable or necessary amount of information.

Limitations in informing power arise from differences be-
tween practical and calculated resolving power. The lack of
independence between the bits of information, noise, and
interference result in the reduction of the useful informing
power. Informing power can be partitioned into the amount
of information required for the solution of the problem and
the amount of redundant information required to provide a
given level of confidence.

Information Content

One of the most important concepts in information theory
is that of informational gain or information content [19].
This is equal to the change in entropy due to the experi-
ment and is quantified by the difference between the en-
tropy using a priori probabilities and the entropy using a
posteriori probabilities eq (7). The use of Shannon's

I(X 1Y)=H(X)-H(XIY) (7)

formula eq (1) to calculate the entropy does not guarantee a
non-negative information content. However, another infor-
mational measure eq (8) always results in non-negative

N

I(XIy)=- p(X1Iy) 1lg2 [P(XiJY)Ip(XX)]
i

(8)

values. For equal a priori probabilities, information content
as calculated by Eqs (7,8) are equivalent. Since information
content as discussed above can only be established after the
analysis, these measures cannot be used as a quality crite-
rion for selecting an analytical procedure. However, they
can be used to evaluate the performance of a procedure.

Measures of information content has been applied to in-
formation theory models of structural analysis, qualitative
analysis, quantitative analysis, trace analysis and instrumen-
tal analysis. Eckschlager and Stepanek have published a
book [7] and a review article [8] on the application of infor-
mation theory to analytical chemistry.

Structural Analysis

One of the most difficult analytical tasks is the unambigu-
ous determination of chemical structure. However, applica-
tion of information theory to structural analysis is based
upon a relatively simple entropy model [8] and an informa-
tional measure introduced by Brillouin [20]. The input con-
sists of a finite number, no, of equally probable identities
such as functional groups or conformational arrangements.
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The output is a portion of a signal that corresponds to the
identity, such as an IR band, NMR peak, or MS m/z peak,
encoded only as to its presence or absence. The number of
possible, but as yet undistinguished, structural arrangements
is n, where 1 •CnO•n and n = 1 for an unambiguous determi-
nation of the structure for the analyte.

The uncertainty prior to analysis can be expressed by
substituting the a priori probabilities into Shannon's equa-
tion eq (1). Since the a priori probabilities are qual, that is
l1/no, then the situation reduces to the case of maximum
information (Hartley's equation) and the uncertainty is equal
to log2 no. The uncertainty after analysis is equal to log2 n.
The decrease in uncertainty due to the analysis corresponds
to the informational gain eq (7) and is equal to log2 (no/n).
It assumes its maximum value in the case of the unambigu-
ous determination of the structure and is equal to log2 no.

Qualitative Analysis

The input for the model of qualitative analysis consists of
a set of discrete identities, Xi, where i = 1,2,. - no. If the
output consists of a number of discrete, equally likely iden-
tities, the limiting case of Shannon's equation (Hartley's
equation) can be used to calculate the entropy, and the
information gained can be expressed by a ratio of the num-
ber of possible components before and after the analyses
eq (9). [7]. For example, consider the case of an addition of

f(p,po)=1og 2 (nodn) (9)

HCI to a solution that contains only one of a list of 25
possible cations, three of which can be precipitated by HCI-
The information gained as evidenced by a precipitate would
be equal to log2 (25/3) or 3 bits. The lack of a precipitate
would imply an informational gain of only 0.2 bits. To
consider various combinations of components, the total
number of possible combinations is given by eq 10, where

M M
no=X' nm(M)=L [M!/(m!(M-m)!)] (10)

In In

M is the total number of components, and is divided into
groups of in components. In the case of a solution that
contains from one to six cations, the total number of combi-
nations is equal to 53. If two of them can be precipitated by
HCI, there are 15 combinations in which neither cation is
present and the information gained is 1.8 bits. For the 38
remaining cases in which either one or both cation is
present, as evidenced by the appearance of a precipitate, an
informational gain of 0.5 bit results.

In the case of instrumental or chromatographic qualitative
or identification analyses, the output is a set of discrete
signals in positions Yj, where j = 1,2,. . .m and m 2no [8].
The entropy can be expressed by Shannon's formula eq (1)
and reaches a maximum when all of the possible identities,
Xi, are equally likely. It is equal to zero when one identity
is confirmed and the others are excluded, as would be the
case for the a posteriori entropy for an unambiguous identi-
fication. The interpretation of these signals leads to an input-
output relationship for the system that is represented by a set
of a posteriori conditional probabilities, p (xi jyj). The inter-
pretation of these signals is also dependent upon preinfor-
mation represented by the a priori probabilities that may be
calculated by Bayes theorem eq (11) [19].

p(xJiY)[P(x0)P(YkM)/[Zl p(X,)p(Yxt,)] (I 1)

The information content of an analytical signal is defined
as the decrease in uncertainty eq (7). In the case of unam-
biguous determinations, H(XIY)=0 and I(XIY)=H(X), and
H(X) is also considered as the information required for
unambiguous determination. However, most qualitative or
identification procedures are chosen so as to minimize the
uncertainty in identification for every possible signal. This
is quantified by the informational measure of equivocation.
Equivocation [8,19] is a measure of the expected or average
value of the uncertainty after analysis eq (12). Equivocation

E=H(XIY)= p(yj) H(Xlyj)
j.

(12)

and information content are complementary quantities, their
sum equaling the entropy of the identification procedure.
For an "ideal" procedure or an unambiguous determination,
equivocation equals zero and information equals entropy.

Cleij and Dijkstra [21] demonstrated the use of informa-
tion content and equivocation in the evaluation of thin-layer
chromatographic procedures. Information content and
equivocation were calculated for the identification of DDT
and 12 related compounds for 33 different TLC systems.
Calculations of the equivocation for the combinations of two
TLC systems showed that the best combinations are not
produced by combinations of the best individual TLC sys-
tems. This reflects the correlation between the best individ-
ual TLC systems.

Another method for quantifying information content is
from the perspective of the possible signals rather than the
possible identities [19]. Signal entropy, H(Y), is the uncer-
tainty in the identity of the unknown signal and can be
quantified by substituting the probabilities of measuring the
signals into Shannon's equation, eq (1). The conditional
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entropy, H(Yjxj), is the uncertainty in the signal if the com-
pound is known to be xi. It can be considered a measure of
noise and is given by substituting the conditional probabili-
ties into Shannon's equation eq (1). Expected values for
entropy and information content can be expressed in a man-
ner analogous to that shown above. Also, since entropy is
strong-additive [2,19], information content can be ex-
pressed in terms of the signal entropies.

Dupuis and coworkers [22,23] applied these methods to
gas-liquid chromatography. The information content for 10
stationary phases used in gas-liquid chromatography was
calculated on the basis of compound identification by re-
trieval of retention indices from a compiled library for a set
of 248 compounds [22]. The information content per
column ranged from 6.5 to 7.0 bits. The information content
for combinations of columns is dependent upon both the
number of columns and the sequence of columns. Ten se-
quences of the 10 columns yielded an information content of
43.3 bits. The study was expanded to include 16 gas-liquid
chromatography stationary phases [23]. The complete data
set of 248 compounds, a subset of 48 aliphatic alcohols, a
subset of 35 aldehydes/ketones, and a subset of 60 esters
were explored. For all four sets of compounds, combina-
tions of stationary phases that yielded the most information
consisted of one nonpolar phase plus one or more polar
phases.

Van Marlen and Dijkstra [24] calculated the information
content for the identification of binary coded mass spectra
by retrieval and determined the optimal sequence of masses
which contained the most information. A set of approxi-
mately 10,000 low resolution mass spectra were binary en-
coded using a threshold intensity level of 1 % of the intensity
of the base peak. Masses greater than 300 did not yield any
additional information. Individually, masses of 300 or less
contained from zero (m/z=3,4,5,6,7) to one
(m/z=29,40,51,53,57,69,77) bit of information. The opti-
mal mass sequence of 120 masses contained 40.9 bits of
information, demonstrating the obvious redundancy in the
binary coded spectra. The optimal mass sequence is depen-
dent upon the distribution of the peaks. A set of 200 binary
coded alkane spectra yielded 9 bits of information for 25

selected masses.

Quantitative Analysis

The model for quantitative analysis is a two-stage model
[8]. The input is a continuous distribution that produces a
eontinuously variable signal. In the second stage, the signal
specified by both position and intensity is decoded into
results. The distribution of the results for parallel determina-
tions is generally normal. Preinformation indicates that con-
tent of the component lies within a specified range of x0 to
xl so the a priori probability density is that of a rectangular

or uniform distribution. The information content is consid-
ered a divergence information measure that represents the
error term in the measurement of the inaccuracy of the
preinformation [7,8]. If the results confirm the a priori
assumptions for the component, the information content is
given by eq (13). The effect of a systematic error,

I (p,pO)=log2 [(xl-x0)/(aV'r;)] (13)

8, reduces the information content by factor of 82 /2ar2 [7].
The use of parallel determinations, np, and the estimate of
a-, s, results in eq (14), which utilizes the student's t test at

I(p,pO 0) =log 2 [(xl-xO)np/(2st(v)] (14)

the significance level of 0.038794. This level of signifi-
cance is chosen so that twice the t value at infinity equals
N/F2r as the number of degrees of freedom approaches
infinity. The information content as measured by eq (14) is
the practical form of eq (13) since usually only the estimate
of the standard deviation is known.

Poisson distributed results can be approximated by a nor-
mal distribution with the population mean, >±, equal to the
constant representing the average number of random points
per unit time, X, and the population standard deviation, ar,
equal to <. This changes the equation for information
content to that shown in eq (15) [25]. However, this

(15)

approximation is less valid for small values of lambda.

Trace Analysis

The model for trace analysis [7,81 is essentially the same
as for quantitative analysis except that the output signal is
often barely distinguishable from the background noise. In
the first case, the information content of the component to
be determined is less than or equal to the detection limit of
the analytical method and the only conclusion is that the
content is somewhere between zero and the detection limit.
The a posteriori probability distribution is equal to the in-
verse of the detection limit of the method. The information
content is given as the log 2 of the ratio of the highest esti-
mated content of the component to the detection limit for the
component. In the second case where the content of the
component to be determined is greater than the detection
limit, the content can be determined quantitatively. The a
posteriori probability distribution is a shifted log-normal.
distribution. This information content differs from the infor-
mation content of the first case by the addition of log2
[V/ku27re] term, where nP is the number of parallel
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determinations and k is the asymmetry parameter for the
shifted log-normal distribution. If the mean value for the
determination is close to the detection limit, a truncated
Gaussian distribution is used to describe the a posteriori
distribution. The information content can be calculated as a
function of the highest estimated value, the mean value, the
standard deviation, the frequency, and the distribution func-
tion. The information content for both the log-normal and
the truncated Gaussian distributions converge to log2 [x1/
uVr ].

Electrochemistry

Perone and coworkers have examined the effects of vari-
ous experimental parameters on the qualitative information
content of electrochemical data [26-31]. Because pattern
recognition methods were used to obtain structural classifi-
cation information empirically, an empirical measure of in-
formation gain was used to assess the effects of experimen-
tal parameters. This involved defining an appropriate figure
of merit with which to measure the extent of informational
goal achievement. Changes in information content are then
determined by observing changes in attainment of the infor-
mational goal.

Byers, Freiser, and Perone [28,29] analyzed 45 com-
pounds using cyclic staircase voltammetry. The data set
consisted of 19 nitrobenzenes, 9 nitrodiphenyl ethers, and
17 ortho-hydroxy azo compounds. Of the nitrodiphenyl
ethers, 4 were strong herbicides and 5 were either weak or
nonherbicides. The informational goals for the problem
were the classification of the 45 compounds by their struc-
tural type and the classification of the 9 nitrodiphenyl ethers
according to herbicidal activity. Seven experimental vari-
ables, percent ethanol in the solvent, pH, surfactant concen-
tration, number of cycles, scan rate, mercury drop hang
time, and sampling time were varied in a fractional factorial
design to generate a complete data base of collected cyclic
staircase voltammograms and cyclic differential capacity
curves [28] for subsequent analysis [29]. Faradaic and ca-
pacitive variable effect curves were calculated from the
data. The average entropy for the three classes was 1.5 bits.
The maximum entropy was 1.6 bits. The figure of merit for
the informational goals was the percent correct classification
as achieved by k-nearest neighbor analysis. For the struc-
tural characterization studies, the best overall percent classi-
fication ranged from 76% using capacitive variable effect
features to 93% for both capacitive variable effect features
and faradaic variable effect features. Overall accuracy for
structural classification using the faradaic variable effect
curve features ranged from 67% for percent ethanol to 93%
for number of cycles. For the herbicidal prediction using
variable effect curve features, the percent correct classifica-
don ranged from 78% for pH, faradaic sampling time, ca-

pacitive scan rate, and drop hang time to 100% for %
ethanol, surfactant, faradaic number of cycles, and scan
rate.

Barnes and Perone [30] studied the enhancement of
chemical process information through experimental design.
A simple model of controlled potential electrochemical
processes based upon the Cottrell equation [31] was devel-
oped and implemented. The informational goal was to deter-
mine the effects of input voltage sequence, data collection
fraction to analyze, and preprocessing scheme upon the
determination of the diffusion coefficient. The figure of
merit for goal achievement was based upon the least squares
criterion function. Three input voltages, 180 mV step, pseu-
dorandom binary sequence with peak voltage, (E-Eo), of
180 mV, and white gaussian noise with mean of 90 mV and
variance of 3 mV, were presented to the model. Compari-
sons of the identification results for the three inputs showed
that the diffusion current model is fairly insensitive to the
input sequence. Closer inspection of the model reveals that
the anodic current is overwhelmed by the charging current.
Therefore, the best input sequence for the model is that
which is most easily generated.

In order to investigate the effects of timing, 3,000 data
points corresponding to three milliseconds in time were
generated using a step input. The least squares identifier was
applied to I msec intervals of data both with and without the
removal of charging current effects. When the charging
current was present, the best results were obtained for the
analysis of data taken after 10 time constants of the charging
network. With the charging current removed, the best re-
sults were obtained with data taken within the first I msec
interval when the amplitude of the anodic current and the
signal to noise ratio are maximized. The best preprocessing
scheme included filtering of unneccessary measurement
components from the signal of interest, such as the removal
of the charging current and signal averaging.

The application of information theory concepts to analyt-
ical chemistry can illuminate methods to increase the effi-
ciency of chemical analysis. Early work shows encouraging
promise for these types of applications. Optimum conditions
have been established for obtaining structural, herbicidal
activity, and diffusion coefficient information from voltam-
metric data. It hs been demonstrated that the informational
goal(s) will dictate the most favorable choice of experimen-
tal conditions. The use of objective systematic information
enhancement methods can highlight experimental parame-
ters that are often traditionally overlooked.
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DISCUSSION
of the Perone-Ham paper, Measurement and
Control of Information Content in Electrochemi-
cal Experiments

Herman Chernoff
Statistics Center
Massachusetts Institute of Technology

The Shannon theory of information has had a profound
impact in science and technology. Shannon defined infor-
mation in terms of the reduction of uncertainty which, in
turn, was measured by entropy. He was concerned mainly
with the use of information to measure the ability to transmit
data through noisy channels, i.e., channel capacity.

Statisticians have developed other, somewhat related, no-
tions of information. In statistical theory, the major empha-
sis has been on how well experimental data help to achieve
the goals in the classical statistical problems of estimation
and hypothesis testing. These measures serve two useful
functions. They serve to set a standard for methods of data
analysis, methods whose efficiencies are measured in terms
of the proportion of the available information that is effec-
tively used. They also serve to design efficient experiments.

For the problem of estimation, Fisher introduced the
Fisher Information which we now define. Suppose that it is
desired to estimate a parameter 0 using the result of an
experiment which yields the data X with the densityf(x 10).
The Fisher Information for 0 corresponding to X is given by
the matrix

J =x(O)=EO(Y YT) (1)

where Y is the score function defined by

Y=Y(X,0)=8[logfX(xi0)]1 (2)

If 0 is a multidimensional vector, J is a nonnegative definite
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