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Herein we study the problem of assessing, on the basis of noisy and incomplete observations, how much
information there is in the data for model identification in compartmental systems. The underlying concept
is that of an "information distance" between competing models, and estimation of this distance on the basis
of the given data is discussed. Useful reduction of the dimensionality of the corresponding least squares
problem is accomplished by regarding the decay rate constants as primary parameters of interest and the other
parameters of the model as nuisance parameters. Estimation of the decay rate function is also discussed.
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1. Introduction

Compartmental models are widely used in many fields
of science and engineering-pharmacokinetics, bio-
chemistry, physiology, radioactive isotopes and tracers,
to name a few. The basic equations of a typical (linear)
compartmental model with k compartments are

k

dxi/dt=ci± 2 (Cix 1 -c1 x9C-cotxy, (1)
1= 1,1i'

O<t < , i =, ... , k; where cej are nonnegative constants
(called the "turnover rate constants"), compartment 0
denotes the environment, and xi =xi(t) is the amount of
material in compartment i at time t. Lettingf%=co and
f 7=ciixj for j#AO, fy represents the mass flow rate to
compartment i from compartment j. Under certain as-
sumptions (cf. [3], [12])', integration of differential eq (1)
leads to

k

x 1(t)=,i + I aye-Z, (2)
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i=l, ..., k; where X,.. . Xk are positive constants
(called the "decay rate constants") depending only on
the turnover rate constants cqi, and fi and al are non-
negative constants.

Noting that it is often not possible to have accurate
and complete measurements from all the compartments,
Berman and Schoenfeld [2] considered the degrees of
freedom in choosing a compartmental model compatible
with the data when measurements are incomplete. In
particular, when one can only measure aggregate input-
output kcharacteristics so that one observes only

x(t)= Ixi(t), then one can only identify the rate

constants X,, Xk of the model (2) from the equation

x(t)=B + XA e -X'I
=1='

(3)

where B = E 13E and A1 = I a,. In pharmacokinetic ap-

plications, Wagner [10] has shown that many basic
quantities of interest can be expressed in terms of the
parameters of the reduced model (3), the use of which
he recommends in lieu of the full model (2) whose spec-
ification usually leads to ambiguities in these applica-
tions because of noisy and incomplete measurements.

The difficulties in model formulation and identi-
fication are compounded when the measurements are
not only incomplete but also are subject to error. This
leads to the question of assessing, on the basis of noisy
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and incomplete observations, how much information
there is in the data for model identification. If the
amount of information is found to be inadequate for
meaningful specification of the full model, then it may
be more useful to work with a reduced model or directly
with certain scientifically important characteristics
(functions of the parameters) of the model.

Since both eqs (2) (for the individual compartments)
and (3) (for the whole system) express the response as a
polyexponential function of time t, the statistical prob-
lems in the present context are basically those of param-
eter estimation for polyexponential regression models.
We discuss herein 1) the information content in the data
from these regression models, and 2) estimation of
model parameters and certain functions thereof.

2. Noisy Data and Information Content

Consider the polyexponential regression model

k

yp=13+±ajexp(-Xryti)+fi, i=l, .. 1 n, (4)
>=1

where the ej represent random errors. The errors e, are
usually assumed to be independent random variables
with zero means. Letting O=(k,, ..., X; a, .a , /3)
and

foQt)=j8+aje-'l'+.,.+ake-k'

common models for Var(c) are:

(i) Var(c,) o-' (constant variance error model),
(ii) Var(ej) =fo(tQ)o 2 (constant coefficient of

variation model),
(iii) Var(Ej)=f0 (1j)a' (Poisson-typeerror model),

Statistical methods for estimating the unknown pa-
rameters of the regression function try to "average out"
the random errors in various ways. Assuming that ob-
servations are taken at equally spaced times t, =( - l)A
and that n=(2k+l)m, the method of Lanczos
[6, p. 273] and Cornell [4] uses the sample means

rn-I
I1=m- y1(r=1..._,2k+1)

to estimate the moving averages , =m i fM(tO) of
?=(r- In

the regression function. Replacing p, -Itr- I bY.y,-r
in Prony's algebraic equation defining 4,=e`-AmA, solu-
tion of the algebraic equation then gives the estimate of
X1. This method therefore tries to average out the ran-
dom errors by introducing the new parameters ja, and
using the sample means i. to estimate jw,.

Since the y5 are strongly consistent estimates of Pt' it
follows that the Cornell-Lanczos method is consistent,
as was established by Cornell [4]. However, Lanczos [6]
gave an example to demonstrate "surprising numerical
snags which may develop on account of the exceedingly
nonorthogonal behavior of exponential functions." The
true regression function in Lanczos' example is

f0 Q)=0.0951 e<-'+0.8607 e 3 '+1.5576 e-5 1 (5a)

On the basis of 24 successive decay observations in the
time interval (0,1.2] of the form 2.51, 2.04,..., 0.07, 0.06,
which are accurate up to 1/2 unit of the second decimal,
and assumming knowledge of ,3 0 and k = 3, the pre-
ceding method gives the fitted model

foQ)=0+0305 e-'5 an2202 e ani (5b)

Although the true parameters are disappointingly far
from their estimates, the fitted function (5b) is remark-
ably close to the true function (5a), and one cannot
distinguish between the two models within the errors of
the measurements.

An alternative method to estimate the unknown pa-
rameters is that of least squares. The estimate 6 of 8 is
the value of '} that minimizes

S()=I wily, -t0ff, (6)

where the w, are suitably chosen weights. Note that

2Xw1Ef0 (ti) -f,(ti)]. (7)

Moreover, if the weights wi are so chosen that wi Var (e,)
are bounded, then

a

YwJfor(ti) -A(tjA]1 =

0(T:wj~f0(ti)-Ar(tj)h w.p. 1 (8)

(with probability 1) as

(9)

The quantity d(6,y)(=E{S(y)-S(O)}) defined in (9) is
a measure of the separation (distance) between v and the
parameter vector 0 reflected by the data. When the E
are normal N(0,l1/wj) random variables, 1/2 d(0,y) is
the Kullback-Leibler information number and the least
squares estimate coincides with the maximum
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likelihood estimate. Thus, the least squares method av-
erages out the errors ei in the weighted sums

1w1 [f0(t,)-f(j)]c,/d(0,y) for all choices of y under
consideration. Consistency of this method under as-
sumption (9) is therefore an immediate consequence of
(7) and (8) if there are only finitely many such choices
among which one is the true parameter vector, and its
extension to infinite parameter spaces involves addi-
tional compactness arguments (c£f [7], [111).

Since fQ) is linear in the parameters ,3, a, ... , ak,

least squares estimates of these "linear" parameters are
given by the standard formulas in multiple linear re-
gression theory for every fixed X=(X,, .. , Xk). For fixed
A, define

min
2w, kj[V -

'=1l- j

(+ ale '' +...+ae )]' (10)

and the original least squares problem is reduced to that
of minimizing S *(A.) involving only the decay rate con-
stants X,.., A. This approach, suggested by Golub and
Pereyra [5] and Osborne [8], has the great advantage of
reducing the dimensionality of the parameter vector
from 2k +I to k. Using this approach to fit a two-
compartment model to the Lanczos data, Varah [9] has
recently shown that S*(X,,X2) (with equal weights) has
ill-conditioned Hessian matrices and is very flat over a
broad region containing the minimum.

We now show how a global analysis of the least
squares function S*(X) enables us to assess how much
information there is in the data to specify the model. Not
only does such analysis provide a relatively stable nu-
merical algorithm for finding the least squares estimates
of the model parameters, but it also sheds light on the
range of models that are compatible with the data.

To fix the ideas, consider the Poisson-type error
model Var(e. =f0 (t,)ar2 , in whichf 0 (t) is large, at least
during the initial portion of the sampling times, as is
often the case in tracer measurements. For large f0 (tj),

log yj =log f0t6+log{l + Ecf6 (t)}

= log MO(ti) + 71{/VVO(0 ))', (1 1)

where rj = c,(f6t?))2 has mean 0 and constant variance
it. This suggests that fo(t,) can be estimted with small
relative error when f0 (tj) is large. Therefore we intro-
duce "ideal" weights of the form w* = I/max{(tj),C},
where C is some large constant, and define the actual
weights

w1= l/maX{fa(tj),C}, (12)

where fo(t ) denotes some initial estimate of fA(t) such

that foQ) is proportionally close to ft) if f(t) is large.
With this choice of weights wi, we define the least

squares function S*(L) by (10) and study its global and
local properties by using both discretization and gra-
dient methods. The idea is to partition the k-dimensional
parameter space A (set of all possible values for X) into
a finite number of subregions. The minimum S*(XD) in
each subregion D is found by standard gradient-type
(such as the Marquardt or Fletcher) algorithms. The
minimum of S *(X) over all subregions D then gives the

least squares estimate A (5*(S2=V1 5*(A)). Moreover,

those values of S*(Xn) that are proportionally close to
S*(A) also give a range of models compatible with the
data,

Figure I illustrates the results of this analysis in the
regression model

yj-= 100 e+" 1000 e 5 "'+e1 , i=1, ..., n, (13)

where n =50, tj=(0.0l)i, and the Ei are independent nor-
mal random variables with zero means and
Var(cj)=Ey,. Here X,1=1, At2=5, a,=100 and a2= 1000
are the unknown parameters, and /3=0 is assumed
known. The initial estimates 79(t1 ) in the weights (12),
where we set C=30, are obtained by using the Cornell-
Lanczos estimate of 0. Prior knowledge of the in-
equality constraints O<X,<4 and 4cX2<10 is assumed,
and we divide this parameter space into 24 unit squares.
In 100 simulation experiments performed, we obtained
results similar to those in figure 1. In figure 1 reporting
one such simulation, S*(XD) is shown inside each unit
square D, near the minimizing point XA which is repre-
sented by a small triangle. The solid triangles denote
those X, whose S*(X. ) values lie within 10% of the
minimum value, which is underlined in the figure. At the
true parameter vector X=(1,5), S*(A)=51.5, which dif-
fers from the minimum value of 47.1 by about 9%. The
curves represent the contour S*(X)=52, so that S lies
within 10% of its minimum value in the region between
the curves.

The wide range of models compatible with the data in
figure I is in sharp contrast to figure 2, where in addition
to the data during the time interval [0,0.5] of figure I we
took 75 additional observations (generated by the model
(13)) at equally spaced times in the subsequent period
(0.5,1.25). In figure 2 there is a relatively small range of
parameter vectors A whose S*(AL) values are near the
underlined minimum value at the least squares estimate
I , which is remarkably close to true parameter At=(I,5).

Regarding S(y)-S(0) as an estimate of the "informa-
tion distance" d(0,y)=Iw,"Ve(tj)-f,(t,)] 2 , we can use it
to assess the compatibility of the modelf, with the data.
To illustrate this idea, consider the 14 models repre-
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sented by solid triangles in figure 1, whose 5* values lie
10% of the minimum value of 47.1. We tabulate below
S(y)-S(O) for each of these 14 values of y. In addition,
the corresponding information distances d(O,y) and

d*(Oy)=Z&(tf)-f,(rj)]1fo(tj) are also tabulated for
comparison. Note that d4*(O,y) is remarkably close to
d(O,y); moreover, d*(Oy) is so small (in good agree-
ment with 5(y)-S(0)) that f,(t) is within 2% offo(t)
over the observed time range 0.01r<0.5 in each of the
14 cases.

S(m)-S(O)
0
0.2
4.0
0.5
1.1
0.8
1.3

d(O,y)
0.63
3.18
1.67
2.72
5.2t
3.01
1.20

d*O6,y)
0.63
3.25
1.69
2.78
5.28
3.06
1.23

S(y)-S(D)
1.0
1.8
2.1
2.0
3.0
4.5
3.9

d(O,y)
2.20
1.58
2.80

d(O,-y)
2.24
1.61
2.84

2.11 2.14
\t61 1.69

0.06 0.06
0.67 0.63

In the case of normal N(0,l1/w) random errors ej,
exp{- 1/2 (S(y)-S(&))} is the generalized likelihood
ratio for testing Hi:O=y. We can also construct con-
fidence regions for 0 by using contours of the function

Figure 1.
52.2

60.2

3 4 A1

5(y), as will be shown elsewhere. In this connection,
Bates and Watts [I] recently proposed another useful
method involving parameter transformations to im-
prove the standard asymptotic approximations for con-
structing confidence regions.

The separation of the full parameter vector 0 into its
linear and nonlinear components is not only of com-
putational interest, but it also has basic statistical impli-
cations. Analogous to the preceding paragraph, in the
case of independent N(O,l/w,) random errors,
exp(-1/2(S*(X)-4S(;Q))} is the generalized like-
lihood ratio for testing whether X is the true vector of
decay rate constants, with j3, a,, -.. , ak as the nuisance
parameters. This idea can be easily extended to simulta-
neous equations (2) defining k-compartment models,
where we have

y~t)=: + !¾e aje-Y'+ct), v= 1, k.
/=1

We can similarly define

SYRIA)= mn k w()yt-1vXLv l
Ml ' 2=1
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and interpret exp{-1/2(S*(Q)-S*(X))}
alized likelihood ratio for testing whether
vector of decay rate constants on the basis
all k compartments.

2

as a gener-
X is the true
of data from

3. Decay Rates and Their Estimation

Consider the polyexponential regression model (4).
As illustrated in figure 1, one often encounters a wide
range of rate parameter vectors (X,, ..., 4L) that are
compatible with one's data. In such circumstances, since
there is not enough information to estimate the individ-
ual rate constants, it is more meaningful to consider
them in a combined characteristic, such as the fractional
rate of decay

r(t)=lim 8-'{l-f 0(t+8)/f 0(t)}=-(d/dt) logfo(t)

at different time points t of interest. Letting XO=0 and

a0 =/3, the logarithmic derivative of fo(t)= aj e i is
given by - I times 10

3 4 Xi

k k
r(t)= Y p,(t)X1, wherep 1(t)=aje-'Xiu/Za e -'.

i=0 = 
(14)

Thus, r(t) is a convex combination of the rate constants
Xi, with the proportional size of the 1th exponential term
as the natural weighting factor for the decay rate A,.

To estimate r(r) at a particular time point r within the
range of sampling times, we propose to balance "global
information" from all sampling times (leading to
weighted least squares estimates described in sec. 2)
with "local information" from only the sampling times
near 7. We start by using the method of section 2 on all
the data to find a region A0 of rate parameters (XA, . .., Xk)
that are compatible with the data. To choose a vector in
A, that will provide the best estimate of r(i-), we note
that the logarithmic derivative - r(r) is a "local" quan-
tity involving only sampling times near r, and it is there-
fore reasonable to weight the observations not only by
their variability but also by how far their sampling times
are from i, putting more weight on sampling times near
7. With this new set of weights w,(T), we calculate the
(constrained) least squares estimate 8(r) of the parame-
ter vector 0, under the constraints XcA0 and aj>0(i=0,
1, ..., k). Substituting the unknown parameters in eq (14)
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by these least squares estimates, we obtain the estimate
?(r) of r(r).

A detailed discussion of the procedure sketched
above, together with a comparative study of this ap-
proach and the popular curve-peeling methods for com-
partmental analysis (cf. [12]), will be presented else-
where.

The author thanks Dr. Hung Chen for helpful dis-
cussions.

References

[I] Bates. D. M., and D. G. Warts, Parameter transformations for
improved approximate confidence regions in nonlinear least
squares Ann. Statist. 9, 1151 (1981),

[21 Berman, M., and R. Schoenfeld, Invariants in experimental data
on linear kinetics and the formulation of models. J. Appl.
Phys. 27, 1361 (1956).

[3] Coddington, E. A., and N. Levinson, Theory of Ordinary Dif-
ferential Equations. McGraw-Hill, New York (1955).

[41 Cornell, R. G. A method for fitting linear combinations of ex-
ponentials. Biometrics 18, 104 (1962).

[5] Golub, G. H., and V. Pereyra, The differentiation of pseudo-
inverses and nonlinear least squares problems whose vari-
ables separate. SIAM J. Numer. Anal, 10, 4L3 (1973).

[6] Lanczos, C, Applied Analysis. Prentice Hall, Englewood Cliffs
(1956)

[71 Ljung, L., Consistency of the least squares identification
method. IEEE Trans. Autom. Contr AC-21, 779 (1976).

[51 Osborne, M R., Some special nonlinear least squares problems.
SIAM J. Numer. Anal. 12, 571 (1975).

[9] Varah, J. M., On fitting exponentials by nonlinear least squares.
SIAM J. Sci. Stat. Comput. 6, 30 (1955),

[101 Wagner, J. G., Linear pharmacokinetic equations allowing di-
rect calculation of many needed pharmncokinetic parameters
from the coefficients and exponents of polyexponential equa-
lions which have been fited to data. J. Pharmacokin. fiop-
harm. 4, 443 (1976).

[II Wu, C F., Asymptotic theory of nonlinear Least squares esti-
mation. Ann, Statist. 9, 501 (1981).

[12] Zeirler, K., A critique of compartmental analysis. Ann. Rev.
Biophys. Bioeng. 10, 531 (1981).

DISCUSSION
of the T. L. Lai paper,
Regression Analysis of Compartmental Models

T.-H. Peng

Oak Ridge National Laboratory

One of the major tasks of marine geochemists is deter-
mining the uptake by the sea of CO2 derived from the
combustion of fossil fuels. Until valid models of the
general circulation of the ocean are constructed, this
task will have to be done with box models calibrated
through use of the distribution of natural radioisotopes
and transient tracers.

We need to explore how sensitive the uptake of fossil
fuel CO2 is to the basic design of these models and how
the design can be improved by simultaneously fitting the
distributions of several tracers. Five different 11-box
thermocline circulation models of the temperate North
Atlantic were constructed for this purpose.* Anthro-
pogenic tritium, 3He, and radiocarbon are used as trac-
ers to calibrate these models. The temporal input func-
tions of these tracers differ considerably from one
another. So also do the geographic patterns of their
inputs and their geochemistries in the sea.

Using the basic equation of the box model [e.g., eq (1)
of T.L. Lai's presentation at this conference] and the

finite difference method of computation for mass bal-

ance in each box, these thermocline ventilation models
with differing circulation patterns were calibrated to
yield a tritium distribution similar to that observed dur-
ing the Geochemical Ocean Section Studies
(GEOSECS) survey in 1973. These models were then
run for 'He and bomb-produced 4C. While the models
differ significantly in their ability to match the observed
3He and 14C distributions, these differences are not large
enough to clearly single out one model as superior. This
insensitivity of tracer to tracer ratio to model design is
reflected by the nearly identical uptake of CO, by the
various models. This result also suggests that the uptake
of CO2 by the sea is limited more by the rates of physical
mixing within the sea than by the rate of gas exchange
across the sea surface.

- Research of the application of box models for the geochemical
modeling of oceans was supported jointly by the National Science
Foundation's Ecosystems Studies Program under Interagency Agree-
ment DEB 8115316 and the Carbon Dioxide Research Division, Of-

Eice of Energy Research, U.S. Department of Energy, under contract
DE-ACO5-840R21400 with Martin Marietta Energy Systems, Inc.
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