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A finite state Markov process is aggregated into sevetal proups. Rather than observing the underlying Markov process,
one is only able to observe the ageregated process. What can be learned about the undedying process from the
aggregated one? Such questions arise in the study of gating mechanisms in ion channels in muscle and nerve cell
membranes. We discuss some recent results and their implications.
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1.

We are concerned with the following mathematical prob-
lem: a finite state Markov process in continuous time is
aggregated. by which we mean that its states are grouped
into a smaller number of aggregates. The Markov process is
assumed to be in equilibrium. One is not able to observe the
process itself, but only what aggregate the process is in as
time goes along. From the aggregated process we wish to
draw inferences about the underlying Markov process. How
much can we leam? This is a rather general question and
mere sharply defined questions can be asked. For example,
to what extent is the graph stracture of the Markov process
identifiable? Are some aspects of it identifiable and somc
not? (By the graph we mean a diagram showing the states
and the interconnections between them, but not the numeri-
cal values of the transition rates.) Can some graph structures
be ruled out as incompatible with the aggregated process? If
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the graph structure is known or hypothesized a priori, what
functionals of the various rate constants can be identified?
These are questions of identifiability. There are also prob-
lems related to the efficient statistical use of observation of
the aggregated process over a finite time interval.
Problems such as these arise in modeling and data analy-
sis for biophysical studies of gating mechanisms in ion chan-
nels in muscle and nerve cell membranes. The next section
of this paper briefly describes the biophysical context, In the
third section we summarize the mathematical results that we
have been able to obtain and discnss their implications and
possible applications. In the fourth section we make some
concluding remarks and méntion several open questions.

2. Biophysical Background

Ton channels are transmembrane proteins with the ability
to open a pore through which ions can flow with high con-
ductance; in the absence of such pores, the lipid bilayer
membranes of cells are virtually impermeable to most
charged particles. Most channels are either voltage “gated”
(controlled), such as the sodium channel in nerve axons,



which is the fundamental non-linear circuit element in-
volved in the propagation of nerve impulses, or chemically
gated, such as the post-synaptic acetylcholine receptor. We
have already reviewed the biophysical context [1]! and a
broad review of ion channels is now available [2], We shall
therefore confine ourselves here to an illustrative example.

The present work started with the desire to extract infor-
mation from experiments on the chemically gated acetyl-
choline receptor. Chemically extracted protein is incorpo-
rated in an artificial lipid bilayer membrane separating two
compartments containing electrolyte solution. The voltage
difference between the two sides of the membrane is fixed,
and the current through the membrane is measured. In the
presence of an agonist (chemical stimulant, such as acetyl-
choline), the current is found to fluctuate randomly between
two levels, reflecting the open or closed state of the channel.
(Great pain is taken to arrange to have only one active
channel, as shown by the absence of time intervals with
current a multiple of the minimum quantum.) It is known
that the agonist must bind to the channel to permit opening,
and the time scale for channel opening and closing is much
shorter than the time scale for agonist binding, as shown by
chemical kinetics studies, so the simplest kinetics would be
a Markov process with three states: C; has no bound agonist
and the channel is closed, C, has bound agonist and the
channel is still closed, and O has bound agonist and the
channel is open, and transitions C}«>C,<>( . The transition
Cye>0 is visible in the experiment as a jump in electric
current through the membrane. The transition C,e>C,,
which involves the binding or dissociation of agonist, is
invisible because it does not involve a change in channel
conductance, Under these circumstances, we have the sim-
plest example of an aggregated Markov process, with aggre-
gates {C;, C,} and {O}. We would like to see if the scheme
C<C>0 is consistent with the data, and, if it is, we
would like to estimate the four transition rates in the scheme
from the data. In this particular case, it is easy to see, using
the results described in the next section, that the transition
rates can be estimated from the data, and in fact it is suffi-
cient to use the one dimensional densities for this purpose.

The model we have just described is radically oversimpli-
fied and inconsistent with experiment. One feature which is
accessible via these experiments but not via agonist binding
studies is that the one dimensional density for the channel
open “state” (actually, aggregate) is the sum of at least two
exponentials [3]. According to the next section, this demon-
strates the existence of at least two open states O, and O,.
The aggregates are now {C;, C;} and {0}, O,}. We would
like to accept or reject schemes like Cj<Ce>0,<0,,
{C1C00,, Co0,}, and CiCe0«0,<C,. The
theorems of the next section imply immediately that the one
dimensional densities contain all the information available if
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any of these schemes is correct, that the third scheme, which
contains a cycle, is not identifiable, and that any of these
schemes can be excluded if correlation if observed between
two consecutive durations of channel opening, which it is
[4,5].

3. Results

We first introduce some notation, P(z) will denote the
transition matrix of the Markov process. We will assume
throughout that the process is in equilibrium. As is standard,
we let

_lim P()—!
=0 ¢

Q

, where [ is the identity matrix.

The aggregates will be indexed by lower case Greek letiers;
n,, is the number of states in aggregate o.. We order the states
so that states in the same aggregate are contiguous, and we
partition the matrix @ into sub-matrices Q5. We will as-
sume throughout that the submatrices @, are diagonaliz-
able, which holds if the law of detailed balance is valid for
the system.

Supposing that the process enters aggregate o at time
t=0, we denote the probability density of the length of time
T spent in that aggregate before leaving by f,(¢). It is shown
in [6] and [1] that

fa(t) =18 Quntqa

where qa=EB*uQmB“B!uﬁ is a column vector of ng ones, and
T, s @ row vector giving the probabilities that aggregate o
is entered via each of its states.

Under the assumption that Q, is diagonalizable this one
dimensional density can be re-expressed as:

nl’l
fu(t)mz ale™Mt |

i=1

An implication of this result is that a lower bound on »n,
can be obtained by counting the number of exponential
components. This result has been widely used in channel
gating studies by fitting experimental results to sums of
exponentials and judging how many exponentials to include
by a chi-squared statistic.

Two dimensional densities can also be used to obtain
information about the Markov process. It can be shown that -
the density of spending a length of time s in aggregate o and
then a length of time ¢ in aggregate B is

Ry My

fuB(S,t)=Z 2 alye NN
=1/=1

(Here we use i and j as indices, not powers.) It is noteworthy



that the same exponential parameters occur in both the one
and two dimensional densities. This might be used to judge
the plausibility of an underlying Markov process model.

The matrix of linear coefficients with ij entry ady yields
information about how the aggregates are interconnected:
Theorem A. [7] Let Ayg=[ad] be the matrix of coefficients
of a two dimensional density above. Then the rank of A,g is
less than or equal to the rank of Quz=p.p, say, and A
depends on at most p,p(n,+ng—p.p) parameters. The rank
of Qg is less than or equal to the smaller of: the number of
states in o which are linked directly to states in B, and the
number of states in 3 which are linked directly to states in
o. It may be possible to empirically obtain a lower bound on
the complexity of interconnection by fitting two dimen-
sional densities and using chi-square tests. We hope to im-
plement and test such a procedure in the future.

Higher dimensional densities can be considered also. The
following theorem shows that under certain conditions no
more information about the process can be obtained from
these densities, however.

Theorem B. [7] If, for each aggregate o, the eigenvalues

M, are distinet and of #0 for all i, the higher dimensional
densities fy, . o (Y, . . . .t), r>1 are completely deter-
mined by the two-dimensional densities.

Thus, in principle, all the available information about the
underlying process can be extracted from the two dimen-
sional densities if the hypotheses of the theorem are satis-
fied. By counting the number of independent parameters
involved in the two dimensional densities, we have the
following theorem:

Theorem C. [7] Under the assumptions of Theorem B, the
finite dimensional distributions depend on at most Q%B
Pap(fotng—p,p) parameters.

Thus for example, if there are two aggregates, there is
information on at most 2p(n,~+ng—p) parameters. If a
model depends on more than this many parameters, its
parameters are not uniquely identifiable.

Theorem A above suggests one way to study the complex-
ity of interconnection between two aggregates. Labarca et.
al [5] have also used certain correlation functions for this
purpose. For a particular aggregate o, say, the sequence of
dwell times in that aggregate, T,75,... is a stationary proc-
ess, and it can be shown that the covariance function of that
process is of the form given in the following theorem:
Theorem D, [1] The covariance function is of the form

M-—1
Tufk)= 2 e

i=1

where 0<k;<I and k+0 and where M is the rank of the
matrix Q, - which is composed of the off-diagonal blocks
corresponding to aggregate o in the matrix Q. If M=1,
T'(k) =0 for k+0.
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The rank of @,, - is less than or equal to the smaller of: the
number of states in alpha which are linked directly to states
in any other aggregate, and the number of states in other
aggregates which are linked directly to states in a.

Correlation functions can thus be used to obtain informa-
tion similar to that in the two dimensional densities as in
Theorem A. In the case that there are more than two aggre-
gates, the two dimensional densities contain finer informa-
tion, however, since a lower bound on the rank of each of
the matrices 0,5 which constitute O, can be obtained.

It is interesting that the covariance function of Theorem
D is of the form of the covariance function of a moving
average—autoregressive process, although the stationary
process is distinctly non-Gaussian. It may well be that tech-
niques developed for order estimation in the time series
literature can be used to estimate M . Labarca et al. [3] were
primarily interested in testing whether M was greater than 1,
which is relatively simple since the large sample distribution
of the empirical correlation coefficients in the case M =1
can be used,

4. Further Considerations

We believe that although the results summarized in the
previous section are useful, there are still many open and
interesting questions.

We have developed some necessary conditions for identi-
fiability which can sometimes be used to conclude that hy-
pothetical models are unidentifiable. It would be useful to
have checkable sufficient conditions as well.

Our analysis applies to stationary Markov processes. The
nonstationary case is of both theoretical and practical inter-
est, and we hope to consider that situation in the future.
Records from the sodium channel are typically nonstation-
ary because of the presence of an absorbing inactivated
state.

We have only begun to explore practical consequences of
our results for the analysis of experimental data [3]. It is
tempting to consider estimating the two dimensional distri-
butions and basing further analysis on them. Horn and
Lange [8] have proposed likelihood analysis of sample paths
and Horn and Vandenburg [9] have applied these techniques
to data from the sodivm channel. Advantages of their ap-
proach are that it is applicable to nonstationary data and
multi-channel data. The likelihood method is computation-
ally intensive, however; Horn uses an array processor on a
VAX 11/730 and reports that days of computer time are
necessary. An analysis based on the two dimensional distri-
butions would be much faster; it is not clear what loss of
statistical efficiency would be incurred.

Finally, it would be desirable to develop more data-
analytic and model-free methods for analyzing experimental
records to give qualitative insights that might snggest phys-



ical mechanisms. Labarca et al. [3] have used box-plots to
advantage in analyzing data from the chloride channel.
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