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DISCUSSION
of the Weiss-Shinueli paper,
Fourier Representations of Pdf's
Arising in Crystallography

E. Prince

Institute for Materials Science and Engineering
National Bureau of Standards

This interesting paper by Drs. Weiss and Shmueli
represents a substantially exact solution of a problem
that has concerned crystallographers for more than 35
years, the analysis in terms of atomic structure of x-ray
diffraction data. (Similar information can be obtained
from the diffraction of electrons and neutrons, but, for
reasons that are both experimental and theoretical, this
information is mainly used to supplement that obtained
from x-ray diffraction, which remains the basic tool of
the structural crystallographer.) The observed intensity
in x-ray diffraction is given by

I=SL IF(h)

where S is a scale factor, L is a geometrical factor, and
F(h), commonly called the structure factor, is the Fou-

ier transform of the electron density in a crystal. It may
be written in the form

F(h)=Jfp(r)exp(277ih r)dr.

The density function, p(r), in a crystal is periodic in
three dimensions, so that it can be represented as a con-
volution of a function consisting of 8 functions located
at the nodes of a space lattice and a density defined in a
small region known as a unit cell. Because of the period-
icity the Fourier transform has appreciable values only
at the nodes of a lattice in transform space, called by
crystallographers the reciprocal lattice. Because it is a
physical quantity, p(r) is non-negative, and, further-
more, because a crystal is composed of atoms, it can be
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represented as a sum of functions that are, at least to a
good approximation, spherically symmetric about a fi-
nite set of nuclear positions. If we designate by /; the
Fourier transforms of these atomic functions, the Fou-
rier transform of the crystal can be written

F(h)= fI jrexp(27rih-rj),

which is the conventional structure factor formula.

If it were possible to measure the values of the struc-
ture factor throughout transform space, it would be pos-
sible to compute the inverse transform and determine
the density function, p(r), directly. However, F(h) is, in
general, a complex quantity, and, because it appears in
the intensity formula only as I F(h) 1 2, only its amplitude
can be measured, and that only within a finite region of
transform space. In the early days of structural crys-
tallography this "phase problem" was treated by using
chemical intuition to devise a trial model for which F
could be calculated and then, using the calculated
phases along with the observed amplitudes, to compute
a density map. If the crystallographer was lucky, this
map would show a sufficiently clear picture of the struc-
ture to suggest adjustments to the model, and several
iterations of the process would converge to a structure
that made chemical sense. In the days before high-speed,
digital computers these computations were done on me-
chanical desk calculators using tabulated sines and co-
sines written on strips of cardboard known, after the
two British crystallographers who introduced them, as
Beevers-Lipson strips. The process was very laborious,
and a single structure analysis could consume many
months.

In studies, beginning in the 1940s, of the structures of
boron hydrides chemical information to suggest a rea-
sonable starting model was often not available. Even if
the crystal possessed a center of symmetry, so that the
imaginary parts of the contributions to F from pairs of
atoms would cancel, thereby constraining F to have real
values, the number of possible combinations of signs in
the density summation could be enormous. It was real-
ized, however, by Harker and Kasper [1]' that many of
the sign combinations would result in violations of the
non-negativity condition on the electron density, and
they were able to derive a number of inequality condi-
tions that must be satisfied by certain combinations of F
values in order to keep the density positive. The use of
the Harker-Kasper inequalities in the solution of the
structure of decaborane, BH, 4, in 1950 by Kasper,
Lucht, and Harker [2] was the first successful applica-
tion of direct methods to the determination of a crystal
structure using diffraction data alone.

' Figures in brackets indicate literature references.

The Harker-Kasper inequalities were applicable only
to centrosymmetric crystals, with their resultant real
values of the structure factors. In view of the amount of
labor involved in the computation of a density map it
was certainly important to be able to determine whether
a crystal did in fact have a center of symmetry. In the
late 1940s this problem was attacked by Wilson and his
coworkers [3]. In the limit of a large number of identical
atoms distributed at random in the unit cell, the con-
tributions of the individual atoms to F are random walk
steps, and the central limit theorem can be invoked to
show that the distribution of F is approximately normal
with zero mean. IF 12 is then distributed as X2 with one
degree of freedom if the crystal has a center of sym-
metry and with two degrees of freedom otherwise. The
presence of other symmetry operations, such as rotation
axes or mirror planes, constrains certain subsets of the
structure factors to be real, so that statistical tests on the
observed intensities can be an aid to determining the
proper symmetry group for a crystal.

The Harker-Kasper inequalities may be viewed as a
limiting case of a more general problem, which may be
stated as follows: Given the magnitudes of a set of
structure factors and the phases of a subset of them, (It
is always possible to assign the phases of three structure
factors arbitrarily. This merely defines the origin.) what
are the probability density functions for the phases of
others? Harker and Kasper identified particular cases
where a discrete phase could be assigned with unit
probability. The more general problem was attacked by
Hauptman and Karle2 in a long series of papers, begin-
ning in the early 1950s [4], in which they have devel-
oped increasingly powerful methods for defining nar-
row ranges within which phases are likely to lie with
high probability.

Most of the statistical methods that have been devel-
oped for determining a structural model are based on
assumptions similar to those used by Wilson (1949),
namely, that the crystal was composed of a large num-
ber of nearly identical atoms located at random within
the unit cell. There is, however, another limit in which
the solution of the phase problem is well known. This is
the case (such as a simple metal) where the unit cell
contains only one atom. In this limit all structure factors
are identical in both magnitude and phase. Structure
studies of very large molecules, such as proteins, have
depended heavily on the preparation of crystals in
which the unit cell contains one heavy atom, or a few at
most, along with the very large number of atoms of
carbon, nitrogen, and oxygen. The distribution of in-

2 While this discussion was in press, the importance of the work of
Hauptman and Karle was recognized with the announcement that the

1985 Nobel Prize in Chemistry was awarded to them.
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tensities in this case cannot be similar to that in either
limiting case, but must rather represent some sort of
intermediate situation. Crystallographers have used var-
ious approximate methods to treat these real situations,
and the results are strongly dependent on the validity of
the approximations. The results given here by Weiss and
Shmueli provide an accurate solution to which the ap-
proximate methods may be compared, and for this rea-
son they are of tremendous interest to the crys-
tallographic community.
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