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A survey is given of some recent calculations of univariate and multivariate probability density functions
(pdfs) of structure factors used to interpret crystallographic data. We have found that in the presence of
sufficient atomic heterogeneity the frequently used approximations derived from the central limit theorem in the
form of Edgeworth or Gram-Charlier series can be quite unreliable, and in these cases the more exact, but
lengthier, Founrer caiculations must be made.
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Few scientific disciplines depend so heavily on tech-
niques based on the central limit theorem and associated
expansions in orthogonal polynomials as does crys-
tallography. Ever since the pioneering work of Wilson
[1,2 ],' and Karle and Hauptman [3-5], the central limit
theorem has played a vital role in translating crys-
tallographic scattering data into structural information
and, indeed, it is built into many computer routines for
this purpose. As we will show, when the central limit
theorem is applied to data from unit cells with a consid-
erable variation in the atomic weights of the constituent
atoms it can lead to serious qualitative errors. That this
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is true is well known to crystallographers who have
made heavy use of Edgeworth and related expansions to
correct zeroth order approximations based on the cen-
tral limit theorem [5,61. It is not generally appreciated,
however, that serious errors can persist even with these
correction terms, provided that atomic heterogeneity is
sufficiently great. This suggests the value that may be
attached to exact results when these are available and
are readily computed. This paper reports on recent ef-
forts we and several collaborators 17-11] have made in
this direction.

Two general classes of probabilistic methods are used
to deduce structural information from radiation in-
tensity diffracted from crystals, the so-called intensity
statistics and direct methods of phase determination. In
order to make this exposition self-contained, we will
sketch how such information can be derived from data
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on intensities in a particularly simple case, and refer the
interested reader to two monographs that give detailed
accounts of these subjects in more general cases [12,13].
The arrangement of atoms in a unit cell of a crystal is
most often restricted by the space group to which the
crystal belongs [14], and in the general case, only the
arrangement within the asymmetric part of the cell
needs to be determined. The intensity of the diffracted
radiation can be represented in terms of structure factors
F(h), where the vector h and its components (h,k,l), the
orders of diffraction, specify the geometric relation be-
tween incident and scattered beams and their relative
orientation to the basis vectors of the lattice of the dif-
fracting crystal [14]. The structure factors are Fourier
coefficients of the (periodic) density function of the scat-
tering matter, and both their magnitude and phase are
required in order to reconstruct the density-i.e., the
actual atomic arrangement. Thus, F(h) is in general a
complex quantity, which we write as
F(h) =A (h) + iB (h). The function F(h) can be expressed
as a sum of contributions from individual atoms in the
unit cell as

F(h)= =Xfj exp(27rihjrj)= Yif oexpOi)

intensity statistics alone. A centrosymmetric unit cell is
one in which, for every atom located at rp, there is an
identical one at -rp Consequently if we write
F=A +iB where

A=X3fjcosO, B=XfsinOQ (2)

it follows that B sO by symmetry in the presence of
centrosymmetry. When the unit cell is
noncentrosymmetric B is not necessarily equal to 0.
Hence the value of F can be represented as a one-
dimensional random walk in P1I and by a two-
dimensional random walk in P 1. In what follows we will
use the physics notation that " < > " denotes the average
of the variable contained in brackets. It will also prove
convenient to work with the normalized structure fac-
tor E=F/<1F2'>l which, since <F>=0, has the
property that < I Et I > = 1. Wilson's argument uses the
central limit theorem to deduce the pdf of scattered
intensities. In P 1, for which B 9O, the form of the pdf of
E that follows from the central limit theorem is

p(IE I)=(2/1r)l exp(-E2 /2).
(1)

where rj is the location of atom j, the fj are so-called
scattering or form factors which can be approximated,
in the normalized-structure-factor representation (see
below), by the atomic numbers of the corresponding
atoms, and O1 =27rh r1 . The space of h is surveyed by
varying the orientation of the crystal with respect to the
incident beam.

Since F(h) is a complex quantity, it can be represented
as a vector in a plane which is the sum of n vectors, the
j'th being fj exp (iQOj). The fundamental difficulty faced
by crystallographers is that only the magnitude IFI is
measurable (although some recent work may change
this situation [15]), and the phase of F(h) must be in-
ferred indirectly. To do so, one can establish a corre-
spondence between the vector F and a random walk
first studied by Pearson [16]. Using theorem of Weyl
[17], one can show that if the components of r are ratio-
nally independent, i.e., there exists no vector of integers
m such that m-r=integer, then the set of angles, {Oj},
can be regarded as consisting of independent random
variables, each of which is uniformly distributed over
the interval (0,1)[17]. Thus the properties of theF(h) can
be determined using probabilistic methods, as was first
pointed out by Wilson [1,2].

For a typical and important case in which proba-
bilistic techniques allow one to derive structural infor-
mation, consider how one can distinguish between cen-
trosymmetric and noncentrosymmetric (space groups
PI and PI, respectively) unit cells on the basis of

(3)

The corresponding pdf for the two dimensional case
for unit cells without a crystallographic center of sym-
metry is

p(IE I)=2IE Iexp(- IE 2). (4)

The qualitative difference between eqs (3) and (4) thus
allows the experimental distinction to be drawn purely
on a comparison of intensity data with the two forms for
the pdf.

Notice, however, that the use of the central limit the-
orem presupposes the validity of certain assumptions,
the major one of which is the presence of a large number
of atoms in the unit cell and the second of which is that
the fj appearing in eq (1) should not exhibit too great a
heterogeneity. The first of these assumptions holds for
most crystalline materials of interest, but the second
may be violated particularly when there are a small
number of atoms that are considerably heavier than the
majority of atoms comprising the molecule. When this is
the case it is customary to replace, e.g., eq (3) by the
Edgeworth series

p(JE 1 )=(2/7r)2 exp(-E'/2)f 1 + MaœH,( E 1\/-2)1 (5)

where the n 'th coefficient, a. is expressible as a linear
combination of the moments of A in eq (2) and H,(x) is
the n 'th Hermite polynomial. These are readily calcu-
lated for the simpler space groups [18], and all space-
group results are available for fourth, sixth, and eighth
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moments(19,20j. Furthermore, the Edgeworth expan-
sion may also not be too useful in the presence of ex-
treme heterogeneity. This is illustrated in figure 1 in

which the asymmetric unit of a cell in Pi consists of 14
carbon atoms and one uranium atom, with a ratio offs
approximatelv equal to 15Q Wiith 0 or 2 nacrments the
Edgeworth series fails to reproduce the maximum and
the 4 and 8 moment approximation locates the maximum
quite far from its actual position. It is therefore desirable
to have an exact easily computable representation for
the pdf which is robust with respect to changes in
atomic heterogeneity.

Just such a representation was first suggested by
Barakat in a study of the freely jointed chain as a model
for polymer configurations [21] and of laser speckle [22].
Let us write gj =f /(ZJ;'2) so that

where

a, ==f g(A)cos(rT•) oA±=r %(A (T

cClr (9)

where C(ow) is the characteristic function generated by
g(A). The Fourier series in eq (8) corresponds to a sam-
pling theorem [23] for pdrs with a compact support.
When the unit cell is noncentrosymmetric so that B =O

in general, it is more convenient to expand the pdf of

IE I =(A2+B1)i in a Fourier-Bessel function series

(10)p(lEE mom . Dfu(yjAEJIS)

E =igj cxpirO1)=A +zB (6)

and let us set

where the yj are successive roots of Jc(y>=O and the
coefficients, DX, are

Dj = C(y/S )/I()

so that -5S <A(5S. As an example we consider the
case of a centrosymmetric unit cell for which B = 0. The
pdf of A, g(A), has the property that it can differ from
zero only in the interval S2>A2 . Within this interval we
will expand g(A) in a Fourier series:

g()=_ t{t+2- a, cos75r)} (N

C-Mc

again written in terms of the characteristic function.
Two questions that require an answer relate to the

advantage of representations such as those in eqs (8) or
- 10) and the feasibility of numerical evaluation of the
series. In the absence of atomic heterogeneity, or when
there Ls a very large number of atoms in a unit cell, the
central limit results are perfectly adequate for crys-
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atoms and a single uranium atom (atomic weLght ratio [i 2:I) in the asymmetric unit, For convenience Am, has been set equal to 1L Note

that the pdf is symmetric around A =0. The approximations are a Gaussian (---) and the Gaussian corrected by two moments ( --. ). (hJ

Approximations to the same pdf as in figure la by an Edgeworth series using 4 moments (---) and s moments (.- -.).
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tallographic applications. However, when there are
fewer than about 40 atoms in the unit cell combined with
one or two outstandingly heavy atoms, one has to con-
volve the Gaussian with the appropriate pdf for the
heavy atoms [12]. In principle, using the series of eqs (8)
and (10) finesses this difficulty, provided that the con-
vergence properties are not overwhelming. In practice,
in the case of intensity statistics we have found no prob-
lem in evaluating the Fourier or Fourier-Bessel function
series, requiring no more than about 40 terms for the
most extreme amounts of heterogeneity, and many
fewer terms in the absence of heterogeneity. The evalu-
ation of the analogous series for direct methods can
present much tougher numerical problems, as we will
see. Finally, a problem not so far discussed is the ease
with which expressions for the characteristic function
can be calculated. We have found that it is not too
difficult to evaluate the characteristic function for all
but a handful of space groups whose structure factor is
found in the International Tables 124]. As an example, let
us write the structure factor for PI as

,'2
A =2 1 gIgcoso,

where the g1 are known and the Oj are uniformly distrib-
uted in (0,27r). The characteristic function is

e2
C(Q)=(exp(2iei I cos;6)k

(13)

I/2
==1

(12)

Again the numerical problems associated with this rep-
resentation were not severe and allowed us to generalize
the theory first presented by Rogers and Wilson for the
equal-atom case [9,25]. It is possible though alge-
braically messy to generate the orthogonal polynomials
corresponding 10 the Rogers-Wilson pdf, but the Fou-
rier series representation is relatively straightforward.
One can also analyze partially bicentric structures using
the same techniques [10.

Our present development of Fourier representations
of crystallographic pdf's has led us into the examination
of direct methods in which one is interested in the joint
pdf of several, usually correlated, structure factors. One
of the simplest examples of these is the so-called X,
relationship [13,26], in which one uses the joint pdf of
E(h) and E(2h) to determine the probability that the
phase of E(2h) is positive given a knowl-edge of E hl{
and ?E(2h) . For simplicity we consider structures in
PI letting E(h)=E and E(2h)=G. Then

p (E, G) = 14SL2 , Y 5J. "rF-
(17)

cosC yE-cos(o -)

where

C'2C(&)q,ro2)= (expi idE+z i o-)IC = rLIC, (0 bc'J

in which since
where

(18)

./I
G=2X gj cos(2OJ)

C9(x)= exp(2iag 2 cosO))
(14)

exp(2iog1 cos9)a9=J.(2wg , ).

Other examples merely test one's ability to evaluate inte-
grals. For example, we have recently examined the Foi-
rier representation of the pdf of the intensity for a unit
cell in PI in which there is an auxiliary or non-
crystallographic center of symmetry located at d, so that
a single atom located at rj generates one at -r, and
-rjt2d [9,10]. In this case one can show that

.4
A(h)=41YIg1 cos(21rh.d)cos[27rh.(r1 -d)]

and the corresponding characteristic function is

c b,. 1 I, (1 J0 (4cg, cos6j)dO.

CJ(o .co2)=9- f exp[2igj{co dcos6-+&-cos2O)J d

2 +ij(19)

where R. and 1, can be expanded in terms of Besse]
functions as

R1 ( 1i,&)) =Jt(2g 1 d)J0(2gj2) + 2 I

(- 1) m J4 (2gOjW )J 2 m(2gjwt2)

(15)
(20)

J(wi,oi2)= 2 2 (-1) "J+ 2(2gJ03i)J2.+1(2g.e)2 )*

From eq (18) it follows that C( :.o)R(re),,0.)
16 +I(o.,o°) whereR and Ican be cocmputed from theR 1

(16) and If. The probability that G is positive given E can
now be written exactly as
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p+(2hlh)=Rl +:) (21)

where

O X 5 tc VI os y 77E )sEniyG5 )sa§ =i1 --

r=% {1 +2LAR(5'1 )0cos( + Cos (%5)]
(22)

4 2 ( t)cos(PTE)cos(fiG)l .
The exact eq (21) should be compared to the much

simpler approximation furnished by the use of the cen-
tral limit theorem [26],

p+(2hlh) [ I1+tanhQt2 2 { GRE 2_1-

where
c./2

0. = 2= g' a'm=1 I7I

(23)
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Figure 2-A graph of the exact expression for p + (2h I h), the proba-
bility that the phase of E(2h) is positive, as a function of E((+ + +)
compared to the approximation provided by eq (23) (the solid
curve) for a molecule with the assumed composition C,0 Kr, in the

(24) asymmetric unit, The magnitude, I E(2h) 1, was chosen equal to 1.75
for this example.

Although eq (23) and generalizations of it are much used
in the crystallographic literature, there has been no real
test of its accuracy in the presence of heterogeneity,
since until now there has been no attempt to calculate
the exact pdf. A comparison of the result of evaluating
eq (21) with that obtained from eq (23) for an assumed
composition C3,Kr 2 in the half unit of a Pl structure is
shown in figure 2 for G = 1.75 [11]. A substantial differ-
ence between the two predictions is immediately evi-
dent. Further evidence of the inaccuracy of eq (23) in
the presence of atomic heterogeneity is provided in fig-
ure 3 where we examine the effects of the variation in
atomic weights for a unit cell in which the half unit is
C,0X2, where X varies. In the absence of heterogeneity
eq (23) provides perfectly satisfactory results, but its
utility decreases considerably with an increase in the
atomic weight of the X atom.

We are presently examining the analogous properties
of the 52 relationship, in which one determines proba-
bilistic relations between phases from properties of the
joint pdf of E(h), E(k) and E(-h-k), which requires
the evaluation of higher order Fourier series by the
same basic techniques. While this investigation is very
similar both in spirit and results to those for X, discussed
in the last paragraphs, it appears to be much more diffi-
cult to evaluate the series for the pdf of the three-phase

invariant, 4P, defined in terms of the phases of the triplet
of structure factors E(h), E(k), E(-h-k), by

4> = 0(() + O(k) + +P(- h - k). (25)

To convey some notion of the difficulties we point out
that the characteristic function to be evaluated is

Cj(w)=(exp {igj(0 1A, +0,2 Bi+l4 2+C4B 2+w5 A3
+O3683% (26)

where E(h)=Ai+iB,, E(k)=A2 +iB,, E(-h-k)=
A3 +iB3,. A detailed evaluation of C,(w) results in the
expression

6 i 6
R1(w)= 11 Jo(f5k)+ 2 Y (- 1)" II J4m050k)

6

n,=O k=I

C(w)=R(w)+-i(w)=l Cj(w)=Tl (R1+il) . (27)
I

The resulting expression for the pdf of 4' is in terms of
sevenfold Fourier series, each coefficient of which is an
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FIgure 3-This figure shows the effects of heterogeneity nap +(2h I by
as a function of the ratio of atomic numbers, p=ZJZ, for a mole-
cule with the composition CtX 2. The + + +'s are the exact results
and the solid lines are the approximation of eq (23). The values
chosen are (a) I E)I=IE(2h)l=1.5, 0b) IE(h)=IE(2h)I=2.0,
(c) IEOh)= IE(2h) 1 =2.25. Note that the approximation is always
on the conservative side, It is not known whether this is always true.

infiite series of the form shown in the last equation.
Whether the resulting calculations can be made in a
reasonable amount of time remains to be seen, but the
difficulties to be overcome are exemplified by this prob-
lem.

A final word is in order about the philosophy behind
the series of projects that we have undertaken. It would
hardly be sensible to want to eliminate methods based on
the central limit theorem that have served crys-
tallographers so well in the past. However, it is useful to
establish the limitations of these methods by having
more exact representations available. Indeed we have
explored such limitations in the case of tests based on the

51 relationship as indicated earlier and are presently
considering more complicated crystallographic tech-
niques. Furthermore, as the processing of crys-
tallographic data becomes more and more automated it
becomes increasingly attractive to have exact, rather
than approximate formulae in the computer. We hope,
in the coming years, to explore the feasibility of doing
this for a variety of techniques, as well as contributing to
the development of further ones based on the avail-
ability of exact representations.
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DISCUSSION
of the Weiss-Shinueli paper,
Fourier Representations of Pdf's
Arising in Crystallography

E. Prince

Institute for Materials Science and Engineering
National Bureau of Standards

This interesting paper by Drs. Weiss and Shmueli
represents a substantially exact solution of a problem
that has concerned crystallographers for more than 35
years, the analysis in terms of atomic structure of x-ray
diffraction data. (Similar information can be obtained
from the diffraction of electrons and neutrons, but, for
reasons that are both experimental and theoretical, this
information is mainly used to supplement that obtained
from x-ray diffraction, which remains the basic tool of
the structural crystallographer.) The observed intensity
in x-ray diffraction is given by

I=SL IF(h)

where S is a scale factor, L is a geometrical factor, and
F(h), commonly called the structure factor, is the Fou-

ier transform of the electron density in a crystal. It may
be written in the form

F(h)=Jfp(r)exp(277ih r)dr.

The density function, p(r), in a crystal is periodic in
three dimensions, so that it can be represented as a con-
volution of a function consisting of 8 functions located
at the nodes of a space lattice and a density defined in a
small region known as a unit cell. Because of the period-
icity the Fourier transform has appreciable values only
at the nodes of a lattice in transform space, called by
crystallographers the reciprocal lattice. Because it is a
physical quantity, p(r) is non-negative, and, further-
more, because a crystal is composed of atoms, it can be
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