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Although real polymers involve the sequential addition of monomers having fixed bond lengths, fixed bond angles
and some freedom of rotation about single bond, the properties of polymers over large length scales can be modeled
by freating the pelymer configuration as that of a random walk formed by the monomer unils. Serious complications
arise in the theoretical description of these polymers because of excluded volume constraints which prohibit different
monomers from occupying the same position in space. This polymer excluded volume problem has been modeled in
terms of a simple continucus random walk with short range repulsive interactions. The expansion of polymer propertics
in this repulsive interaction can readily be shown by dimensional analysis to involve an expansion in a large parameter,
in the limit of leng polymers. The rencrmalization group methed is utilized as a syslematic means for resuming this
divergent perturbation expansion. The theory proceeds by analytically continuing the treatment to continuous range of
spatial dimensionalities to expose and regularize the singularities in the analytically continued theory. The renormaliza-
tion group appreach is described from a heuristic physical standpoint and extensive comparisons are provided (o show
how it quantitatively reproduces vast amounts of dilute solution polymer properties with no adjustable parameters.
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The study of the configuration statistics of polymers in
dilute solutions presents problems of interest to analytical
chemists, chemical physicists, engineers and applied mathe-
maticians. Roughly half of the American chemical industry
is involved with polymers, and analytical chemists are con-
cerned with the characterization of their properties. Dilule
solution physical properties are used to determine the
molecular weight and general shape and architecture of the
polymer, Hence, the availability of a quantitative theoretical
description of the dependence of dilute solution physical
properties on solvent characteristics, molecular weight,
temparature, and branching is an important aid in character-
izing and understanding the properties of polymers.
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The interest of polymers to applied mathematicians lies in
their mathematical description in terms of interacting ran-
dom walks.[ 1] This mathematical representation of a poly-
mer chain can be motivated by visualizing the polymer as a
sequence of bonded monomer units. Each new monomer,
added to the chain, is attached by g chemical bond of fixed
length, generally having fixed bond angles with respect to
the previous bond. However, there is congiderable freedom
of rotation about the individual bonds thereby generating a
large number of configurations for this idealized random
walk polymer model [2]. The individual bond angle rota-
tions represent random variables describing the chain con-
figurations, so that when the number of these random vari-
ables, corresponding to the possible bond-vecters, gets large
enough, the central limit theorem requires that the probabil-
ity distribution for a vector between the ends of the chain
must tend to a limiting Gaussian [1,2]. The random walk

IFigures in brackets indicate [iierature references.
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configurations of an idealized polymer permit two different
segments of the polymer to cccupy the same position in
space, something which is not possible for real polymer
molecules. Hence, real polymers are described in terms of
interacting random walks with an excluded volume interac-
ticn prohibiting the multiple occupancy of monomers at the
same place in space.

Experimental methods of polymer characterization in-
clude light scattering, osmometry, sedimentation, viscome-
try. etc. When the polymer concentration ¢ approaches zero;
osmometry provides the determination of the molecular
weight M of the polymer, while small angle light scattering
yields the polymers’ radius of gyration Rg. The limiting
slope of the light scattering intensity as a function of concen-
tration in the zero angle Iimit provides the polymer second
virial coefficient A, which measures the effective volume
that a polymer excludes to other chains. The translational
diffusion coefficient D is wrinen for c—0 using Stokes’ and
Einstein’s laws in terms of hydrodynamic radius Ry by
D =k176 mmyRy where T is the absolute temperature, & is
Baltzmann's constant and 1y is the solvent viscosity. If m
designates the viscosity of the polymer solution, the intrin-
sic viscosity [n}=1%,(n—me¥emy gives another measure of
the volume occupied by a single polymer chain.

All of these large scale observables for polymers provide
different measures of the overall size and shape of the poly-
mer. These properties are often found to vary with the poly-
mer molecular weight in the form of a power law KM*
where the proportionality factors K and the exponents a
depend on the polymer, solvent, and temperature as well
being slowly varying functions of M. It is the goal of a
comprehensive quantitative theory of polymers [3] in dilute
solution to explain the wvariation of X and @ with the
polymer-solvent system and the temperature over the full
experimentaily accessible range.

Because large scale polymer properties like Rg, A4, D and
(M) are measures of large scale or long wave length polymer
properties, the theoratical description of these polymer
properties does not require a detailed treatment of the short
range microscopic details of the polyrer such as the specific
bond lengths, bond angles and hindered rotation potentials.
Rather, it suffices to employ apparently simple models to
capture the essential large length scale characteristics of
long chain molecules [3-7].

The above noted popular random flight model of poly-
mers treats the chain as having a set of effective monomer
units sequentially number 0, 1, ..., at the spatial positions
g, I'y, ..., I,,. Because the properties of interest involve
large distance scales and tmplicitly large n, the central limit
theorem allows us to take the individual bonds to have an
effective Gaussian length distribution [1,2] with an rms
value of /. The excluded volume interaction is modeled by
introducing a short range repulsive contribution to the en-
ergy when a pair of segments occupies the same position in
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space, This model then describes the dimensionless (free)
energy associated with a chain configuration {r;} of the
Form [1-4]

H

HIKT =(d/20%) Z ;e

=
M
+@y2) Y, 8- (1)
i£5=0

where By is the volume exciuded by an effective segment
due to the presence of another. The spatial dimeznsionality is
d, and it is convenient to consider the description of poly-
mers as a function of the dimensionality of space where
normal solutions involve d=3 while the case d=2 is asscci-
ated with polymers at a surface or an interface.

The probability distribution function for the chain config-
uration {r,} is governed by the Boltzmann factor exp(—H/
£T). Each of the monomer units in {1) describes the center
of mass position of a collection of several actual monomers
in the real polymer. This coarse graining is permissible
because we are interested in long wavelength polymer prop-
erties. The first term on the right hand side in (1), therefore,
represents the entropy of the polymer chain configuration
agsociated with the many internal degrees of freedom in
these coarse grain effective units [1-3]. Retention of only
this term vields the simple Gaussian chain model of poly-
mers at the theta temperature, a simple model for which the
long wavelength polymer properties are easily evaluated.
The entropic or elastic energy accounts in the model for the
connectivity of the polymer chain.

The second term on the right hand side of (1} contains a
pairwise sum over all the effective monomers and thereby
converts the simple Gaussian chain mode! into a true many-
body problem. The complexity of the treatment of excluded
volume is readily secen by expanding exp(—H/kT} of (1) in
powers of By and evaluating polymer properties as a formal
power series in ;. This excluded volume perturbation
theory is readily shown [2-7] to be an expansion in the
dimensionless quantity Bof ~9n*? with e=4—d. Hence, for
high molecular weight polymers where # is large, the expan-
sion is in a large parameter as long as By "9<n™%? and d<4.
Consequently, the perturbation theory alone is of little use
except very near the theta temperature where the empirical
{3, vanishes. The power law dependence of polymer proper-
ties on the molecular weight also indicates the difficulty of
using these perturbation expansions in powers of Bq since it
is hard to see how a few terms in such an expansion, in a
large parameter, can simply be resumed in order to provide
the empirically observed nonaralytic power law dependence
with fractional and often continuously varying exponents as
a function of temperature.



Renormalization group methods are designed specifically
to effect the resummation of such asymptotic expansions in
a large expansion parameter [3-10]. The theorics work by
analytically continuing the mathematical description to con-
tinucus dimensionality d in order to exhibit the singularities
of the perturbation theory as a function of dimensionality
[4-10]. As in analytic function theory, the singularities gov-
ern the dominant properties of the functional dependence on
excluded volume and chain length and thereby enable re-
summation of the asymptotic perturbation expansion.

The process begins by noting that the perturbation expan-
sion becomes a controllable one by expanding in powers of
Bo and of €. This e expansion method yields for instance

n¥?=1+(e/2)In(n)+(XB)In*(n)+..., 2)
so that when # is large, a small € can be chosen such that
eln(n) is a small expansion parameter, This procedure
makes the perturbation expansion a mathematically well
behaved method of computation, but it remains to show how
perturbation expansions can be usefully applied to real d=3
or d=2 polymers. The renormalization group method ac-
complishes the analytic continuation to d=3 by focusing on
the nature of the singularities of the perturbation expansion
in powers of excluded volume for large scale polymer prop-
erties. The condition that the observable properties of poly-
mers mathematically exist for d=4 leads to a resummation
approach which is embodied in the renormalization group
equation that summarizes the general analytic dependence
of large length scale polymer properties on the molecular
weight and excluded volume interaction.

This renormalization group equation has implicit within it
a coarse graining length scale L that plays several important
roles. First, L is a phenomenological parameter which is
used to average out short length scale properties of the
theoretical model which are irr¢levant in the description of
large length scale polymer properties. Comparison with ex-
periment shows L to characterize a correlation range along
the chain for excluded volume interactions [4]. Roughly
speaking, a portion of the chain of length L interacts with the
remainder of the polymer as if this portion were effectively
a hard sphere. When the excluded volume is weak, L is
comparable to the size of the polymer, so there is effectively
no excluded volume interaction. At the other extreme of
strong excluded volume, L approaches an asymptotic limit
{111 which can be taken as a useful empirical definition of
the step length /.

The theoretical analysis uses a continuum limit of the
energy {1) in which the Gaussian chain model alone would
lead to Wiener integrals [1] and where the excluded volume
term must be appended with a short distance cut off to
remove counting of self-excluded volume interactions [3-9].
The double perturbaticn expansions in By and € are fairly
straightforward albeit extremely tedious for the polymer
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properties of interest. The renormalized theory involves
polymer properties on a coarse grain length scale L in a
region far from that for which perturbation expansions are
valid. The physical properties are described in terms of the
renormalized excluded volume B and renormalized chain
lengths N replacing B and the chain length »/ of the pertur-
bation theory which is strictly valid only for 3y very small.
The details of the renormalization group method are too
lengthy [3-10] to discuss here, so we turn to a description of
some of the major results of the theory.

For instance, consider properties ( for linear, ring, star
and comb polymers like the radius of gyration or the hydro-
dynamic radius, etc., that naively scale as the pth power of
the polymer radius. The Gaussian chain value for this prop-
erty is written as Qo=Gj <Sz>gf2 with <§2>,=NI/6 the
Gaussian chain square radius of gyration R3. The property
¢y i1s assumed to be kmown since it is relatively easily
evaluated using the Gaussian chain model. An approxima-
tion to the second order renormalization group calculation in
d=3 yields [7,11]

o-|

where v=0.592 (o order € and ag is a pure number that
depends only on the property @ and emerges only from a
first order calculation in e. The variable z is an empirical
parameter which is often observed to depend on molecular
weight and temperature in the form z =AM "2[1 —(8/T)] with
A a polymer and solvent dependent quantity and 0 the theta
temperature where A, vanishes.

Perturbation expansions in excluded volume are effec-
tively expansions in a parameter like z. Expansion of (3) in
z shows the expansion coefficients to be growing rapidly
with the power of z. Hence, eq (3) represents the results of
a rather sophisticated resummation of the perturbation ex-
pansion in powers of z based in fact on only the first two
terms in the series and an analysis of the singularities of this
perturbation expansion as a function of the dimensionality
of space. A slightly different form of the prediction emerges
for quantities like second virial coefficient which vanish at
the theta point, and the reader is referred to our previous
papers for these simple analytic formulas {7,11].

Figure | provides an example of the comparison between
theory and experiment [12] for the interpenetration function
((Z) defined by

Qo (1 + 322738 [1 + ap(322/3)(1 + 322/3)], 2<0.75

3
Qo(6.441Z) 2= + a4), 70.75 3)

Ay=(4mr<S¥>)YUN, 12MP0(Z) 4)

as a function of the radius of gyration expansion factor
defined by
=<S§t><8?> . 5)

2
(IS_a



0.3 ¥azes = 2

0.2
Vv
Ol A -
0_ —_
| | } l
1 2 5 4
asz

Figure 1—Comparison of theories [2] and experiment for variation of
with 0‘;2 [3]. The figure is reproduced from Yamakawa [2] with the
parameter free RG predictions added. Data points from Norisuye et al.
[14] are O for polychloroprene (PC) in CCly at 25°C, O for PC in
n-butyl acetate at 25°C, and O for PC in transdecalin at various temper-
atures. Similar data [15] and agreement with theory is available for
polyisobutylene, polystryrene and poly-p-methylstyrene in various sol-
vents. The curves (1)-(3) represent older theories as reviewed by Ya-
makawa [2]).

The renormalization group prediction is given by the solid
line marked RG, whereas the other lines represent older
theories [2] which lack systematic mathematical guidance
and therefore which are unable to predict the physically
obvious fact that & must lead (o a universal value in the limit
of large chain expansion or equivalently large excluded vol-
ume interaction z.

An important feature of figure 1 is that the theoretical
curve is obtained with absolutely no adjustable parameters ,
and that it is also derived using purely analytical methods.
Hence, its derivation is in the true spirit of analytical chem-
istry, using the methods of mathematical analysis to pro-
vide quantitative descriptions of the properties of chemical
systems. This type of work merges the disciplines of analyt-
ical chemistry and applied mathematics and is therefore at
the heart of the goals of chemometrics.

Renormalization group calculations have been performed
for a wide range of polymer properties [12] in dilute sclu-
tions for linear, ring, star, and block copolymers. The agree-
ment between theory and experiment is generally as good or

better than that presented in figure 1. The situation is some-
what more complicated for the dynamical properties Ry; and
[m] where our theoretical calculations show that the effec-
tive exponents a in good solvents often depend on an addi-
tional parameter, called the draining parameter [13]. We
believe that the success of this renormalization group de-
scription of the excluded volume dependence of dilute solu-
tion properties will enable us to describe polymer properties
in a variety of mathematically more complicated and physi-
cally very interesting situations such as the properties of
polymers in interaction with a surface or interface, the prop-
erties of polyelectrolyte solutions where polymers have a
distribution of charges and there are small counter ions in
solution, and the properties of polymer mixtures in solution.

[ am grateful to Jack Douglas for comments on the
manuscript.
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