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Censideration of certain aspects of scientific method leads to discussion of recent research on the role of screening
designs in the improvement of quality. A projective rationale for the use of these designs in the circumstances of focror
sparsity is advanced. In this circumstance the possibility of identification of sparse dispersion effects as well as sparse
location eifect s considered. A new method for the analysis of fractional factorial designs s advanced.
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Humans differ from other animals most remarkably in
their ability to learn. It is clear that although throughout the
history of mankind technological learning has taken place,
althcugh until three or four hundred years ago change oc-
curred very slowly, One reason for this was that in order to
learn something - for example, how to make fire or charm-
pagne - two rare events needed to coincide: (a) an informa-
tive eventhad to eccur . and (b) a person able to draw logical
conclusion and to act on them had to be aware of that
informative event.

Passive surveiliance is a way of increasing the probability
that the rare informative event will be constructively taken
note of and is exemplified by quality charting methods.
Thus a Shewhart chart is a means to ensure that possibly
informative events are brought to the attention of those who
may be able to discover in them an “assignable cavse™ 17!
and act appropriately.
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Active intervention by experimentation aims, in addition,
to increase the probability of an informative event actually
occurring. A designed experiment conducted by a qualified
experimenter can dramatically increase the probability of
learning because it increases simultaneously the probability
of an informative event occurring and also the probability of
the event being constructively witnessed. Recently there has
been much use of experimental design in Japanese industry
particularly by Genichi Taguchi [2] and his followers. [n
off-line experimentation he has in particular emphasized the
use of highly fractionated designs and orthogonal arrays and
the minimization of variance.

In the remainder of this paper we briefly outline some
recent research on the use of such screening desigps.

1. Use of Screening Designs to
Identify “Active” Factoring

Table 1 shows in summary a highly fractionated two-level
factorial design employed as a screening design in an off-
line welding experiment performed by the National Railway
Corporation of Japan [2). In the column o the right of the
table is shown the observed tensile strength of the weld, one
of several quality characteristics measured.
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The design was chosen on (he assumption that in addition
to main effects only the two-factor interactions AC, AG,
AH. and GH were expected to be present. On that supposi-
tion, all nine main effects and the four selected two-factor
interactions can be separately estimated by appropriate or-
thogonal contrasts, the two remaining contrasts correspond-
ing to the columns labelled e, and e, measure only experi-
mental error. Below the table are shown the grand average,
the 15 effect contrasts, and the effects plotted on a dot
diagram. The effects plotted on normal probability paper
suggested that, over the ranges studied, only factors B and
C affect tensile location by amounts not readily attributed to
noise.

I this conjecture is true, then, at least appoximately, the
16 runs could be regarded as four replications of a 2° facto-
rial design in factors B and C only. However, when the
results are plotted in figure 1 so as to reflect this, inspection
suggests the existence of a dramatic effect of a different
kind—when factor C is at its plus level the spread of the data
appears much larger® than when it is at its minus level.
Thus, in addition to detecting shift in location due to B and
C, the experiment may also have detected what we will call
a dispersion effect due to C. The example raises the general
possibility of analyzing unreplicated designs for dispersion
effects as well as for the more usval location effects.

2To facilitate later discussion, we have set out the design and labelled the levels
somewhat differenity from [2].

3Data of this kind might be accounted for by the effect of onc or more variables
other than B that affected tensile strength only at the “plus level” of C {only when the
alternative material was used). Analysis of the eight runs made at the plus level of C
does not support this possibility, however.

&

2. Rationales for Using
Screening Designs

Before proceeding we need to consider the question, “In
what situations are screening designs, such as highly frac-
tionated factorials, usefyl?”

2.1. Effect Sparsity. A common industrial problem is to
find from a rather large number of factors those few that are
responsible for large effects. The idea is comparable to that
which motivates the use in quality control studies of the
“Pareto diagram.” (See, for example, [3]). The situation is
approximated by postulating that only a small proportion of
effects will be “active™ and the rest “inert™. We call this the
postulate of effect sparsity. For studying such situations,
highly fractionated designs and other orthogonal arrays
(2,4,5,6] which can screen moderately large numbers of
variables in rather few runs are of great interest. Two main
rationalizations have been suggested for the use of these
designs; both ideas rely on the postulate of effect sparsity
but in somewhat different ways.

2.2. Rationale Based on Prior Selection of Important
Interactions. It is argued (see for example [7]) that in some
circumstances physical knowledge of the process will make
only a few interactions likely and that the remainder may be
assumed negligible. For example, in the welding experi-
ment described above there were 36 possible two-factor
interactions between the nine factors, but only four were
regarded as likely, leaving 32 such interactions assumed
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negligible. The difficulty with this idea is that in many
applications the picking out of a few “likely™ interactions is
dilficult if not impossible. [ndeed the investigator might
Justiliably protest that, in the circumstance where an exper-
iment is negded to determine which first order (main) effects
are important, it is Hlogical that he be expected to guess in
advance which effects of second order (interactions) are
important.

2.3. Projective Rationale Factor Sparsity. A somewhat
different notion is that of jucror sparsity. Thus suppose that,
of the & facters considered. only o small subset of vaguely
known size d , whose identiry is, however, unknown , will be
active in providing main effects and interactions within the
subset. Arguing as in 8], a two-level design enabling us to
study such a system is a fraction of resolution R =d +1 (or
in the terminology of 6], an array of swrength &) which
produces complete fuctorials (possibly replicated) in every
one of the (4} spaces of ¢ =R — 1 dimensians. For example,
we have seen that on the assumption that only factors B and
C are important. the welding design could be regarded as
four replicates of a 22 factorial in just those two factors. But
because the design is of resolution R =3 the same would
have been true for any of the 36 cheices of two out of the
nine factors tested. Thus the design would be appropriate if
it were believed that not more than two of the factors were
likely to be “active™.

For further itlustration we consider again the 16-run or-
thogonal array of table [ and. adopting a romun subscript to
denate the resolutions of the design. we indicate in table 2
various ways in which that arcay might be used. It may he
shown thut

(a) If we associated the 15 contrast columns of the design
with 15 factors. we would generate a 2] *! design providing
two-fold replication of 2? factorials in every one of the 105
two-dimensional projections.

(b) [ we associated only columns 1.2, 4.7, 8, LI, 13,
and 14 with eight factors we would generate a 257 design
providing two-fold replication of 23 Factorials in every one
of the 36 three-dimensional projections.

fey If we associated only columns 1, 2. 4, 8. and 15 with
five factors we would generate a 230 design providing a 2
tuctorial in every one of the four-dimensional projections.

() If we associated onty columns 1, 2, 4. and % with four
{actors we would obtain the complete 24 design from which
this orthogonal array was inn fact generated.

Designs (a), (b). and {c) would thus be appropriate for
situatjons where we believed respectively that not more than
2. 3. or 4 factors would be active®. Notice that intermediate

AThe designs give partial coverage fur a larger number of Tacwors, for
example ([8] (19611 56 of the 70 Tour-dimensonal projections of the 2ff#
vield a full factorial in four variables.

Table 1. A fractional two-level design used in a welding experiment showing observed tensile strength and effects.

A: Kind of Welding Rods
B:; Period of Drying
C: Welded Material
D; Thickness
E: Angle
F: Opening
G: Currentc
H: Welding Method
J: Freheating
Tensile
Factor [} H €y G F GH AC A B AH AG J B C strength
Column humber 4] 1 2 3 4 & 7 B k] 10 11 12 13 14 15 kg/mm
1 + - - + - + + - - + + - + - - + 43.7
2 + + - - - - + + - - + + + + - - 40.2
3 + - + - - + - + - + - + + - + - 42.4
4 + + + + - - - - - - - - + t + + 44.7
5 + - - + + - - + - + + - - + + - 42.4
6 + + - - + + - - - + + - - + + 45.9
7 T - + - + - + - - + - + - - - + 42.2
kun a8 + + + + + + + + - - - - - - - - 40.9
g + - - + - + + - + - - + - + + - 42.4
10 + + - - - - + + + + - - - - + + 45.5
11 + - + - - + - + + - + - - L - + 43.6
12 + + + * - - - ~ + + + + - - - - 40.6
13 + - - + + - - + + - - + + - + a4.40
14 + + - - + - - + + - - + + - - 40.2
15 + - + - + - + - + - + - + - + - 2.5
16 + + + + - + + + + + + + + + + 46.45
Eftect 43.0 .13 -,15 -.30 -.1% ,46¢ -.03 .38 .40 ~.05 .43 .13 (13 =-.38 2,15 3.10

497




Table 2. Some alternative uses of the orthogonal array,

Columas 1 2 3 4 5 5 % 8 9 10 11 12 13 14

15-11
fal 217y

1 2R

TIN-

tay  z4

values of & could be accommodated by suitably omitting
certain columns, Thus the welding design is a 2§ arrange-
ment which can be obtained by omitting six columns from
the complete 2/i'!. Nortice finally that for intermediate de-
signs we can take advantage of both rationales by arranging,
as was done for the welding design, that particular interac-
tions are isolated.

A discussion of the iterative model building process [9]
characterized three steps in the iterative dara analysis cycle
indicated below

Mast of the present paper is concerned with model identifi-
cation - the search for a model worthy to be formally enter-
tained and fitted by an efficient procedure such as maximum
likelihood. The situation we now address concerns the anal-
ysis of fractional designs such as the welding design in the

zbove context when only a few of the factors are likely to
have effects but these may include dispersion effects as well
as location effects.

3. Dispersion Effects

We again use the design of fable 1 for illustration. There
are 16 runs from which 16 quantities—the average and 15
effect contrasts—have been calculated. Now if we were also
interested in possible dispersion effects we could also calcu-
late 15 variance ratios. For example, in column 1 we can
compute the sample variance si_ for those observations
associated with a minus sign and compare it with the sample
variance s7, for observations associated with a plus sign to
provide the ratio £;=s¢_ /s, . If this is done for the welding
data we obtain values for 1nF, given in figure 2(a) It will
be recalled that in the earlier analysis a large dispersion
effect associated with factor C {column 15) was found, but
in figure 2{n) the effect for factor C is not especially ex-
treme, instead the dispersion effect for factor D {column 1)
stands out from all the rest. This misleading indication oc-
curs because we have not so far taken account of the aliasing
of location and dispersion effects. Since 16 linearly inde-
pendent location effects have already been calculated for the
original data, calculated dispersion effects must be functions

-
3In this figure familiar normal theory significance levels are also shown. Obviously

the necessary assumptions are not satisfied in this case, but these percentages provide
1 rough indication of magnitude.

Column 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Effect D H ] G F GH AC A E AH e AG J B C
—-in Fi 2.72 - 14 - 10 .41 .37 .50 .26 .25 .23 .37 .42 .17 .13 13 .51
a
C(15)
13 * DN
] $ I 3 T ] -2 7
-1 0 1 2 1% 0.1%"°
-.03 1.01 .23 1.06 -.89 .64 —-.70 -.71 .65 —-.90 1.07 .12 1.63 -.19 2.2
b H(*Z} Ci15)
. {
,_Lj___t_n.ru 2 S o e .
-1 0 1 2 3

Figure 2—Welding experiment log dispersion effects (a) before, and (b) after elimination of location effects for B and C.
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of these. Recently [10] & general thzory of location-
dispersion aliasing has been obtained fox factorials and frac-
tional factorials at two levels. For illuszation, ia this partic-
ular examp.e it turns out tat the following identity exists for
the dispersion elfect Fy, that is the F ratio associated with
factor D and hence for column 1 of the desizn,

Fi=
- d~ R d-N A0 do- T2~ 024 cia- T
QDA FHEA N8+ TR+ 0+ T 1T HI24 13734 (L4+ 152

(1}

Now (see lable 1) 14=B8=2.15 and 15=C=3.10 are the two
largest location effects, standing out from all the others, The
extreme value of £, associated with an apparent dispersicn
effect of factor D(1; is largely accountzd for by the souarzd
sum and squared difference of the location effects B and C
which appear respectively as the last ferms in the denomina-
tor and numerator of eg (1). A natoral way to proceed is 1o
compuie variances from the residuals obtained after ¢limi-
nazing large location effects. After such eliminarton the alias
relations of eg (1) 1emain the same except that location
effects from eliminated variables drop out. That is, zeros are
substituted for eliminated variables. Varlance analysis for
the residuals after eliminating effects of B and C are shown
in figure 2(b). The dispersion effect associated with C (fac-
tor 13) is now correctly indicated as extreme. It is shown in
the paper referenced above how, more generally, under
circumstances of effect sparsity a location-dispersion model
may be correctly identified when a few effects of both kinds

are present.

4. Analysis of Unreplicated
Fractional Designs

Another impaortant problem in the analysis of unreplicated
fractional designs and other orthogonal arrays concerns the
picking out of “active” factors. A serious difficulty is that
with unreplicated fractional designs no simple estimate of
the experimental error variance against which to judge the
effects is available.

In one valuable procedure due to Cuthbert Daniel [11,12)
effects are plotted on normal probability paper. For illustra-
tion table 3 shows the calculated effects from a 2% design
used in an experiment on injection molding [13, p. 379].
These zffecs are plotad on Jorme] protabiity papzr in
Bg-re 3.

An alerrafive Bayzsiam egpreach 147 15 a5 Fo_ows: Let
1y,75,....T, be standardized® effects with

1, =¢g; if effect inzrt
T;=e,+1; if effect active

SFor three-level and miked tvo and thiee level designs for example, this analysis
is carried out after the effects are scaled so that they all have equal variances.

Table 3. Caculstad effecs from & 25 design  showing alias strucwre
assuming thres Factor znd bighser axder intaractions  veghigible, injection
molding exper.ment,

—————

Ty = =0.7 + 1 mold temp.

Ty = =0,1 + 2 moisture content
T3 = 5.5+ 3 holding pressure
Ty = -0.3 + 4 cavity thickness
Tg = =3.8 + 5 booster pressure
Tg = —0.1 +* 6 cycle time
gate size

screw speed

Tig = Ty 4= =04+ 1.4 + 2,8 + 3.5 + 5.7

Tyg = Ty,g = =06 * 1,B + 2.4 + 3.5 + 6.7

[~ N ]

1t

bn““'

»

Figure 3—Normal plot of effects. Injection molding experiment.
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Figure 4—{a) Welding experiment. Posterior probability that factor i is

active {a = 0.30, k = 10). {b) Sensitivity analysis for posterior
probabifity (a = .15 — 45, k=5 — 15).

(;2+U'$

=N (0.0, 1,—N0.0d) k2= "

Suppose the probability that an effect is active is o.

Let «,, be the event that a particular set of r of the v
factors are active, and let T, be the vector of estimated
effects corresponding to active factors of a;,. Then, [15]
with p(u)= I/or the posterior probability that T, are the
only active effects is:

ok 1y S *
P[am!T,a,klm[m} {I—(l—"k—z) T} ,

where §,,,=T(,)T,, and S=T'T. In particular the marginal
probability that an effect f is active give 7, o and £ is
proportional to

I active

A study of the fruactional factorials appearing in
[7,12.13]. suggested that « might range from 0.15-0.45
while X might range from 5 to 15. The posterior probabilities

(3 (3)

(12}

1 zlh L
)

3 10 11 12 13 14 15

computed with the {roughiy average) values. oo=0.30 and
k=10 are shvwn in figure 4{a) in which N denates the
probability {negligible for this example) that there are no
active effects. The results from a sensitivity analysis in
which « and &k were altered to vary over the ranges men-
tioned above is shown in figure 4(b).

[t will be seen thar figure 4(a} points to the conclusion that
active effects are associated with columns 3. 5 and 12 of the
design and that column 8 might possibly also be associated
with an active factor. Figure 4(b} suggests that this conclu-
sion is very little affected by widely different choices for
and k. Further research with different choices of prior, with
marginization with respect to &, and with different choices
of the distribution assumptions is being conductzad.

5. Allowance for Faulty Observations

Recent work [16] has shown how a double application of
the scale-contamination model (both to the observaticns
themselves as well as 10 the affects) can make it possible to
allow for faulty observations in the analysis of unreplicated
factorials or fractional factorials.
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