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Fluorescence data can be rapidly acquired in the form of an emission-excitation matrix (EEM) using a novel
fluorometer called a video fluorometer (VF). An EEM array of 4096 data points composed of fluorescence intensity
measured at 64 different emission wavelengths and excited at 64 different excitation wavelengths can be acquired in less
than one second. The time-limiting factor in using this information for analytical measurement is the interpretation step.
Consequently, sophisticated computer algorithms must be developed to aid in interpretation of such large data sets. For
“r” number of components, the EEM data matrix, M, can be conveniently represented as

,
M= . ax(i)y(iy

iw=]

where x{/) and y(/)' are the observed excitation and emission spectra of the i component and «; is a concentration
dependent parameter. Such a data matrix is readily interpreted using linear algebraic procedures.

Recently a new instrument has been described which rapidly acquires fluorescence detected circular dichroism
(FDCD) data for chiral fluorophores as a function of multiple excitation and emission wavelengths. The FDCD matrix
is similar in form to EEM data. However, since the FDCD matrix may have legitimate negative entries while the EEM
is theoretically non-negative, different assumptions are required. This paper will describe the mathematical algorithms
developed in this laboratory for the interpretation of the EEM in various forms, Particular emphasis will be placed on

linear algebraic and two-dimensional Fourier Transform procedures.
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~ Introduction

Advances in computer technology and developments in
multiparametric detection devices have had a profound ef-
fect on developments in chemical analysis. These develop-
ments have made it possible to expand the applicability of
several analytical methods to more complex systems. Multi-
component analysis by fluorescence spectroscopy is one
example of such a method.
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In the conventional fluorescence experiment, the sample
solution is irradiated with monochromatic light which pro-
duces molecules in the excited state when absorbed. As
these molecules return to the ground state, light with a
characteristic wavelength distribution is emitted. This distri-
bution of the emitted light is known as the fluorescence
emission spectrum, The fluorescence excitation spectrum is
the fluorescence intensity as a function of absorption wave-
length. At low absorbance (<<0.01), the intensity of the
fluorescence emitted at a given wavelength is directly pro-
portional to the amount of light absorbed and therefore to the
concentration of the analyte in the sample solution.

These characteristic spectra make fluorescence spec-
troscopy inherently more selective than absorption methods
and provide qualitative as well as quantitative measure-
ments. For example, when the excitation spectrum of the
analyte only partially overlaps the excitation spectrum of the



atker components in the sample. the sample can be irradi-
ated with tight of o wavelength which is only absorbed by
the analyte, Since only the analyte absurbs the incident
light. Nuorescence will only be emitted by the analyte. inthe
absence of syacrgistic etfects such ay energy tanster. This
technigue js called selective excitation [ E]' and can be used
gualitutively by acquiring the complete emissicn spectrum
of the analyte or guantitatively by determining the analyte
concenlration using the emission of a sample of known
concentiation as a standard.

This approach t¢ multicomponent analysis can be ex-
panded by acquiring fluerescence spectra at several excita-
tion and cmision wavekngths, Acquiring multipie spectra
with comventianal 18t nenidion is o tine-consuming pro-
cess, even with a microprocesser-controlled nstewiment. 1t
can require more than one hour to aeguire the complele
entission spectrum of a sample at 64 excitation wavelengths
using conventional instruinentation. Many samples would
underge significant photodecumposition over such u period
of lime, The development of the videoTluorometer (VF)
which rapidly acquires two dimensional fluorescence data
has resobved this problem |2]. This instrument uses poly-
chromatic excitation and a sihcon intensified target vidicon
detector tteleyision camera) to acguire data in matrix format
withowt mechinicwd scunning. The ¥F can acquire 64 emis-
sion spectr penierated at 64 excitation wavelengths in less
than 1 second. Thercfore, duta processing of this emission-
exeitation matrix (EEM) is now the time-limiting step in the
analysis and requires the use of @ computer for data reduc-
tion.

The rows of the EEM of a pure sample are multiples of
the emission spectrum of that compound, while the columns
sre mulliples of the excitation speeimr. (ndiviting tha: the
EEM is of bilinzar form. Suen matrices ure ideally svit2d for
data reductinn techniques such as factor analysis {3] and
pattern recognition [4].

Another technigue whose applicability s expanded by
multiparametric detection is Huorescence detected circular
dichroism (FDCL |5]. The FRCD spectrum is the differ-
ence in the intensity ol flurpescence produced by excilation
with Weft and right circubaely polarized light recorded as a
function of the wavelength of the exciting lght. Chiral
molecules prelerentizlly absorb one form of circularly polar-
ized light. The FDCD spectrum retleets the structure of the
chiral Huorophure in a solution. A two-dimensional rapid
scanning FDCL spectrometer has been developed which
measures the FDRTD at several excitation and emission
wavelengths [6]. When these duta are collected in matrix
format. they are also of bilinear form. However, the al-
vorithing designed 1o resobve the spectra of components
(rom the EEM cannot be applied to this ellipticity matrix
sicee QL gy contair. logimate negetive values. This

&

Tigunes i brackels indionte leraurs refesenaes.
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manuscript will discuss the strategies developed for the
qualitative reduction of multicemponent EEMS as well as
the alternative technigues developed for multicomponent
elipticity matrices.

Eigenvector Analysis [7]

When the absorbunce ol u sample is less than 0,01, the
intensity ol the fluorescence. [, can be approximated by the
expression

1,=2.303 lydrehc {la)
where /. is the intensity of the incidenl radiation. &, is the
fluorescenze quantem efficieney {the faclion of zbsorbed
photons emlled as flusrescenced, € is the molar extinction
coefficient. f 15 the thickness of sample vell and ¢ is the
concentratin. of the fluorophore in the sample solotion.
Each element. ;. of the emission-excitation matrix, M.
reprasents the ITuorescence intensity at wavelength A, that
wits generated by excitation at wavelength A, Therefore,
cach af these elements can be generally exprassed us
11y = 2. 3030 (8 Delh Iy BN dbe (2a)
where (A, ¥ retlects the dependence of £, on (he monitored
emission wavelength and S(Juj) is a parameter which incor-
purites instrumental artifacts like sensitivity and signal col-
lection peometry. Combining these terms based on excita-
tion and emission wavelength related variables vesulis in a
simpler expression:
My WY, {3z)
where « 15 a scatar that equals 2.3034,Hc , x; is the excitation
term given by

=1y eld;) . (da}
and ¥; is the emission term which is expressed
X =B {5a)

When the x; are properly sequenced. the array of &, is a
representation of the excitalion spectrum and can be denoted
x in vector notation, Likewise. when the v, ure properly
sequenced. the vector y represents the emission spectrum,
Since the emission profile is independent of the exciling
wauvelength. and the excitation profile is independent of the
monitored emission wavelength, the matrix M can clearly
be expressed as the vector product of x'and ¥, multiplied by
a scalar cuncentrelion ter. G.e.

M= rxxyT (Ha)



In a sample containing “n” fluerescent compounds, the ma-
trix M is the sum of the EEMs of the individual components
provided synergistic effects are negligible. Thus, the n com-
ponent matrix can be expressed as

1
M= 2 L5595, % (73)
k=1

A more convenient notation for M is
M=XY (8a)

in which the columns of the matrix X are the excitation
spectra, X, of the » components, and the rows of Y are the
emission spectra, ¥, . of the components. The concentration
term can be considered to be absorbed into either of the
malrices.

Qualitative analysis of the matrix M requires a determina-
tion of the number of independently emitting compounds,
i.e., the rank of the matrix, and the set of basis vectors x;
and y, which are the excitation and emission spectra of the
components. Eigenanalysis plays a significant role in both
determinations. Therefore, it is appropriate to preface the
discussion of rank estimation and spectral resolution with a
brief presentation of pertinent eigenanalysis principles.

An eigenvector is defined as any vector x which is a
solution of the equation

AX = Ax (9a)

in which X is a scalar called the eigenvalue. The magnitude
of the eigenvalue is a consequence of the importance of the
information reflected in the eigenvector to the data in the
matrix. When the eigenvalue is large, then the factor repre-
sented by the eigenvector makes a large contribution to the
data. If it is small, then the contribution of the factor is
small. Therefore, when a matrix has a rank n which is
greater than 1, it has # eigenvectors and n eigenvalues.

Since the matrix M is bilinear, the covariance matrices,
MM and MM can be used to generate the eigenvectors.
The eigenvalues of the covariance matrices are the squares
of the eigenvalues of M, but apart from this small detail, it
is more expedient to use the covariance matrices to generate
the eigenvectors since the covariance matrices are always
square and symmetric,

As the preceding discussion indicates, rank estimation of
an ideal matrix (one that is noise-free) is straightforward,
simply determined by the number of non-zero eigenvalues.
However, experimental data matrices are not free of noise.
They can contain systematic or random errors superimposed
on the signal. For these matrices, there are several methods
of rank estimation [3,8]. When the signal-to-noise ratio is
high, it is possible to differentiate the eigenvalues associated

with fluorescence (primary cigenvectors) [ront those assocr-
ated with noise (secondary cigenvectors) by a direct com-
parison of their magnitudes. As the signal-to-noise ratio
decreases, this approach becomes more ditficult. Another
method which will be deseribed in a later section of this
manuscript is differentiation of cigenvectors based on their
frequency distributions, realizing that random noise in spec-
tral data usually will have higher [requency than the signal,

The other part of the analysis of M is the resolution of the
basis vectors x, and y, from the matrix. An inlinite number
of basis vectors exists for a given matrix, and resolving the
spectral vectors from the matrix is usually not possible with-
out a priori knowledge of the components. However, the
eigenvectors are an orthonormal basis for M and are casily
generated. Since the eigenvectors reproduce the matrix, M
can be expressed as

M=UV (10a)
in which the columns of U are the excitation eigenvectors,
u, . and the rows of V are the emission eigenvectors, v, . The
eigenvalues have been absorbed into one of the matrices.
Since the eigenvectors are an orthonormal basis, they often
contain negative elements cven though M is theorctically a
non-negative matrix. Emission and excitation spectra are
also theoretically non-negative. Therefore, the eigenvectors
can be transformed to possible spectral vectors by trans-
forming them to a non-negative basis set.

To perform this transformation, the values of the matrix
K and its inverse, K ', which transform U and V to non-
negative matrices, must be found. This is algebraically
sound, since it is equivalent to multiplying U and V by the
identity matrix. This transformation is mathematically ex-
pressed as

M=UKK"'V . (11a)
This condition also ensures that the transformed vectors are
also a basis for M. The transformed excitation vectors are
the columns of the matrix U’, and the transformed emission
vectors are the rows of the matrix V'. These matrices are
given by the equations

U’ =UKz=() (12a)

and

V=K'V=0. (13a)

The values of the elements of K and K ~! can be found from
the expressions for the elements of U’ and V' In the two
component case, the elements are given by
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iy = kygaythyug =0 {14a)
iy = koptiy; i =0 (15a)
v'y = Y|y —kipv)=0 (16a)
and
vy = Ukllkyyvsy ~kyv)=0 | (17a)

It can be assumed that &, =k;,=1 without loss of generality.
The values for &), and %;; can be found by solving these
expressions. It’s clear from these expressions why this
method is only applicable to two component matrices since
the elements of K~! become non-linear for more than two
components. The boundaries for the values of &5 and ks,
given by these expressions are

and

min Yaj =k = max TH

v|j>0 V]j u2£>0 Uy

(19a)

The accuracy of transformations performed with values
meeting these criteria has been shown to be a function of the
overlap of the spectra of the components, This is illustrated
in the ambiguity table in figure 1 which summarizes the
results of the transformation for the 16 possible spectral
overlap combinations for a binary mixture. It should be
noted that in 7 out of the 16 possible cases, at least one
spectrum of each component is correctly resolved. Close
inspection of the table shows that in cases where the spectra
of neither component are enveloped in both dimensions, at
least one of the spectra of each component is resolved unam-
biguously. Clearly, if both the emission and excitation spec-
tra of the two compounds have only partial overlap, all four

Excitation Overlap

Figure 1—Ambiguity Table of Two-Component Excitation-Emission Matrix.

1 spectrum of sa. comp. certain
t spectrum of ea. component
given by extreme k.

All spectra uncertain.
Both spectra ol ea. component
given by extreme k's.

1 spectrum of ea comp. certain.
1 spectrum of ea component
given by intarmediate k.

min Vij 2=kp2= max —Hy; 18a . . L
>0 -4 7 -0 a. (182) spectra will be resolved unambiguously from their mixture
Vi Vs H; My .
Y ) b L matrix.
Emission Overlap
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All spectra uncertaln,
1 spectrum of ea comp. given
by ext. k, other by Int k.

¥y — Uz
min L - K = max =
Vo >0 vy, U >0 uy

v, -u
mn 2l sk, > max
V>0 vy, W0 Uy

1 spectrum of ea. comp. certain.
1 spectrum of ea. component
given by extreme k.

-u
= max 2
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min 14 o .
U, >0 uy,

V2,0 vy

—ty,
> max

>0 U

v
min o5 g
vi>0 vy,
1 spectrum of ea comp. certain.
1 spectrum of ea component
given by intermediate k.

' -u
min Yoo s max TR0
V‘i>° Vi, U >0 Uy

All spectra uncertaln.
Both spectra of ea, component
given by extreme K's.

v
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=Ux
> max =
u>0 Uy,

" =uy
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All spectra uncertain.
1 spectrum of ea comp. given
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All spectra uncertain,
Both spectra of ea. componant
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Vo> 0 vy

¥z, —uy
min 2
W20 vy

All spectra uncertain.
t spectrum of ea comp. given
by ext. k, other by int k.
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vy 20 vy Uy>0 1y,

> ky T M el
= Tup>0 Uy

"
min A
>0,
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by ext. k, other by int k.

- max 42
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min ¥ >

k
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All spectra uncertain,
Both spactra of ea component
given by Intermediate k's.
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Rank Estimation by Frequency Analysis
of the Eigenvectors {9]

The need to correctly determine the rank of a matrix for
qualitative analysis has been demonstrated previously. Most
rank estimation methods are statistical in nature and depend
on the correct evaluation of the variance in the data. The
method of rank analysis presented here uses Fourier Trans-
form Image Analysis and is based on the assumption that the
primary eigenvectors of an EEM (i.e., those associated with
the fluorescence) will contain information that is weighted
toward the low frequency Fourier coefficients since spectra
tend to be broad-banded. Similarly, the transforms of the
secondary eigenvectors will have larger high frequency co-
efficients. However, this manuscript is not a suitable
medium for a comprehensive presentation of the theory of
Fourier transforms. The reader is referred to any introduc-
tory text on the subject of Fourier analysis [10].

The Fourier transform is fairly simple to implement since
fast Fourier transform algorithms are routinely available for
use even on small computers. Since any continuous function
can be reproduced by addition of a series of sine and cosine
functions with various frequencies, amplitudes, and phases,
the forward Fourier transform is a method of determining
these frequencies, amplitudes, and phases from the func-
tion, The inverse transform reconstructs the time domain
function from the frequencies, amplitudes, and phases. The
discrete Fourier transform equation used to transform the
eigenvector to the frequency domain is

N-1
V(u)=UN D, v(x)exp—2mi(xu)/N
x=0

(Ib)

where & is the frequency domain coordinate, V(u) is the
Fourier transform of v(x), and N is the number of points in
the discrete approximation of the function. The complex
frequency domain function, V(u), is frequently represented
by the Fourier spectrum which is given by

V)] = [Vt V() i (2b)
The area of the Fourier spectrum, T, is the sum of all the
frequency coefficients and is given by

N-1

T= > [V .

u=0

(3b)

The segment of the Fourier spectrum bounded by +/—ulim
is denoted Ay, which is defined as
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i =nlim

Aylim = E ,V(” )l

u=ulim

{4b)

which is simply the sum of the frequency coefficients in the
section of the Fourier spectrum bound by ulim and —ulim.
The relative importance of this frequency region in repro-
ducing the time domain eigenvector, v(x), can be expressed
by calculating the percent of T which lies in this frequency
range. The parameter which represents the importance of
the range from ulim to —ulim is called %A,;,, and is calcu-
lated from the expression

%A

= Aulim/T X100 . (Sb)

utim
When the value of ulim is well chosen, there is a marked
drop in the %Ay, for secondary eigenvectors. Table 1
shows a table comparing the rank estimation by frequency
analysis to four statistical methods for matrices with ranks
greater than or equal to 3. The frequency analysis method
was the most accurate on the data tested here.

Figenvector Ratioing [11]

This method was developed to resolve the spectra of
compounds from the ellipticity matrices of two component
mixtures. The presence of legitimate negative values in this
matrix produced a need for a different algorithm to analyze
this matrix despite its similarity to the EEM. The ellipticity
matrix, F, is also bilinear and can be expressed as

F=8T {lc)
where the columns of the matrix § are the circular dichroism
(CD) spectra, s, of the fluorophores in the sample, and the
rows of the matrix T, symbolized by the vectors t,, are the
emission spectra of those chiral fluorophores.

The CD and emission eigenvectors of F are also an or-
thonormal basis which span the matrix, F. The CD eigen-
vectors, (f;, , may be represented as the columns of the matrix
Q and the emission eigenvectors, p,. as the rows of the
matrix P. Thus, F is also given by the equation

F=0P (2c)
assuming that the eigenvalues have been absorbed into one
of the matrices.

These eigenvectors must also be transformed to possible
spectral vectors. However, the CD eigenvectors should not
be transformed to a non-negative vector because the CD
spectral vectors are not always non-negative. However,
since the matrix F contains a finite amount of information,
if the correct emission spectral vectors are found, the corre-



‘Fahle 1.

Estimated numbers of componenss, in text mixtures.

No. of Components

Estimatad Ko, of Components

Mixture No. Known REFAE Stat! Stat2 Staw3 Srard

| 3 3* K 2 3+ 4
2 3 3% 2 2 3= 4
3 3 3% 2 2 2 2
4 2 e | | 2% 2%
5 2 2% | I 2 3
b 2 2% 2% 2% 2% 5
7 3 3 3% el : 5
% 4 a% 3 3 3 5
g ) 3% 3 3 3 5

10 f 5 3 3 4 6%

T denates g correetly estinated rank
Statl = Figenvalue perrurbation

Str2 = Average eror it liod

Stakd = Chi squared 1est

Statd = Stasdaed error fest

sponding CD spectral vectors are fixed and easily obtained.
In this algorithm, the elements of the matrix, K, which
transforms the emission eigenvecters to non-negative vec-
tars are sought. Then, the possible CD speciral vectors are
generated using the wransformed emission vectors. The
trunsformed emission vectors are the rows of the matrix P
which is given by
P'=KP=0 . (3c)
For a two component mixture the values of the elements of
K can be determined by expressing eq (3¢} in terms of the
elements of the matrices and solving the resulting expres-
sions for the elements of K algebraically:

Pyt =kypithyap, =0 {4c)

Poi' =kaapai tkapy 20 {50

Again, assuming that k), =k,,=1. the elements of K are
within the ranges defined by

min TPu =k E max P {6c)
Pyl py P20 P2

min TPy =kyyZ max P (7c)
pu<0 py p=0 Pri

These ranges are generated because the sense of an inequal-
ity changes when both sides of the inequality are divided by
a negative number,

The possible CD spectral vectors are generated by solving
the following equation:

Q=FPiEeH . (8¢)
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This is valid since

F=Q'P’ (9c)

and

[=P'P'7(P'P)"! (10¢)

This means that eq (8c) is another representation of the
equation

Q=0T . (1le)

Due to the weaker constraints on the transformation ele-
ments in this algorithm, non-converging ranges are gener-
ated for the values of the transformation elements. How-
ever, it was found that if either of the components is a sole
emitler in the inonitored emission range, the value of the
transformation element needed to transform an eigenvector
to the spectra of the other component is usually given at an
extreme of one of the ranges in eqs (6¢c} and (7c). This is
because the values from the regions of sole emission best
meel the criteria expressad in eqs (6¢) and (7c). Therefore,
except when the spectra are {otally coincident at the base-
lines at least one spectrum of each component is often re-
tricvable using this technique. Figure 2 shows an ambiguity
table that was generated to illustrate the usefulness of this
algorithn.

This algorithm has also been tested on EEMs and it was
found that this technique can be used with either set of
eigenvectors: the emission eigenvectors (as it is with the
ellipticity matrix} or the excitation eigenvectors. The resuits
can be summarized by an ambiguity table similar to the one
in figure 2 which had excitation overlap on the vertical axis.
The ambiguity table using only one axis is more ambiguous
than the earlier table (fig. 1) using both axes. These results
do not conflict with those found using eigenvector analysis
on the EEM. “Multiplying" the two ambiguity tables gener-
ated by this algorithm yields the table generated for eigen-
vector analysis, verifying the validity of both methods,



Emission Overlap

mn FLos g, momax PR min TP o, 2 omax TP
P,<0 Py >0 P | P<0 Py, p>C Py

-p ~ Py -p - P
min ' = ks = max ' min " = K = max !
P <0 P P00 P P, <0 Po, P2 >0 Pa

All spectra uncertain
Both spectra of ea compenent
given by extreme k's

All spectra uncertain
1 spectrum of ea. comp. gwven
by ext. k. other by int k

min 2w kL wmax 2 | min PL ok, = omax P
py<0 By pu>0 Py P<0 Py, pu>0 Py,

B = Pu -p =P
min 2 ok, 2 omax  —— mn — 2 ka Z max sl
p;,<0 B pa>0 Py Py <G P pP2>0 By

All spectra uncertain.
Both spectra of ea. compcnent
given by intermediate k's.

All spectra unceartain.
1 specirum of ea. comp. given
by ext. k, other by int. k

Figure 2—Ambiguity Table of Two-Component Ellipticity Matrix.

Conclusions

This manuscript has provided an overview of qualitative
analysis techniques developed for matrix formatted fluores-
cence data. Qualitative analysis of matrices was shown to
generally consist of three basic procedures: rank estimation,
determination of unknown component spectra, and screen-
ing of expected compounds. The techniques outlined here
only addressed the first two phases of the problem but they
represent only a portion of the methods that have been
developed 1o fill these requirements. The methods presented
here successfully attack the stated problems within the
framework of the limitations described.

Rank estimation by frequency analysis can sometimes be
more accurate than statistical methods for evaluation of
spectral data. [t would be useful to develop a criterion where
the algorithm will automatically select a useful range for
differentiating the secondary eigenvectors from the primary.

In the present approach, eigenvector analysis and eigen-
vector ratioing are limited to binary mixtures. Few real
samples are binary. These methods must be extended to
higher order mixtures.

These techniques have been developed for use with fluo-
rescence data, bui are generally applicable 1o other forms of
matrix formatted data. Some of the algorithms require that
the data matrix be bilinear in form; however this is a charac-
teristic of many types of data. For example, diode array
detection of liquid chromatography and absorption kinetic

data using a diode array detector are bilinear in form.
Clearly, there is a need for further development in this area.
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