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Fluorescence data can be rapidly acquired in the form of an emission-excitation matrix (EEM) using a novel
fluorometer called a video fluorometer (VF). An EEM array of 4096 data points composed of fluorescence intensity
measured at 64 different emission wavelengths and excited at 64 different excitation wavelengths can be acquired in less
than one second. The time-limiting factor in using this information for analytical measurement is the interpretation step.
Consequently, sophisticated computer algorithms must be developed to aid in interpretation of such large data sets. For

r number of components, the EEM data matrix, M, cam be conveniently represented as

r

M =Ex(i)y(i)
i=1

where x(i) and y(i)' are the observed excitation and emission spectra of the ii component and ax is a concentration
dependent parameter. Such a data matrix is readily interpreted using linear algebraic procedures.

Recently a new instrument has been described which rapidly acquires fluorescence detected circular dichroism
(FDCD) data for chiral fluorophores as a function of multiple excitation and emission wavelengths. The FDCD matrix
is similar in form to EEM data. However, since the FDCD matrix may have legitimate negative entries while the EEM
is theoretically non-negative, different assumptions are required. This paper will describe the mathematical algorithms
developed in this laboratory for the interpretation of the EEM in various forms. Particular emphasis will be placed on
linear algebraic and two-dimensional Fourier Transform procedures.
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Introduction
Advances in computer technology and developments in

multiparametric detection devices have had a profound ef-
fect on developments in chemical analysis:'These develop-
ments have made it possible to expand the applicability of
several analytical methods to more complex systems. Multi-
component analysis by fluorescence spectroscopy is one
example of such a method.
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Neal, and T. M. Rossi are with the Department of Chem-
istry at Emory. The work they describe was supported in
part by the Office of Naval Research and the National Sci-
ence Foundation. Isiah M. Warner also acknowledges sup-
port from an NSF Presidential Young Investigator Award.

In the conventional fluorescence experiment, the sample
solution is irradiated with monochromatic light which pro-
duces molecules in the excited state when absorbed. As
these molecules return to the ground state, light with a
characteristic wavelength distribution is emitted. This distri-
bution of the emitted light is known as the fluorescence
emission spectrum. The fluorescence excitation spectrum is
the fluorescence intensity as a function of absorption wave-
length. At low absorbance (<0.01), the intensity of the
fluorescence emitted at a given wavelength is directly pro-
portional to the amount of light absorbed and therefore to the
concentration of the analyte in the sample solution.

These characteristic spectra make fluorescence spec-
troscopy inherently more selective than absorption methods
and provide qualitative as well as quantitative measure-
ments. For example, when the excitation spectrum of the
analyte only partially overlaps the excitation spectrum of the
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other components in the sample. the sample can he irradi-

atCd With Iight ot u wavelcngth which is only absorbed by

the anialytc. Since only thc analyte absorbs the incident

lighl, 11uorcscelnce will only be emitted by the anuliyc. in the

atisence oF svaergistic effects such as energy transter. This

technique is called selective excitation III' and can br used

qualitulively by acquiring the complete emission spectrum

oF the amnalyte or quantitatively by determining the analyte

concctratllion using the emission of a sample of known

concentration as a standard

This approach to mullicornlponent analysis can be ex-

pjandcd hy acquiring fluorescence spectra at several excita-

litu;l and lhissiton wave lenegths. Acquiring nultipie spectra

%ilhconenmtiiial i:rsll nleni atioa is altime-consuning pro-

cess. even wvai a microprocessor-cuntrolleu instrumneit. it

can require mnore than one hluE a) acquire the coimplete

Celtission spcctrUn ol a samlpile at 64 excitation wavelengthIs

USill- coCnvention al instrtnnenta tion- Many samples would

ulidergo signi ilicant pholodecomposition over such a1 perfid
of timel. Tic development of the vidcofluorometer kVF)

which rapidly acquires two di lensional Fluorescence data

has resolved this problem L21- lhis instrument uses poly-

chroni tit cxcitatuon and a silicon intensified target vidicon

detctlor I television cameral to acquire data in matrix format
v tihou mechanical scanning. i'he VF can acquire 64 emnis-

sio spectra genctatLed at 64 excitation wNavelengths in less

than I sccond. 'Therefore, data processing of this emission-

excitation matrix (EEM) is now the time-limiting step in the

anal yssS and requires the use of a computer for data reduc-
loll].

The rows of the lEM of a pure sample are multiples of

th emissicn spectrum of that compound, while the columns
are inulliples oiF te excitation speclruni. indicating Iha: the

EEMA is orbilinear buto Suc matalrices ire ideallv suited for

data reduction techniques such as factor analysis 131 and

pattern ;ccognition 141.
Another technique whose applicability is expanded by

multiplaramietic detection is fluorescence detected circular

dichioi sin (HC.') 15] The FDC'D spectrum is the difFer-

CIIce in die intCIsit) oF l'rHOnCscence produced by excitation

wsith leit and right citcularly polari/cd light recorded as a

fUnclion of the wavelcngth oD the exciting light Chiral

nloleculecs prelerentihlly absorh one form of circularly polar-
ized liglht. rhe FDCD spectrum reflects the structure of the

chiral lluorophore in a solution. A two-dimensional rapid
scannins2 Ftl)D spectrometer has been developed which

mcasurcs the FDCD at several excitation and emission

wavelnlgths 161. When these data are collected in matrix

irrinnat they are also uf bilinear form. However, the al-

goritliiris designed to resolve the spectra of components

rorn the EkM cannot be applied to this ellipticity matrix

sil:cC it mayv cbit-air. Ic gitimatc neg.tive values. Thi-

manuscript will discuss the strategies developed for the
qualitative reduction of tnulticonponcnt EEMS as well as
the alternative techniques developed lor multiconiponent
ellipticity matrices.

Eigenvector Analysis [7]

When the absorbance of a sample is less than 0.01, the

intensity of the f luorescence. 1I-. can be approximated by the
expression

I1=2.303 I,)cEbc (la)

where /4. is the intens ty of the incident radiation, 4,. is the

t1Lorescecne qLLcuntum efficiency 'the ttactian of absorbed

photons emitted as fluorcscencc). e is the molar extinction
coefficient. b is the thickness of sample cell and c is the
concentration ol the thuorophoie in the sample solution.
Each element. im;,, of the emission-excitation matrix. M.
represents the fluorescence intensity at wavelength A; that

was generated by excitation at wavelength A,. Therefore,
each of these elements can be generally expressed as

m,=2 .3034,J1 A )e(A. )3(A; )bc (2a)

where yIN, reflects the dependence of!, on the monitored

emission wavelength and 8(Xk) is a parameter which incor-

porates instrumental artifacts like sensitivity and signat col-
lection geometry Combining these terms based on excita-
tion and emission vavelength related variables results in a
simpler expression:

nrli a-LVY, t3ai

where(% is a scalar that equal s 2.303 &)I1 J srf is the excitation
term -iven by

1;=jo(k)etAd , (4a)

and vj is the emission term which is expressed

(5a)-J ~~~~~~~~~~~~~-

When the Yj are property sequenced. the array of . is a

representatton of the excitation spectrum and can be denoted

x in vector notation. Likewise, when the r, are properly

sequenced. the vector y represents the eistsiton spectrum.

Since the emission profile is independent of the exciting

wavelength, and the excitation profile is independent of the

monitored emission wavelengtht. the matrix M can clearly
be expressed as the vector product of x and y, multiplied by

a sCal-ar cOncentrLlion tern .e.

(6a)
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a sample containing "n" fluorescent compounds, the ma-
tris M is the sum of the EEMs of the individual components
provided synergistic effects are negligible. Thus, the n com-
ponent matrix can be expiessed as

11

M= E ax'ykr (7a)
k=l

A more convenient notation for M is

M=XY (8a)

in which the columns of the matrix X are the excitation
spectra, Xk, of the n components, and the rows of Y are the
emission spectra, Yk of the components. The concentration
term can be considered to be absorbed into either of the

matrices.
Qualitative analysis of the matrix M requires a determina-

tion of the number of independently emitting compounds,
i.e., the rank of the matrix, and the set of basis vectors Xk

and Yk which are the excitation and emission spectra of the
components. Eigenanalysis plays a significant role in both
determinations. Therefore, it is appropriate to preface the
discussion of rank estimation and spectral resolution with a
brief presentation of pertinent eigenanalysis principles.

An eigenvector is defined as any vector x which is a
solution of the equation

Ax = Xx (9a)

in which X is a scalar called the eigenvalue. The magnitude
of the eigenvalue is a consequence of the importance of the
information reflected in the eigenvector to the data in the
matrix. When the eigenvalue is large, then the factor repre-
sented by the eigenvector makes a large contribution to the
data. If it is small, then the contribution of the factor is
small. Therefore, when a matrix has a rank n which is
greater than 1, it has n eigenvectors and n eigenvalues.

Since the matrix M is bilinear, the covariance matrices,
MTM and MMT can be used to generate the eigenvectors.
The eigenvalues of the covariance matrices are the squares
of the eigenvalues of M, but apart from this small detail, it
is more expedient to use the covariance matrices to generate
the eigenvectors since the covariance matrices are always

square and symmetric.
As the preceding discussion indicates, rank estimation of

an ideal matrix (one that is noise-free) is straightforward,
simply determined by the number of non-zero eigenvalues.
However, experimental data matrices are not free of noise.
They can contain systematic or random errors superimposed
on the signal. For these matrices, there are several methods
of rank estimation [3,8]. When the signal-to-noise ratio is
high, it is possible to differentiate the eigenvalues associated

with fluorescence (primary cigenvectors) from those associ
ated with noise (secondary cigenvectors) by a direct Comll-

parison of their magnitudes. As the signal-to noise ralto
decreases, this approach becomes more difficult Another

method which will be described in a later section of this
manuscript is differentiation of eigenvectors based on their
frequency distributions, realizing that random noise in spec-
tral data usually will have higher frequency than the signal.

The other part of the analysis of M is the resolution of the
basis vectors xA and Yk from the matrix. An infinite number

of basis vectors exists for a given matrix, and resolving the
spectral vectors from the matrix is usually not possible with-
out a priori knowledge of the components. HFowever, the
eigenvectors arc an orthonormal basis For M and arc easily
generated. Since the eigcnvectors reproduce the nmtrix, M
can be expressed as

M=UV (10:1)

in which the columns of U aie the excitation eigenvectors,

u4, and the rows of V are the emission eigenvectors, vA . The
eigenvalues have been absorbed into one of the matrices.
Since the eigenvectors are an orthonormal basis, they often
contain negative elements even though M is theoretically a
non-negative matrix Emission and excitation spectra are
also theoretically non-negative. Therefore, the eigenvectors
can be transformed to possible spectral vectors by trans-
forming them to a non-negative basis set.

To perform this transformation, the values of the matrix
K and its inverse, K ;. which transform U and V to non-
negative matrices, must be found. This is algebraically
sound, since it is equivalent to multiplying U and V by the
identity matrix. This transformation is mathematically ex-
pressed as

M=UKK 'V. (I la)

This condition also ensures that the transformed vectors are
also a basis for M. The transformed excitation vectors are
the columns of the matrix U', and the transformed emission
vectors are the rows of the matrix V'. These matrices are
given by the equations

U'=UKa'O ( £2a)

and

V'=K-'V¢0. (13a)

The values of the elements of K and K - can be found from
the expressions for the elements of U' and V'. In the two
component case, the elements are given by
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it'1 1 = k,1luli+k 2 lu2 ii O ,

U= k2 2 U2i+kl2 u'1i0 I (15a)

V'1j = l/IkI(k 2 2 Vj-kl 2v2 1)¢0 , (16a)

and

V'2j = I/IkI(kjjv2j-k 2 lvi1 )Ž0 . (17a)

It can be assumed that k, I =k 22 = I without loss of generality.
The values for k12 and k2, can be found by solving these
expressions. It's clear from these expressions why this
method is only applicable to two component matrices since
the elements of K-l become non-linear for more than two
components. The boundaries for the values of k12 and k2l

given by these expressions are

min VU1 2kI232 max
v2j >0 v2j Ulj>O

-U2 i

Uji

min
Vlj >O

v2j ek~2l h max
Vlj U2i>O

-Uli
U2 i

(19a)

The accuracy of transformations performed with values
meeting these criteria has been shown to be a function of the
overlap of the spectra of the components. This is illustrated
in the ambiguity table in figure I which summarizes the
results of the transformation for the 16 possible spectral
overlap combinations for a binary mixture. It should be
noted that in 7 out of the 16 possible cases, at least one
spectrum of each component is correctly resolved. Close
inspection of the table shows that in cases where the spectra
of neither component are enveloped in both dimensions, at
least one of the spectra of each component is resolved unam-
biguously. Clearly, if both the emission and excitation spec-
tra of the two compounds have only partial overlap, all four
spectra will be resolved unambiguously from their mixture
matrix.

Emission Overlap
comp. 1
comp. 2

a.

4)

0
C
0
ti

(U

C,
0

x
'C

.in VI, - me. rnin... k,2 mmIi k, ma U mnn-m. Zn. Vh_ k_ _ mar __ min - ' _ h _ max mi. Y" 2 me. min h > kn > max
vi> 0 V un>O u v,,>O v2, u>O u, v> 0

V, u,,>O u,, v51>o v - u,,>o u,7

mlniL - k,, nmin I>l k, >max - min n " k > max " mInin _t 2>maxLv,1>O vI u2>o u
2
, vl,>O V,

1 U2,>o us, v,,>O vi usŽO uV, v,,>o vl u5,>O U7,

All spectra cerlaln. 1 spectrum of ea. comp. certain. 1 spectrum of ea comp. certain. All spect uncertain.
I spectrum of es. component 1 spectrum of ea component Both spectra of ea component
given by extreme k. given by extreme k. given by extreme ks.

M n > kn -U , .v, 1rinmn '> k,2 m,.mx Ud mlnZZ> k1 2 max - min £> k,, >max - min -i > kt, > ma'
,>0 V,, U,,>0 U1, V,,>O V u,ŽO U., V51>O y V, ,,>O U., V,s>O V2, u,,>o U,,

min _kL _ max -uI v > >max ' min max - mln _t > k ma -v,,>O vI, u25-O u5, v,>ov,1 U u,,> us, v,,>Ov,, u,,>0 us, v,1>Ov, - us>O u> ,
1 spectrum of Ca compb certine All spectra uncertain 1 spectrum of a. comp. certain. All spectr uncerlain.I spectrum of ea component Both spectra of ea component 1 spectrum of a. component 1 spectrum of ea comp. given
given by extreme k. given by exteme kWS. given by intermediate I. by ext. k. othar by nr k.

min I_ k5 _. maxr ' mmni'= kŽ =ma -' min.I > h,, > max - min '> k,, > max -Vs1>O V,, U,,>0 U, V,,V>O s, U,> u. V,> 0 V,, U,>O U,, V,,>O V,, u,,>O U,,

min 't2 K, > mar. _ min -i> k,, > max m min ' > h,,>max > m in > k > mar _v,,>O v,, Uu,>0 U, v,1>O V,, u5,>O u, v,1>O v,, - u,>() uT, v,,>O v,, u5,>O us,

1 spectrum of ea comp- certan. 1 spectrum of Ca comp. certain All spectra uncertain. All spectra uncertain.1 spectrum of ea component 1 spectrum of ea component Both spectra of ea component 1 spectrum of ea comp. givengiven by extreme k. given by intermediate k. given by exrme kWs. by ext. It, other by int. k.

mIin "I> k,, 2 max M min > k,n > mex - min-!> k, > max _ min V > > k,> max.u0,>O v2, u,>O u,, V2 >O V- u,,>O u, v2>O u,>O 0u VYi>0 Vs, U,>O U,i

min V, MU, -U" iV, _-U,, . -u,, . 2vmini v,. kZ, 2 .maxU_ m ni_,> K, > msx _ vmtnO v . , aX- > k> 2 -, u min v >l '> ,, > max 2-v,,>O VI, -Us,>0 u, v,1>0 v, ,Ix,>O u5, v,,>O v,, - u5 >O u, v,1>0v 1 u2,>0u 5

All specora Uncertain. All spectr uncertain. All spectra uncertaln. All spectra uncertain.Both spectra of ea component I spectrum of Ca comp, given I spectrum of aa comp. given Both spectra of ea component
given by extreme ks. by ext II other by int k. by ext k other by Int k. given by Intermediate ks.

Figure I-Ambiguity Table of Two-Component Excitation-Emission Matrix.
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Rank Estimation by Frequency Analysis
of the Eigenvectors (9]

The need to correctly determine the rank of a matrix for
qualitative analysis has been demonstrated previously. Most
rank estimation methods are statistical in nature and depend
on the correct evaluation of the variance in the data. The
method of rank analysis presented here uses Fourier Trans-
form Image Analysis and is based on the assumption that the
primary eigenvectors of an EEM (i.e., those associated with
the fluorescence) will contain information that is weighted
toward the low frequency Fourier coefficients since spectra
tend to be broad-banded. Similarly, the transforms of the
secondary eigenvectors will have larger high frequency co-
efficients. However, this manuscript is not a suitable
medium for a comprehensive presentation of the theory of
Fourier transforms. The reader is referred to any introduc-
tory text on the subject of Fourier analysis [10].

The Fourier transform is fairly simple to implement since
fast Fourier transform algorithms are routinely available for
use even on small computers. Since any continuous function
can be reproduced by addition of a series of sine and cosine
functions with various frequencies, amplitudes, and phases,
the forward Fourier transform is a method of determining
these frequencies, amplitudes, and phases from the func-
tion. The inverse transform reconstructs the time domain
function from the frequencies, amplitudes, and phases. The
discrete Fourier transform equation used to transform the
eigenvector to the frequency domain is

N-I
V(u) = I/N E v(x)exp-2nri(xu)1N (lb)

x=O

where u is the frequency domain coordinate, V(u) is the
Fourier transform of v (x), and N is the number of points in
the discrete approximation of the function. The complex
frequency domain function, V(u), is frequently represented
by the Fourier spectrum which is given by

(2b)IV(u)l = [V(U)2,,,+V(U)2,.g]112

u=ulim
Autim = E !V(u)I

u=ulim
(4b)

which is simply the sum of the frequency coefficients in the
section of the Fourier spectrum bound by ulim and -ulim.
The relative importance of this frequency region in repro-
ducing the time domain eigenvector, v(x), can be expressed
by calculating the percent of T which lies in this frequency
range. The parameter which represents the importance of
the range from ulim to -ulim is called %cAuiim and is calcu-
lated from the expression

%kAujim = Au 1im/T X 100 (5b)

When the value of ulim is well chosen, there is a marked
drop in the %Au.im for secondary eigenvectors. Table I
shows a table comparing the rank estimation by frequency
analysis to four statistical methods for matrices with ranks
greater than or equal to 3. The frequency analysis method
was the most accurate on the data tested here.

Eigenvector Ratioing [11]

This method was developed to resolve the spectra of
compounds from the ellipticity matrices of two component
mixtures. The presence of legitimate negative values in this
matrix produced a need for a different algorithm to analyze
this matrix despite its similarity to the EEM. The ellipticity
matrix, F, is also bilinear and can be expressed as

F=ST (Ic)

where the columns of the matrix S are the circular dichroism
(CD) spectra, Sk of the fluorophores in the sample, and the
rows of the matrix T, symbolized by the vectors tk. are the
emission spectra of those chiral fluorophores.

The CD and emission eigenvectors of F are also an or-
thonormal basis which span the matrix, F. The CD eigen-
vectors, qk, may be represented as the columns of the matrix
Q and the emission eigenvectors, Pk, as the rows of the
matrix P. Thus, F is also given by the equation

The area of the Fourier spectrum, T, is the sum of all the
frequency coefficients and is given by

N-1
T = E IV(u)I . (3b)

U=O

The segment of the Fourier spectrum bounded by +/-ulim
is denoted Aujim which is defined as

F=OP (2c)

assuming that the eigenvalues have been absorbed into one
of the matrices.

These eigenvectors must also be transformed to possible
spectral vectors. However, the CD eigenvectors should not
be transformed to a non-negative vector because the CD
spectral vectors are not always non-negative. However,
since the matrix F contains a finite amount of information,
if the correct emission spectral vectors are found, the corre-
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Table 1. Estimated numbers ot componems in text mixtures.

No. of Components Estiiiuiat io. or componems
Mixture No. Known REFAE Stalt Stau Slai3 Sca4

I 3 38 38 2 3* 4
2 3 3' 2 2 3* 4
3 3 3' 2 2 2 2
4 2 28 1 2* 2
5 2 2* 1 1 2* 3

,. 2 2* 2* 28 28 5
3 3¢ 3* 2 2 5

s 4 4* 3 3 3 5
9 5 58 3 3 3 5

1I 6 5 3 3 4 68

+ i doI..e. d i rocily o i ... cii2L rank
slit I I-l cmifllU pIxmtrblian.
l;, l l = Acrn .zc ,i , i 1,..:li..i
.i,.i3 < (i 1uq,,.i.d i1

Si,i14 -SiinuIlaid error loc

This is valid since

sponding CD spectral vectors are fixed and easily obtained.
In this algorithm, the elements of the matrix, K, which

transforms the emission eigenvectors to non-negative vec-
tors are sought. Then, the possible CD spectral vectors are
generated using the transformed emission vectors. The
transformied emission vectors are the rows of the matrix P'
which is given by

and

1=p'ptT(p'pT)-I -

This means that eq (Sc) is another
equation

Q'=Q'I -

(IOc)

representation of the

(1 Ic)

P'=KPŽ0 . (3cj

For a two component mixture the values of the elements of
K can be determined by expressing eq (3c) in terms of the
elements of the matrices and solving the resulting expres-
sions for the elements of K algebraically:

Pj, ' =kj Ipji +kIP2zO 20 r(4c)

Pj' =Ik2,, +k 21pliŽ0 . (5c)

Again, assuming that k1i=k,, = 1 the elements of K are
within the raiges defined by

mini Pi ak-1 12 max

P, <(0 P2Ž P2i >°

mmill -Pni 2k, max

P7j< 0 Pui Pi1>O

Pli

P2r

-Pi
Pli

These ranges are generfated because the sense of an inequal-
ity changes when hoth sides of the inequality are divided by

a negative nlmber
The possible CD spectral vectors are generated by solving

the following equation:

Q=FP`(P'P)- . (Sc)

Due to the weaker constraints on the transformation ele-
ments in this algorithm, non-converging ranges are gener-
ated for the values of the transformation elements. How-
ever, it was found that if either of the components is a sole
emitter in the monitored emission range, the value of the

transformation element needed to transform an eigenvector
to the spectra of the other component is usually given at an
extreme of one of the ranges in eqs (6c) and (7c). This is
because the values from the regions of sole emission best
meet the criteria expressed in eqs (6c) and (7c). Therefore,
except when the spectra are totally coincident at the base-
lines at least one spectrum of each component is often re-
trievable using this technique. Figure 2 shows an ambiguity
table that was generated to illustrate the usefulness of this
algorithm.

This algorithm has also been tested on EEMs and it was
found that this technique can be used with either set of
eigenvectors: the emission eigenvectors (as it is with the
ellipticity matrix) or the excitation eigenvectors. The results
can be summarized hy an ambiguity table similar to the one
in figure 2 which had excitation overlap on the vertical axis.
The ambiguity table using only one axis is more ambiguous
than the earlier table (fig. I) using both axes. These results
do not conflict with those found using eigenvector analysis
on the EEM. "Multiplying" the two ambiguity tables gener-
ated by this algorithm yields the table generated for eigen-

vector analysis, verifying the validity of both methods.
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Emission Overlap

Figure 2-Ambiguity Table of Two-Component Ellipticity Matrix

Conclusions

This manuscript has provided an overview of qualitative
analysis techniques developed for matrix formatted fluores-
cence data. Qualitative analysis of matrices was shown to
generally consist of three basic procedures: rank estimation,
determination of unknown component spectra, and screen-
ing of expected compounds. The techniques outlined here
only addressed the first two phases of the problem but they
represent only a portion of the methods that have been
developed to fill these requirements. The methods presented
here successfully attack the stated problems within the
framework of the limitations described.

Rank estimation by frequency analysis can sometimes be
more accurate than statistical methods for evaluation of
spectral data. It would be useful to develop a criterion where
the algorithm will automatically select a useful range for
differentiating the secondary eigenvectors from the primary.

In the present approach, eigenvector analysis and eigen-
vector ratioing are limited to binary mixtures. Few real
samples are binary. These methods must be extended to
higher order mixtures.

These techniques have been developed for use with fluo-
rescence data, but are generally applicable to other forms of
matrix formatted data. Some of the algorithms require that
the data matrix be bilinear in form; however this is a charac-
teristic of many types of data. For example, diode array
detection of liquid chromatography and absorption kinetic

data using a diode array detector are bilinear in form.
Clearly, there is a need for further development in this area.
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