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Most research and development projects require the optimization of a system response as a function of several
experimental factors. Familiar chemical examples are the maximization of product yield as a function of reaction time
and temperature; the maximization of analytical sensitivity of a wet chemical method as a function of reactant
concentration, pH, and detector wavelength; and the minimization of undesirable impurities in a pharamaceutical
preparation as a function of numerous process variables. The "classical" approach to research and development involves
answering the following three questions in sequence:

I) What are the important factors? (Screening)
2) In what way do these important factors affect the system? (Modeling)
3) What are the optimum levels of the important factors?

As R. M. Driver has pointed out, when the goal of research and development is optimization, an alternative strategy
is often more efficient:

I) What is the optimum combination of all factor levels? (Optimization)
2) In what way do these factors affect the system? (Modeling in the region of the optimum)
3) What are the important factors?

The key to this alternative approach is the use of an efficient experimental design strategy that cam optimize a relatively
large number of factors in a small number of experiments. For many chemical systems involving continuously variable
factors, the sequential simplex method has been found to be a highly efficient experimental design strategy that gives
improved response after only a few experiments. It does not involve detailed mathematical or statistical analysis of
experimental results. Sequential simplex optimization is an alternative evolutionary operation (EVOP) technique that is
not based on traditional factorial designs. It can be used to optimize several factors (not just one or two) in a single study.
Some research and development projects exhibit multiple optima. A familiar analytical chenical example is column
chromatography which often possesses several sets of locally optimal conditions. EVOP strategies such as the sequential
simplex method will operate well in the region of one of these local optima, but they are generally incapable of finding
the global or overall optimum. In such situations, the "classical" approach cam be used to estimate the general region
of the global optimum, after which EVOP methods can be used to "fine tune" the system. For example, in chromatog-
raphy the Laub and Purnell "window diagram" technique cam often be applied to discover the general region of the global
optimum, after which the sequential simplex method cam be used to "fine tune" the system, if necessary. The theory
of these techniques and applications to real situations will be discussed.
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1 Introduction 1 ) re-establishing acceptable product yield as a function of
reaction time and reaction temperature after a design

Most research and development projects require the opti- change in a chemical process;
mization of a system response (dependent variable) as a 2) maximizing the analytical sensitivity of a wet chemical
function of several experimental factors (independent vari- method as a function of reactant concentration, pH, and
ables). Familiar chemical examples are: detector wavelength;

3) tuning-up a nuclear magnetic resonance spectrometer by
About the Author: Stanley N. Deming is with the De- adjusting eleven highly interacting shim coil controls to

partment of Chemistry at the University of Houston- produce optimum peak shape.
University Park. 4) finding a combination of values for eluent variables that
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will give adequate separation in high performance liquid
chromatography.

Although "optimization" is often taken literally to mean
making something "as perfect, effective, or functional as
possible" [1]l, in chemical practice it usually means making
something "acceptable" or "adequate," as in examples one
and four above. Optimization in chemistry usually involves
adjusting a system until it is brought to some desired
threshold of performance.

The dual purposes of this short paper are to discuss sev-
eral strategies for the optimization of chemical systems and
to discuss strengths, weaknesses, and appropriate settings
for each approach. The intent of these comments is not to
suggest rigid guidelines for the proper uses of optimization
methods, but rather to stimulate discussion directed toward
a better understanding of how these methods can be used in
practice.

2. Classical Experimental Designs

The "classical" approach to optimization in research and
development involves answering the following three ques-
tions in sequence:

1) What are the important factors? (SCREENING)
2) In what way do these important factors affect the system?

(MODELING)
3) What are the optimum levels of the important factors?

(OPTIMIZATION)

Classical experimental designs (e.g., fractional factorial
designs and central-composite designs [2,3]) can be used to
screen factors and to acquire data for modeling the system
as a function of the most important variables. The resulting
model can then be used to predict the treatment combination
(experimental conditions) giving the optimum response [4-
6]. The statistical literature is rich in examples showing how
statistically designed experiments have been used in this
way to solve significant chemical problems (e.g., [7]).
A. Modeling

The critical part of the classical approach is the second
step, modeling. At the very least, a model that fits reason-
ably well over a limited region of the factor space can be
used to predict a direction to move to obtain improved
response (as in evolution operation, or EVOP [8]). A model
that fits well over a larger region of factor space is, of
course, even more useful. However, if the (usually empiri-
cal) model contains more than a few factors, then the num-
ber of experiments required to fit the model will be imprac-
tically large. For example, if a full second-order polynomial
model containing k factors is used to model the system, the
number of model parameters will be equal to (k + 1)(k +2)!

T
Figures in brackets indicate literature references.

2; for five, six, seven, and eight factors the numbers of
model parameters are 21, 28, 36, and 45, respectively. At
least this many experiments must be carried out to provide
data for the estimation of the parameter values; typically,
central composite designs are used which require 2k+3k+1
experiments (plus three replicates to estimate "pure error")
for a total of 46, 80, 146, and 276 experiments for five, six,
seven, and eight factors, respectively.

Thus, a desire to avoid extraordinarly large numbers of
experiments becomes a strong driving force for limiting
(typically to only thee or four) the number of factors to be
investigated by classical experimental designs. Hence, the
need for the initial screening of factors to choose only the
most important ones.
B. Screening

There are problems with screening experiments. For ex-
ample, most screening experiments are based on first-order
models which assume no interactions. If interactions do
exist, then factors which truly have a significant affect on
the system might not appear to be statistically significant
and would be discarded by the screening process.

A second problem with screening experiments can occur
if the effect of a factor depends upon its own level "self
interaction"). If screening experiments are carried out in a
region where the response is "flat" with respect to the factor
of interest (a stationary region), that factor will not appear
to a be very significant when, in fact, at different levels of
that factor, the effect on response might be considerable.

As a final example of difficulties in screening for signif-
icant factors, the "wrong" statistical test is usually used
when screening factors for their significance. It is true that
if a factor is "significant at the 95% level of confidence,"
then it is probably an important factor and should be retained
for further investigation. However, if a factor is "not signif-
icant at the 95% level of confidence," it does not mean that
it is an unimportant factor and can be neglected. It might,
for example, be significant at the 94.73% level of confi-
dence, not enough to exceed the common threshold of 95%
confidence, but still highly significant nonetheless. Ideally,
the question that should be asked while carrying out screen-
ing experiments is not "which factors are significant at some
high level of confidence," but rather, "which factors are
insignificant at some equally high level of confidence."
Unfortunately, the type of experimentation required to an-
swer this second question is extensive and expensive. An
alternative approach is to increase the risk (alpha) of stating
that a factor is significant when in fact it is not, so that fewer
truly significant factors are rejected [9].
C. Comments on the use of classical experimental de-

sign for optimization
Classical experimental designs appear to have been suc-

cessful in the past for "optimizing" many existing chemical
systems largely because these systems are usually run not at
the true optimum but rather are operated at some "threshold
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of acceptability." A response surface view of this would be
that the system is being run at a point on the side of a hill;

not at the top of the hill, but far enough up on the side that
the system gives acceptable performance. As long as the

response surface maintains its shape and position, and as
long as the factor levels are kept in statistical control, the
system will perform acceptably.

However, if the response surface changes its shape or
"'moves" slightly (as a result, for example, of scale buildup
in heat exchangers, or different suppliers of feed stocks),
then the previous set of factor levels might no longer pro-
duce adequate performance from the system: the same set-
point will now correspond to some slightly lower position on

a changed response surface. In situations like this, small
screening experiments (such as saturated fractional factorial
designs [2] or Plackett-Burmann designs [101 are not too
much affected by factor interactions and are likely to give
nearly true estimates of the first-order factor effects (e.g.,
the effect of temperature, or the effect of increased amounts
of feed stocks). Similarly, a first-order model offers a good
approximation to the true shape of the response surface over
a limited region. Thus, the application of screening experi-
ments to choose the most significant factors is usually suc-
cessful in this application. When these most significant fac-
tors are used in a model of the system that is first-order with
interactions (fitted, say, to the results of a two-level factorial
design), then the fitted model will usually suggest an appro-
priate direction to move. Changing the factor levels in this
direction will usually move "up" the hill to a point lying
above the threshold of performance and once again achieve
adequate ("optimum") response from the system.

3. Sequential Simplex Optimization

As R.M. Driver has pointed out [11], when the goal of
research and development is optimization, an alternative
strategy is often more efficient. This alternative strategy
asks essentially the same questions as the classical approach
to optimization, but it asks the questions in reverse order:

1) What is the optimum combination of all factor levels?

(OPTIMIZATION)
2) in what way do these factors affect the system? (MOD-

ELING in the region of the optimum)
3) What are the important factors? (SCREENING for ef-

fects in the region of the optimum)

The key to this alternative approach is the use of an
efficient experimental design strategy that can optimize a
relatively large number of factors in a small number of
experiments. Once in the region of the optimum, classical
experimental designs can be used to full advantage to model
the system and determine factor importance in a limited

region of the total factor space.

A. ignoring Initial Screening Experiments and Avoid-
ing Models

For many chemical systems involving continuously vari-
able factors and relative short times for each experiment, the

sequential simplex method [12-38] has been found to be a
highly efficient experimental design strategy that gives im-
proved response after only a few experiments. It is a
logically-driven algorithm that does not involve detailed
mathematical or statistical analysis of experimental results.
Sequential simplex optimization is an alternative evolution-
ary operation (EVOP) technique that is not based on tradi-
tional factorial designs.

There are two reasons for the efficiency of the sequential
simplex method. The first reason is the number of experi-
ments required in the experimental design itself. A simplex
is a geometric figure containing a number of vertexes equal
to one more than the number of dimensions of the factor
space. Each vertex locates a treatment combination in factor
space. Thus, the number of experiments required for a sim-
plex is k + I where, again, k is the number of factors. Thus,
a five, six, seven, or eight factor system would require only
6, 7, 8, or 9 experiments to define a simplex.

The second reason for the efficiency of the sequential
simplex method is that it takes only one or two additional
experiments to move the experimental design into an adja-
cent region of factor space. This is independent of the num-
ber of factors involved. When classical experimental de-
signs are used in this type of "evolutionary operation" mode,
a larger number of experiments (at least half of the factor
combinations in the pattern) is usually required to move the
experimental design into an adjacent region of factor space.

In our experience with the simplex, systems of up to 11
factors can be brought into the region of the optimum in only
15 or 20 experiments after the initial simplex has been
constructed.
B. Limitations

The simplex does have its limitations, however. The sys-
tem must be in "statistical control" if the simplex is to be
used-that is, the system should have only a small amount
of purely experimental uncertainty ("pure error"), It is rec-
ommended that after the initial simplex has been evaluated
and before the first simplex move is begun, the vertex giving
the worst response and the vertex giving the best response
be repeated two more times each to evaluate the reproduci-
bility of the system. If the reproducibility is good, then the
simplex will progress well; if the reproducibility is poor,
then the simplex will tend to wander. In this latter case,
steps should be taken to improve the purely experimental
uncertainty of the system; if this is not possible, then classi-
cal experimental designs offer advantages because of their
noise-reducing capabilities [39].

The system should not drift with time. However, changes
with time can often be detected and corrected for by running
periodic experiments at a standard treatment combination.
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The time of any one experiment must be relatively short.
It has been suggested that the reason factorial experiments
were developed before the sequential simplex was because
of the experimental environment, specifically the improve-
ment of agricultural crop yields. In this context, factorial

experiments offer a great advantage in that several experi-
ments can be carried out simultaneously and many results
can be obtained after only one growing season. If the se-
quential simplex were to be used to improve agricultural
production., only one move could be carried out each year
and it could take several decades to optimize production,

Finally, the simplex is most powerful for continuous
("quantitative") variables. It can be used for discrete vari-

ables where there are several levels-perhaps at least five or
six-and the Levels can be logically ranked. It can not be
used for unranked discrete ("qualitative") variables.

4. Systems Possessing Multiple Optima

Some research and development projects exhibit multiple
optima. A familiar analytical chemical example is column
chromatography which often possesses several sets of lo-
cally optimal conditions [40]. The reason for the existence
of multiple optima is related to the phenomenon of changes
in the order of elution with changing chromatographic con-
ditions. EVOP strategies such as the sequential simplex
method will operate well in the region of one of these local
optima, but they are generally incapable of finding the
global or overall optimum [23]. In such situations, classical
factorial-type experiments can be used to fit models which
in turn can be used to estimate the general region of the
global optimum, after which EVOP methods can be used to
"fine tune" the system. For example, in chromatography the
Laub and Purnell "window diagram" technique [40] can
often be applied to discover the general region of the global
optimum, after which the sequential simplex method can be
used to "fine tune" the system, if necessary [41-491.
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DISCUSSION
of the Stanley N. Deming paper, Optimization

C. K. Bayne
Computing and Telecommunications Division,
Oak Ridge National Laboratory.

I appreciate the opportunity to make comments on
Dr. Deming's paper. I will confine my comments to three
areas: 1) optumization applications; 2) strategies for screen-
ing experiments; and 3) the steepest ascent method.

1. Optimization Applications

In 1971, Rubin, Mitchell, andGoldstein[1]l surveyedthe
previous 25 years of major English language journals of
analytical chemistry under the index heading of "statistics."
This survey uncovered few papers in which experiments
were statistically designed. Similar results were found by
Morgan and Deming in 1974 [2] in their literature search
under the heading "Optim/" in Chemical Abstract and

'Figures in brackets indicate literature references.

Chemical Titles covering eight previous years. Nine years
later, Deming and Morgan [3] found 189 titles for the years
1962-1982 listed in Chemical Abstracts and Science Cita-
tion Index related to sequential simplex optimization. About
156 papers in this search are direct applications to chemical
problems. In a recent survey by Rubin and Bayne [4] for the
years 1974-1984, 65 applications of optimizations and re-
sponse surface methods were found to be related just to
analytical chemistry. These recent literature surveys indi-
cate that statistically designed experiments are becoming an
important part of chemical experiments.

Dr. Deming deserves a large share of credit for this in-
creased use of statistically designed experiments in chem-
istry. He has promoted experimental design by his many
publications, seminars, and lectures. The fact that he is a
chemist who has championed the statistical cause is to be
admired.
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