
Journal of Research of the National Buieau of Standanis
Volume 90, Number 6, November-December. 1985

The Regression Analysis
of Collinear Data

John Mandel
National Bureau of Standards, Gaithersburg, MD 20899

Accepted: July 1, 1985

This paper presents a technique based on the inuitively-simple concepts of Sample Domain and Effective Prediction
Domain, for dealing with linear regression situations involving collinearity of any degree of severity. The Effective
Prediction Domain (EPD) clarifies the concept of collinearity. and leads to conclusions that are quantitative and
practically useful. The method allows for the presence of expansion tenms amongthe regressors, and requies no changes
when dealing with such situations.
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Introduction

The scientists' search for relations between measurable
properties of materials or physical systems can be effec-
tively helped by the statistical technique known as multiple
regression. Even when limited to linear regression, the tech-
nique is often of great value, as we shall see below. Often,
however, difficulties in interpretation arise because of a
condition called collinearity. This condition, which is inher-
ent in the structure of the design points (the X space) of the
regression experiment, is often treated, at least implicitly, as
a sort of disease of the data that is to be remedied by special
mathematical manipulations of the data.

We consider collinearity not as a disease but rather as
additional information provided by the data to the data ana-
lyst, warning him to limit the use of the regression equation
as a prediction tool to specific subspaces of the X space, and
telling him precisely what these subspaces are. Thus,
collinearity is an indication of limitations inherent in the
data. The statistician's task is to detect these limitations and
to express them in a useful manner. If this viewpoint is
adopted, there is no need for remedial techniques. All that
is required is a method for extracting the additional informa-
tion from the data. We will present such a method.

The Model

We assume that measurements y have been made at a
number of "x-points," each point being characterized by the
numerical values of a number of "regressor-variables" xj.
We also assume that y is a linear function of the x -variables.
The mathematical model, forp regressors, is:..=PXI+PX2+- .+PXj+. ..+ppxp+E(1)

where E is the error in the y measurement. We denote by N

the number of points, or "design points", i.e., the combina-
tions of the x's at which y is measured.

Usually, the variable xl is identically equal to "one" for
all N points, to allow for the presence of a constant term.
Then the expected value of y, denoted E(y), is equal to fi1
when all the otherx 's are zero. This point, called the origin,
is seldom one of the design points and is, in fact, quite often
far removed from all design points. In many cases this point
is even devoid of physical meaning.

First Example:
Firefly Data

We present the problem in terms of two examples of real
data. The first data set (Buck [IIl) is shown in table 1. It
consists of 17 points and has two regressors, in addition to

Figures in brackets indicate literature references.
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Table 1. Data for firefly study.

x1 x2 X3 y

1 26 21.1 45
1 35 23.9 40
1 40 17.8 58
1 41 22.0 50
1 45 22.3 31
1 55 23.3 52
1 55 20.5 54
1 56 25.5 38
1 70 21.7 40
1, 75 26.7 28
1 79 25.0 38
1 87 24.4 36
1 100 22.3 36
1 100 25.5 46
1 110 26.7 40
1 130 25.5 31
1 140 26.7 40

Definition of Variables
y =time of first flash (number of minutes after 6:30 p.m.)
x2 =ight intensity (in metercandles, me)
xr=temperature (0 C)

a constant term (xlea 1). The measurement is the time of the
first flash of a firefly, after 6:30 p.m. It is studied as a
function of ambient light intensity (x2) and temperature (x 3).

Figure I is a plot of X3 versus x2. There is obviously a
trend: X3 increases as x2 increases. The existence of a rela-

A%

tion of this type between some of the regressor variables
often causes difficulties in the interpretation of the regres-
sion analysis. To deal with the problem in a general way we
propose a method based on two concepts. The first of these
we shall call the "sample domain."

For our data, the sample domain consists of the rectangle
formed by the vertical straight lines going through the low-
est and highest x2 of the experiment, respectively, and by the
horizontal straight lines going through the lowest and
highest X3 , respectively (See Fig. 1). The concept is readily
generalized to an X space of any number of dimensions, and
becomes a hypercube in such a space. Note that the vertex
B of the sample domain is relatively far from any of the
design points. This has important consequences.

The regression equation

5=IVlx,+0 2 .X 2+03.x 3 (2)

allows us to estimate y at any point (xl, x2, X3 ) (we recall that
xi= 1) and to estimate the variance of 9 at this point. The
point can be inside or outside the sample domain. Obviously
the variance of 9, which we denote by Var (9), will tend to
become larger as the point for which the prediction is made
is further away from the cluster of points involved in the
experiment. Therefore Var () at the point B may be consid-
erably larger than at points A, C, and D. Such a condition
is associated with the concept of "collinearity." We define
collinearity, in a semi-quantitative way, as the condition
that arises when for at least one of the vertices of the sample
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domain, Var (9) is considerably larger than for the other
vertices. The concept will become clearer as we proceed.

At any rate, the larger variance at one of the vertices of
the sample domain is generally the lesser of two concerns,
the other being that the regression equation, for which valid-
ity may have been reasonably firmly established in the vicin-
ity of the cluster of experimental points, may no longer be
valid at a more distant point. It is important to note that the
evidence from the data alone cannot justify inferences at
such distant points. In order to validate prediction at such
points, it is necessary to introduce either additional data or
additional assumptions.

For these reasons, we seek to establish a region in the
X-space for which prediction is reasonably safe on the basis
of the experiment alone. We call this the Effective Predic-

'tion Domain, or EPD.
The EPD is the second concept required for our treatment

of collinear data. It is closely related to the first concept, the
sample domain, as will be shown below.

Establishing the EPD
Our procedure consists of two steps, involving two suc-

cessive transformations of the coordinate system. The orig-
inal coordinate system in which the x-regressors are ex-
pressed is referred to as the X-system.

1. The Z System

The first step consists in a translation of the X-system
(parallel to itself) to a different origin, located centrally
within the cluster of experimental points (centering); and
simultaneously by a resealing of each x to a standard scale.
The new system, called the Z-system, is given by the equa-
tions2

j = Z0, E Z32= 1 (5)

It is then reasonable to choose a value K in (3a) equal to

K=I/VN (6)

so as to make Z21=1

The values of Cj and Rj for the firefly data are given in
table 2. Contrary to statements found in the literature (see
discussion at end of this paper), the centering and rescaling
defined by the Correlation Scale Transformation have no
effect whatsever on collinearity. The location of the sample
domain relative to the design points remains unchanged,
though it is expressed in different coordinates.

To arrive at an EPD, a second operation is necessary, viz.
a rotation of the Z-coordinate system to a new coordinate
system, which we shall call the W-system (of coordinates).

2. The W-System

The rotation from Z to W is accomplished by the method
of Principal Components, or its equivalent, the Singular
Value Decomposition (SVD). For a discussion of this
method the reader is referred to Mandel [2]. Here we merely
recall a few facts. Each w -coordinate is a linear combination
of all z-coordinates given by the matrix equation:

W=Z V (7)

where V is an orthogonal matrix.
In algebraic notation, eq (7) becomes

For j = 1: z1 =K (a constant)

Forj>l: Zji= ci

For Cj and Ri we consider two choices, which we call the
Correlation Scale Transformation (CST) and the Range
Midrange Transformation (RMT). We discuss first the Cor-
relation Scale Transformation defined by the choice

(4)

where the vki are the elements of the V matrix. The vkj, for
a given k, are simply the direction cosines of the wk axis
with respect to the Z-system. Consequently,

2 = I

Cjxij, Rj -
(9)I

where i = 1 to N.
It easily follows from (3b) that

2We assume that in the X-system, the regressor x' is identically equal to
unity, to allow for an independent term.

Table 2. Firefly data-parameters for correlation scale transformation.

j C R

1 0 4.123106
2 73.176471 135.264447
3 23.582353 10.073962
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ItWik = E ZijVkj

i
i=1 toN
j=l top (8)



Since the rotation is orthogonal, any two distinct w-axes,
say wk and Wk., are orthogonal and consequently:

for k*k' (10)E VkjI Vka °

For the firefly data, the V matrix is shown in table 3, and the
complete set of z and w coordinates is given in table 4.

Note that row 2, as well as column 1, in table 3 consists
of the element "one" in one cell and zeros in all others cells.
This is a consequence of the orthogonality of z2 with respect
to all zj with j>1. This orthogonality is in turn due to the
nature of the Correlation Scale Transformation, as ex-
pressed by eq (4).

At the bottom of the w columns we find values labeled Xi 
They are simply the sums of squares of all w-values in that
column.

bj , wJ7 (11)

Table 3. Firefly data-V matrix.

i
k 1 2 3

1 0 .7071 .7071
2 1.000 0 0
3 0 -. 7071 .7071

Table 4. Firefly data-z and w coordinates (CST).1

Point Z2 Z3 WI W3

i --.3488 -.2464 -.4216 .0724
2 -. 2822 .0315 -.1780 .2219
3 -. 2453 - .5740 -. 5800 - .2324
4 -.2379 -.1571 -.2800 .0572
5 -. 2083 -. 1273 -.2381 .0573

6 -. 1344 -. 0280 -. 1156 .0753
7 -.1344 -.3060 -.3121 -.1213
8 -. 1270 .1904 .0440 .2245
9 -.0235 -.1869 -.1495 -.1155

10 .0135 .3095 .2276 .2094

11 .0431 .1407 .1292 .0691
12 .1022 .0812 .1289 -. 0148
13 .1983 -. 1273 .0495 -. 2302
14 .1983 .1904 .2741 -. 0055
15 .2722 .3095 .4106 .0264
16 .4201 .1904 .4309 -. 1624
17 .4940 .3095 .5674 -. 1304

X1=1.6549 X3 = .3451

z1 = N1= .2425 for all i
w2= 1/Xi7= .2425 for all i, X2 1 Oc0

The Xi are also the eigenvalues of the Z'Z matrix which,
for our choice of Cj and Rj, is the correlation matrix of the
regressors x. Note that w2 is the constant= 1/VW. Conse-
quently

(flN

We need to consider wl and w3 only. A similar situation
applied to the z coordinates, where z,1/VN for all i.
Figure 2 shows both the z-coordinates (Z2 and z3) and the
w-coordinates (w, and w3) for the firefly data. The order of
the w-coordinates (wt, w2 , W3) is that of the corresponding
X-values, in decreasing order.

3. The Effective Prediction Domain (EPD)

The EPD is simply the sample domain corresponding to
the W-system of coordinates. Thus, straight lines parallel to
the w3 -axis are drawn through the smallest and largest wl,
respectively, and lines parallel to the wl-axis are drawn
through the smallest and largest W3. Here again generaliza-
tion is readily made to a p -dimensional W-space. The EPD
for the firefly data is also shown in figure 2.

The interpretation of EPD is straightforward. Unlike the
sample domain in either the X-system or the Z-system, the
EPD excludes points that are distant from the cluster of
regressor points. This has two advantages. In the first place,
the use of the regression equation is justified for all points
inside, and on the periphery of the EPD. And accordingly,
the variance of the predicted value 9 for any such point will
not be unduly large. These statements require more detailed
treatment. To this effect we introduce the concept of vari-
ance factor (VF).

4. The Variance Factor (VF)
From regression theory we know that the variance of any

linear functon, say L, of the coefficient estimates sj is of the
form:

Var (L)=f(X) u,2 (12)

where or is the variance of the experimental errors e of the
y measurements. The multiplier f(X) is independent of the
y and depends only on the X matrix and on the coefficients
in the L function. We call this multiplier the variance fac-
tor, VF.

Thus, we have:

Var (0j)=VF(0) ora (13)

and
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Figure 2-EPD for firefly data.
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Var (U) VF(i) .a 2 (14)

In eq (14), 9 is the estimated, or predicted y value at any
chosen point in X-space. VF (v) is of course a function of
the location of this point.

Returning now to our statements above, it is well-known
that a regression equation can show excellent (very small)
residuals and yet be very poor for certain prediction pur-
poses. The small residuals merely mean that a good fit has
been obtained at the points used in the experiment. This is
no guarantee that the fit is good at other points. However,
if the regression equation is scientifically reasonable, it is
likely that the experimental situation underlying it will also
be valid for points that are close to the cluster of the regres-
sor points used in the experiment. Every point in the EPD
satisfies this requirement.

Furthermore, the variance of prediction, measured by the
VF, will also be reasonably small for all points of the EPD,

simply because they are geometrically close to the design

points.
The calculation of VF (3) is quite simple, once the V-

matrix and the X values have been calculated. It is based on
the equation

(15)VFUf)=Z uk

k

where Uk is defined as:

Uk=c (16)

Combining eqs (8) and (16), we obtain

(17)Uik jE Zij V
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and hence:

(2 ZiJ",)

VFt-v)= A. (18)

Figure 3 shows the VF values at the vertices of the orig-
inal sample domain and of the EPD. Interpreting these re-
sults, we see that the collinearity of our data is reflected in
the rejection of an appreciable portion of the sample domain
for purposes of safe prediction. This does not mean that
prediction outside the EPD is impossible, or unacceptable.
It merely means that such prediction cannot be justified on
the basis of the data alone. Of course, the risk of predicting
outside the EPD increases with the distance from the EPD.
It will generally be reasonably safe to use the regression
equation even outside the EPD, as long as the point for
which prediction is made is reasonably close to the borders
of the EPD. Using eq (18), the VF for any contemplated
prediction point is readily calculated and can serve as a basis
for decision.

Second Example:
Calibration for Protein Determination

The instructive and intuitively satisfying graphical dis-
play of the EPD becomes impossible when the number of
regressors, including the independent term, exceeds 3. We
must then replace the graphical procedure by an analytical

d

C

Ib

one, as will now be shown in the treatment of our second
example.

The data were presented by Fearn [3], in a discussion of
Ridge Regression. They represent the linear regression of
percent protein, in ground wheat samples, on near-infrared
reflectance at six different wavelengths.

For reasons of simplicity in presentation, we include here
only three of the six wavelengths, a change that has a rather
small effect on the final outcome of the analysis: it turns out
that the regression equation based on these 3 wavelengths is
very nearly as precise as that based on 6 wavelengths.

The data, displayed in table 5, are a very good example
of the use of regression equations: the regression equation is
indeed to be used as a "calibration curve" for the analysis of
protein, using the rapid spectrometry instead of the far more
time-consuming Kjeldahl nitrogen determination. Our data
have an N value of 24, and p (including the independent
term) is 4.

Table 6 exhibits the correlation matrix of the 24 design
points. It is very apparent that the x values at all three
wavelengths are highly correlated with each other, thus indi-
cating a high degree of collinearity. At a first glance one
would be very skeptical about such a set of data, and suspect
that the X matrix shows such a high degree of redundancy
as to make the regression useless for prediction purposes.
Fearn explains that the correlations are more a reflection of
particle size variability than of protein content. Our analysis
will confirm that, properly interpreted, the data lead to a
very satisfactory calibration procedure.

We will find it useful to introduce a slightly different Z
transformation, which we call the Range-Midrange Trans-
formation.

Sample Domain

Vertex
A
B
C
D

EPD

Vertex
a
b
c
d

VF
.39

1.71
.69
.30

Figure 3-VF at vertices of sample
domain and of EPD.

VF
.41
.41
.41

.40
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Table 5. Protein Calibration Data(')

Reflectance
X'2 X3

246 374
236 386
240 359
236 352
243 366
273 404
242 370
238 370
258 393
264 384
243 367
233 365
288 415
293 421
324 448
271 407
360 484
274 406
260 385
269 389
242 366
285 410
255 376
276 396

% Protein
X4 Y

386 9.23
383 8.01
353 10.95
340 11.67
371 10.41
433 9.51
377 8.67
353 7.75
377 8.05
398 11.39
378 9.95
365 8.25
443 10.57
450 10.23
467 11.87
451 8.09
524 12.55
407 8.38
374 9.64
391 11.35
353 9.70
445 10.75
383 10.75
404 11.47

Table 6. Protein calibration data-correlation matrix of x, through x4 .

I 0 0 0
1 .9843 .9337

i .9545
l

The Range-Midrange Transformation

The Range-Midrange Transformation (RMT) is defined
as follows:

Forj=l: zl=1 (19a)

EPD for the Protein Data
The EPD resulting from the Singular Value Decomposi-

tion based on the Range-Midrange Transformaton will not
be he same as the EPD we would have obtained using the
Correlation Scale Transformation, but we will see that those
features of the EPD that are of importance for us, in estab-
lishing the limitations of the regression equation, are practi-
cally unaffected.

Table 7 shows the C and R values for the four regressors
and table 8 exhibits the V matrix and the X values obtained
from the Singular Value Decomposition. The latter, it may
be recalled, simply expresses the rotation of the Z coordinate
system to the W system.

For each wk coordinate, there are 24 values, correspond-
ing to the 24 regressor points.

Table 9 shows the smallest and the largest Wk value, for
each of the four k.

According to table 9, we must have, in the EPD:

(20)

with similar statements for w 2, W3, and w4. Applying now eq

Table 7. Protein calibration data-parameters for Z transformation
(RMT).

j C R

1l0 1

2 296.5 63.5
3 418.0 66.0
4 432.0 92.0

Table 8. Protein calibration data-V matrix and X values (RMT).

k 1 2 3 4 X

X -. 6665 .4845 .4217 .3784 43.7810
2 .7365 .3299 .3797 .4523 8.3782
3 -. 1096 -. 5491 -. 2509 .7896 .3758
4 -. 0332 -. 5958 .7843 -. 1698 .06624

Forj>l: zj= iR i

but now C1 is defined as the midrange of the N values of x
and Rj is one-half the range of these values. With these
definitions, it is clear that the smallest z-value, for any
regressor, is (-1) and the largest z-value is (+1). It is
because of this - I to + I scale that this transformation was
introduced. The benefits of this scale will become apparent
in the following section.

Table 9. Protein calibration data-limits defining the EPD.

Coordinate
(k) Smallest w Largest w

1 -1.9282 .6181
2 -. 4097 1.8989
3 -. 1669 .3158
4 -. 0801 .1324
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2
3
4
5
6
7
8
9
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I11
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13
14
l5
16
17
18
19
20
21
22
23
24
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(8), this double inequality can be written:

-1.9282C-.6665 zl+.4845 Z2+.4217 z3+.3784 z4

-3.6181

Since z, is constant and = I, this double inequality be-
comes:

-1.2617' 4845 z2+.4217 Z3+.3784 z4t 1.2846 . (21a)

With the RMT, the value of any zk is, for any k > 1, between
(-1) and (+ 1). Thus the expression in the middle has, for
all design points, a value between -1.2846 and 1.2846,
where 1.2846 is the sum of the absolute values of the three
coefficients. Therefore, the double inequality expressed by
eq (21a) holds, essentially, for every point in the original
sample domain. Thus, wl, the first coordinate of the EPD,
which represents its largest dimension, imposes essentially
no restrictions on the sample domain.

Doing the same calculations for the three other
w-coordinates (see table 9), we obtain, respectively:

-I . 1462 .3299 Z2+.3797 Z3+.4523 Z4C 1 11619 (21b)

-0.568S -. 5491 z-.2509 Z3+.7896 z4- .4254 (21c)

-.0469 -. 5958 Z2+.7843 z3-.1698 z4s .1656. (21d)

We see that w2 too, imposes only very light restrictions on
the sample domain. On the other hand, W3 and W4 do imply
limitations that eliminate appreciable portions of the sample
domain from the EPD.

We could readily convert eqs (21c) and (21d) to x coordi-
nates by means of table 7 and eqs (19a) and (19b), but the
z-coordinates, using the Range-Midrange Transformation,
are more readily interpreted in terms of the severity of
collinearity than the x-coordinates.

Thus, the sum of the absolute values of the coefficients in
the middle terms of (21c) and (21d) are 1.5896 and 1.5499,
respectively. Points for which these linear combinations
take the valves ± 1.5896 and ± 1.5499 exist in the original
sample domain. The EPD, on the other hand, limits these
functions to intervals with much narrower limits.

Effect of Type
of Z Transformation

We have used two different Z transformations, the Corre-
lation Scale, and the Range-Midrange. It is proper to ask
how our results would have been affected in the Protein
Calibration Data, had we used Correlation Scale, instead of
the Range-Midrange Transformation. We show the com-

Table 10. Protein calibration data-effect of Z transfornation. 1

w coordinate Z Transf. Inequalities

I CST -3.034 1.021 2+21.061 2,3+4•3.082
RMT -3.334 1.280 z2+1.114 z3+z4•3.395

2 CST
RMT -2.534S•729 :z+.840 z3+z4•2.569

3 CST -. 075•-.686 z2-.321 z3+z4 .535
RMT -. 072•-.695 z2-.318 z3+z4•.539

4 CST -. 278•-3.531 22+4.640 Z3-Z4• 980
RMT -. 276s-3.509 z2+4.619 z3-,-4.975

'All inequalities are expressed in RMT z coordinates.

parison in table 10. Let us recall that with the CST, one of
the w coordinates yields a X-value of unity, and a constant
w value for all points. Therefore, we obtain for CST, only
three sets of inequalities, as compared to the four sets for
RMT. To allow the comparison between the two transfor-
mation to be made, we have multiplied eqs (21a) through
(2 Id) by positive constants, so as to make the coefficient of
z4 equal to ± 1. The same was done for the corresponding
inequalities obtained by the Correlation Scale Transforma-
tion.

Of course, since the z coordinates are different for the two
transformations, the inequalities for the CST, expressed in
the CST z-units, had to be converted to RMT z-units, for a
meaningful comparison. As can be seen from table 10, the
two smallest dimensions of the EPD are practically the same
for the two transformations. Thus, even though the method
of principal components is not invariant with respect to
linear transformations of scale, our analysis leads, in this
case, to very similar results for the small dimensions of the
EPD. We believe that this is generally true for all situations
in which collinearity is noticeable, i.e., for all situations in
which the EPD eliminates considerable portions of the orig-
inal sample domain. For situations in which this does not
apply, i.e., totally non-collinear cases, the inequalities do
not matter, since they impose no restrictions on the sample
domain.

It is interesting to contrast the remarkable similarity be-
tween the inequalities for W3 and w4 for the two transforma-
tions in table 10, with the behavior of a commonly advo-
cated measure of collinearity (Belsley, Kuh, and Welsch
[4], the condition-number.

The SVD resulting from the CST yields the following
eigenvalues: 2.9151, 1.0000, .07176, .01312. The condi-
tion number is defined as the ratio of the largest to the
smallest eigenvalue. In this case:

condition number=2.9151/.01312=222.2

On the other hand, the SVD resulting from the RMT on the
same data yields the eigenvalues: 43.7810, 8.3782, .37575,
.066244. This time we have:

472



condition number=43.7810/.066244=660.9

Thus the condition number varies considerably when the
data are subjected to different standardizing transforma-
tions. It is not clear what useful information can be derived

from the condition number.
By contrast, the treatment of collinearity we advocate has

a useful and readily understood interpretation: the EPD is

that part of the X space in which, and near which, prediction

is safe. It also indicates what portions of the original sample

domain are inappropriate for prediction on the basis of the
given data alone. It fulfills this function in a way which is
practically invariant with respect to intermediate transfor-
mations of scale. We use the qualifier "intenmediate" be-

cause collinearity has meaning only in terms of a given

original coordinate system (the X system). This system,
which determines the original sample domain, must be con-

sidered fixed. On the other hand, transformations of this

system prior to calculating the EPD can be defined in differ-

ent ways without affecting the practical inferences drawn

from the data on the basis of the final EPD derived form the

standardizing transformation.

Cross-Validation

We can take advantage of the availability of a second set

of protein calibration data, also given in Fearn [3]; to verify
the correctness of our approach. Fearn lists 26 additional
points for which the reflectance measurements, as well as

the Kjeldahl nitrogen determination, were made. We ap-

plied the Z transformation obtained above (RMT on first set
of 24 points) to each of these 26 points, and noted every

point for which at least one of the four sets of inequalities
(21a) through (21d) failed to be satisfied. We found 14 such

points. This means that 14 "future points" obtained under
the same test conditions were outside the EPD established
on the basis of the original 24 points. However, as we

observed above, as long as the point is not far from the EPD,
prediction at that point is likely to be valid. We tested
"predictability" at these 14 points by calculating the VF

value for each of them, and by comparing the predicted
protein value with the measured one. The results are shown

in table 11. It is apparent that all VF are relatively small,

indicating that even though these 14 points are outside the

EPD calculated from the original set, they are not far from
that EPD. This is confirmed by the good agreement between

the observed and predicted values. The standard deviation
of fit for the original set of 24 points was 0.23; the standard

deviation for a single measurement derived from the 14

differences in table 11 is 0.30.

Expansion Terms

Quite frequently, a regression equation contains x vari-
ables that are non-linear functions of one or more of the

Table 11. Protein calibration data-cross-validation of analysis.

% Protein
Pointl Observed Predicted VF

1 8.66 9.53 .281
4 11.77 11.97 .416
6 10.46 10.96 .193
9 12.03 11.47 .212

10 9.43 9.54 .762
11 8.66 8.15 .454
12 14.44 13.99 .881
14 10.41 10.17 .468
16 11.69 11.24 .472

17 12.19 11.83 .390
18 11.59 11.39 .314
20 8.60 8.39 .201
22 9.34 8.93 .151
26 10.89 10.94 .741

rPoint in additional set (Fearn [3]) with its number designation in that set.

other x variables, such as x2, x2 x3 , etc. Polynomial regres-

sions are necessarily of this type. Since the x variables are

non-stochastic in the usual regression models, the least

squares solution for the regression equation is not affected
by the presence of such "expansion terms." On the other

hand, collinearity can be introduced, or removed, or modi-
fied by them.

In our treatment the expansion terms cause no additional
problems. Consider for example, the regression

(22)YI3tXl+p 2 X2+±3X2+E

with xl 31.

Here we have p = 3. Using RMT, followed by a singular

value decomposition, we obtain an EPD of three dimen-

sions, leading to the inequalities.

A1 •5v5B 1, A2 5w2 5B2 , A 3 •w 3•B 3 . (23)

Expressing the w as functions of the z, this leads to three

double inequalities governing the z, of the form

A,'-f 1 (z)•Bl, A2 •f 2(z)•B 2, A3 •f 3(z)5B 3 , (23)

2Now, since x3=x 2 , we have

X3 -C3 X22-C3 (R2Z2+C2 )2 -C3

Z3 R3 R3 R3

Hence:

CZi-C 3 2 C2 R2 R2 ,2
23= R3 2 R (24)

Because of this relation the functions fs(z),f2(z),f3(z) be-
come functions of zl, Z2 (and Z2) only. Using this fact, we
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interpret the three sets of inequalities (23) exactly as we
have interpreted eqs (21a) through (21d) by determining
which of these inequalities, if any, impose restrictions on
the use of the original sample domain.

To illustrate this procedure, consider the small set of
artificial data shown in table 12, for which the model is
given at the bottom of the table. The term X3=x2 introduces
a high correlation between x2 and X 3 and consequently also
considerable collinearity.

The inequalities characterizing the EPD based on a
Range-Midrange Transformation and converted to the z-
scales, are shown in table 13. Applying eq (24) to express
z3 in terms of z2, the three double-inequalities become:

for wj:-.8 4 3 !5I.12 8 4 22+±2853 z2•1.4137
for w2 :-.69285.8 5 4 1 Z2 +.1612 2.:1.0i53
for W3 : .00775.0003 22+.3218 z224 .3221.

It is readily verified that of these six inequalities, all but
one are satisfied for all 2z values between - I and + 1. The
last one, involving the left side of the third set, is satisfied
for all 22 values except for the interval: -. 15625.5 155.
This corresponds to an x, interval between 2.1 and 2.8, or
between the design points x,=2. 1 and x2 =3.6 (see table
12). The interpretation of this finding is that while ail design
points are of course inside the EPD, a small portion of the
curve x22 versus x2 falls slightly outside the EPD. This is of
no practical significance since the VF for these points, even
though they are outside the EPD, does not exceed 0.58. By
comparison, the smallest VF value along the curve, for the
range xc,.2 to x2=4,7, is of the order of 0.26. Thus we see
that the serious collinearity in this data set is merely a
consequence of the presence of the expansion term x3=x2.

Table 12. An anificia' quadratic examplel.

Point y2 r3 P

1 .2 .04 28.3
2 .4 .16 27.5
3 1 1.00 25.6
4 2.1 4.41 28.7
5 3.6 12.96 46.4
6 4.7 22.09 69.8

'N = P3LL+PX2+,x23i3+: f3=30, R2=8, 1,=3.5. c,=0.2 xa~l.
Nale Tha 3 x

Table 13. Quadratic examrple-inequalities for EPD.

r-coordinate Inequalities

w, -1.12815-.5070 z2+.6214 z3 •1.1284
Wa -. 8541•.5029 z2+.3 511 z3 •. 85 4 1
w3 -. 3141s-.7005 z2 +.7008 z3 5.0003

Any point in X space, in order to be acceptable, must lie on
the curve x 3=x22. An X3 with any other value is obviously not
valid and our analysis of the data, through the EPD, calls
attention to this fact: in the direction of w3, the width of the
EPD is only .31 as compared with widths of 2.26 and 1.71
for w, and w,.

Discussion

The common mathematical definition of collinearity is
the existence of at least one linear relation between the xt's,
of the form

E cjXj = OJ. j=I top (25)

where the cj are not all zero, and such that eq (25) holds with
the same cj values, for all i. This defines what we shall call
"exact collinearity. " Geometrically, it means that all design
points lie in an hyperplane of the x-space, going through the
origin of the coordinate system. Equation (25) also implies
that the matrix X'X is singular, and consequently that the
estimates of the 1 coefficients are not uniquely defined.

Exact collinearity seldom occurs in real experimental sit-
uations; indeed, if theX matrix is notthe result of a designed
experiment, it is highly improbable that a relation such as eq

(25) would hold exactly. If, on the other hand, the experi-
ment is designed, care would generally have been taken to
avoid a situation of exact coilinearity.

While exact collinearity is practically of little concern,
near-collinearity is a frequent occurrence in real-life data.
This occurs when an equation such as (25) is "approx-
imately" true for all i. Many attempts have been made to
define more closely the concept of near-collinearity, but
while these endeavors have led to a number of proposals for
measuring collinearity, they are of little practical use to the
experimenter confronted with the task of interpreting his
data.

It is not our intention to discuss here the pros and cons of
the various attempts made by a number of authors to
"remedy" a near-collinear situation. The best-known of
these remedial procedures is Ridge Regression. We merely
repeat what we have said in the body of the paper: any
attempt to remedy collinearity must necessarily be based on
additional assumptions, unless it consists of making addi-
tional measurements, The latter alternative is of course log-
ical and valid, but the making of assumptions invented
specifically for the purpose of removing collinearity does
not appear to us to be a recommendable policy in data
analysis.

One easily recognizable condition leading to collinearity
is the existence of at least one high correlation coefficient
among the non-diagonal elements of the correlation matrix
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of the x's. This has given rise to the concept of the Variance
Inflation Factor (VIF). The VIF for 13> is defined (Draper

and Smith [5]), as:

VIF(0)= I1 (26)

where R1 is the multiple correlation coefficient of xj on all

other regressors. If d represents a residual in this regression,
the usual formula for Rj is given by

Rj2= I _ Ed 2 (27)
E(XjXj)2

Now, Snee and Marquardt (Belsley [6], "comments") make,
implicitly, a distinction between the two "models":

Y=3 1 xI+ 32 x2 + +R3pxp+E (28a)

with xsl 1, and

Y - =,02(X2-32)+ " +, p(Xp -Rp)+E (28b)

where (28b) is called the "centered" model. For (28b), Snee

and Marquardt use eq. (27), but for (28a) they appear to use

the definition:

R l E21 _ d2 (29)

Equation 29, in which the denominator of the last term is not

centered, is not explicitly given by Snee and Marquardt, but

is implied by their statement:
"If the domain of prediction includes the full

range from the natural origin through the range of

the data, then collinearity diagnostics should not
be mean-centered," and confirmed by the VIF
values given in their table 1. In this table, "no
centering" results in VIF values of 200,000 and
400,000, while the VIF for the "centered" data are

unity. The quoted statement occurs in a section

entitled "Model building must consider the in-
tended or implied domain of prediction." The

basic idea underlying the section in question is

that the analysis of the data, based on the
"collinearity diagnostics" (specifically: the VIF

values), is goverened by the location of the points

were one wishes to make predictions and, more
specifically, on whether the origin (xl=I,

x2=x3 .. =0) is such a point. The VIF values
which, according to Snee and Marquardt's formu-

las, depend heavily on whether or not this origin
is included, will then indicate the quality of the

predicted values.
A more reasonable approach, and one more consistent with

the procedures commonly used by scientists, is to limit

prediction to the vicinity of where one made the measure-

ments, unless additional information is available that justi-
fies extrapolation of the regression equation to more distant
points of the samples space. The vicinity of the measured
points is determined by the EPD which, in the case of
collinearity, may be considerably smaller than the sample

domain. In this view, it is the location of the design points,

rather than that of the intended points of prediction, that
determines predictability. The latter is measured, not by

VIF values, but rather by the more concrete VF values, for

any desired point of prediction.
The view advocated by Snee and Marquardt sometimes

results in an enormous difference in the VIF values between

the centered and non-centered forms. Equation 29 serves no

useful purpose and is, in fact, unjustified and misleading. It

is unjustified because it not only includes the origin (xi = 1,

xk =0 for k>l) in the correlation and VIF calculations, but
moreover, gives this point infinite weight in these calcula-

tons. Yet, no measurement was made at that point. Equation

29 is also misleading because it leads to very large VIF

values for some non-centered regressions, implying that
severe "ill-conditioning" exists, even when the X matrix is

except for some trivial coding, completely orthogonal (cf.

[6]).
The ill-conditioning exists only in terms of the large VIF

value. It is an artifact arising from the desire to make the two

forms of the regression equation into two distinct "models".
The two forms, eqs 28a and 28b lead to identical esti-

mates for the 13>, including PI, and for their standard errors.

They also lead to identical values and variances for an esti-

mated (predicted) v, at any point of the X space. There

seems to be no valid reason for the two distinct equations for

the VIF. They only lead to the false impression that center-

ing can reduce or even remove collinearity.
Our viewpoint in this paper is that the usefulness of a

regression equation lies in its abilty to "predict" y for inter-

esting combinations of the x's. We also take the position

that inferences from the data alone should be confined to x

points that are in the general geometric vicinity of the cluster

of design points. An inference for points that are well out-

side this domain (i.e., outside a suitably defined EPD) is, in

the absence of additional information, only a tentative con-

clusion, and not a valid scientific inference. Such conclu-

sions may however, be very useful, provided their tentative

character is recognized, and provided they are subsequently

subjected to further experimental verification.
Daniel and Wood [7] discuss briefly the relation between

the variance of 9 and the location of the point at which the

prediction is made. However, their discussion is in the con-
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text of selecting the best subset of regressors from among
the entire set of regressors, a subject different from the one
dealt with in this paper.

Another publication that deals explicitly with predictabil-
ity is a paper by Willan and Watts [8]. These authors define
a "Region of Effective Predictability" (REPA) as that portion
of the X space in which the variance of the predicted 5 does
not exceed twice the variance of 5 predicted at the centroid
of the X matrix. The volume of the region is then compared
with that of a similarly defined REP, denoted REPO. The
latter refers to a "fictitious orthogonal reference design" of
"orthogonal data with the same N and the same rms values
as the actual data." The ratio of the volume of REPA to that
of REPO is taken as "an overall measure of the loss of
predictability volume due to collinearity".

This concept, apart from its artificial character, suffers
from other shortcomings. Like so many other treatments, it
attempts to provide a measure of collinearity. But the prac-
titioner who is confronted with a collinearX matrix does not
need a measure of collinearity: he needs a way to use the
data for the purpose for which they were obtained. Further-
more, this measure loses its meaning when expansion vari-
ables are present. For example, for the artificial quadratic
set of table 12, Willan and Watts' measure would indicate
a high degree of collinearity which, while literally true, is
totally misleading since the collinearity in no way reduces
the usefulness and predicting power of the regression equa-
tion, as long as the meaning of the expansion term is taken
into account. But even in cases withoutexpansion terms, the
measure in question may be misleading. Thus when applied
to the protein calibration data of table 5, it may well lead the
analyst to give up on these data as a hopelessly highly-
collinear set, whereas, as we have seen, there is nothing
wrong with this set and it can indeed be used very effec-
tively for the calibration of a method for protein determina-
tion based on reflectance measurements.

Finally, a few words about estimating the ,,-coefficients
considered as rates of change of y with changes in the
individual xp. As pointed out by Box [9], this is generally
not a desirable use of regression equations. If, however, it

is the major purpose of a-particular experiment, then this
experiment should be designed accordingly, which means:
essentially with an orthogonal X matrix. A collinear X ma-
trix leads to the ability to estimate certain linear combina-
tions of the O's much better than the Os's themselves. The
experimenter can calculate the VF values, not only for any
point of X space, but also for any 1) or combination of Pl's,
and he can do this without making a single measurement,
i.e., in the planning stages of the experiment. If the exper-
imenter does not take advantage of this opportunity, he may
be in for considerable disappointment, after having spent
time, money, and effort on inadequate experimentation. We
believe that he advocacy of remedial techniques, such as
Ridge Regression for collinear data is unwise. One of the
most important tasks of a data analyst is to detect, and to call
attention to, limitations in the use and interpretation of the
data.
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