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Feasibility studies on the application of multivariate statistical and mathematical algorithms to chemical problems 
have proliferated over the past 15 years. In contrast to this. most conunercia11y available computerized analytical 
instruments have used in the data systems only those algorithms which acquire, display, or massage raw data. These 
techniques would fall into the "preprocessing stage" of sophisticated data analysis studies. An exception to this is, of 
course, are the efforts of instrumental manufacturers in the area of spectral library search. Recent firsthand experiences 
with several groups designing instruments and analytical procedures for which rudimentary statistical techniques were 
inadequate have focused efforts on the question of multivariate data systems for instrumentation. That a sophisticated 
and versatile mathematical data system must also be intelligent (not just a number cruncher) is an overriding consider­
ation in our current development. For example, consider a system set up to perform pattern recognition. Either all users 
need to understand the interaction of data structures with algorithm type and assumptions or the data system must possess 
such an understanding. It would seem, in such cases, that the algorithm driver should include an expert systems 
specifically geared to mimic a chemometrician as well as one to aid interpretation in terms of the chemistry of a result. 
Three areas of modem analysis will be discussed: 1) developments in the area of preprocessing and pattern recognition 
systems for pyrolysis gas chromatography and pyrolysis mass spectrometry; 2) methods projected for the cross interpre­
tation of several analysis techniques such as several spectroscopies on single samples; and 3) the advantages of having 
weIl defined chemical problems for expert systems/pattern recognition automation. 

Key words: data systems, intelligent; instrumentation; multivariate algorithms, statistical and mathematical; pattern 
recognition; preprocessing; pyrolysis gas chromatography; pyrolysis mass spectrometry. 

Modern computer hardware and ~oftware technologie~ 
have revolutionized the direction of analytical chemi~try 
over the past 15 year~. Standard multivariate ~tati~tical tech, 
nique~ applied to optimization and control of in~trumenta, 
tion a~ well a~ routine decision making are at the forefront 
of new instrumental methods such as biomedical 3, 
dimen~ional ~canner~ and pyrolysi~ MS and GC/MS a~ well 
a~ more e~tabli~hed mea~urement techniques. De~pite the~e 
advance~, little attention has been paid to the exploitation of 
intelligent computerized instrumentation in the de~ign pha~e 
of chemical research. 

Instrumental intelligence i~ the ability of a ~cientific in, 
strument to perform a ~ingle or ~everal intelligence func, 
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tion~ in such a way that operation~ normally performed by 
the ~cienti~t are completely under automated computer con, 
trol and deci~ion making. Under this definition, intelligent 
in~truments are quite common. Indeed in recent year~, man, 
ufacturer~ of ~mall scientific equipment have used the term 
"intelligent" in conjunction with single purpose items such 
as recorders to describe the addition of software andlor 
programmability to the device. Concurrent with this, larger 
scientific instruments have been marketed with data systems 
hosting a wide variety of intelligence functions including 
control and optimization of instrumental variables, optional 
modes of experimental design, signal averaging, fIltering 
and integration as well as post analysis data massaging and 
library search interpretation. Although instruments with the 
software to perform sophisticated intelligence operations 
exist, they are not so readily marketed as intelligent instru, 
ments. For example, modern pulsed Fourier transforms nu, 
clear magnetic resonance spectrometers (NMR) have micro' 
computers built into the system, operate over a wide range 



of NMR experimental designs, and control instrumental 
parameters; however, decision making is, for the most part, 
an operator based function. For this reason, such instru­
ments have limited "intelligence" in comparison to the level 
of intelligence required to carry an experiment to comple­
tion without extensive interaction with the operator. In fact, 
it could be that more intelligent research instruments might 
also be less versatile. The limitation is the current state of 
technology of intelligence programming. The instrument, if 
used for routine analysis where problem statements can be 
well defined, could operate with no loss of utility as a totally 
automated and intelligent instrument. 

Figure I gives insight into the problems arising in creating 
intelligence programs for instrumentation. Figure la) is an 
analytical chemist's perception of a totally automated exper-

a. 

imental design [1]1. Af, can be seen, the experiment remains 
unspecified without an initial problem statement. The issue 
of intelligent data systems for single instruments is one of 
either defining the set of all possible problem statements in 
an evolutionary design or restricting the analysis to a single 
well defined problem. Figure Ib) is an example of a first 
stage multivariate data analysis system proposed for re­
search applications in pyrolysis mass spectrometry [2]. The 
design is one that leaves the problem statement, data inter­
pretation and decision making entirely in the hands of the 
scientist. What is. really described in this figure is a statisti­
cal package residing on a microcomputer which receives 
data from the mass spectrometer. However, as Isenhour has 

I Figures io brackets indkate literature references. 
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Figure l-fouf designs for instru­
ment data systems. 
a. Totally automated experimental 

design and decisfon making. 
b. Multivariate analysis for ~pec­

tral instruments. 
c. Expert systems driven single 

purpose instrument. 
d. Laboratory automahon using 

expert systems drivers. 



demonstrated, multivariate factoring of spectral libraries of­
fers advantages in the interpretation of complex single spec­
tra [3]. It would seem that the incorporation of a multivariate 
statistics package in the data system is a key element in 
intelligence programming for many instruments. Figure Ic) 
incorporates the expert system approach to intelligence for 
instrumental systems. Under this design, the instrument can 
accommodate a series of problem statements and decision 
networks at various analysis stages and uses an intelligent 
driver for the multivariate analysis and interpretive stages of 
the analysis. Figure ld) places such a system into the re­
search laboratory controlling a variety of instruments and 
interpreting results based on one or more analyses. 

Although the diagrams of figures lb-ld are not compre­
hensive designs for total automation, they do provide a 
hierarchy for linking problem statements and decision mak­
ing into multivariate research problems. After a brief discus­
sion of components of intelligence designs, an example will 
be presented of the feasibility of developing expert system 
data reduction for pyrolysis analysis problems. 
Problem Statements: Ideally a problem statement is 
analogous to the standard hypothesis in statistical analysis. 
Under the hypothesis a knowledge base can be collected and 
the hypothesis tested. For example, a patient does or does 
not carry a genetic trait [4]. U nfortunatel y, chemical re­
search problems are often ill-specified and the problem 
statement may become a hierarchy of data investigations 
leading to one or more problem statements. For example, 
I) are there differences in the chemical composition of a 
series of samples? if differences do occur; 2) what are the 
nature of the differences?; 3) do the chemical differences 
correlate with observed changes in physical properties?; and 
4) can physical properties be predicted from the chemical 
differences? [5,6]. 
Knowledge Base: In order for a instrument to operate as an 
intelligent system, it must have the knowledge base neces­
sary to arrive at a solution for each of its problem state­
ments. This knowledge base may contain data, rules ("Mass 
peak 94 is phenol"), programs, and heuristic knowledge. 

Consider the knowledge base required for setting up and 
operating routine analyses of polymer composition by pyrol­
ysis gas chromatography. Possible problem statement areas 
include optimization of pyrolysis parameters, chromato­
graphic conditions and interface characteristics, control of 
instrument and data acquisition parameters, data reduc­
tion, and data interpretation. The knowledge base must 
include all information necessary to each of the proposed 
problem statements. For optimization of parameters, 
rules governing the detection of an optimum, algorithms 
(e.g., "simplex" [7]) for efficiently moving toward an 
optimum, rules for hierachical movements within the al­
gorithm, rules for the detection of poor optimization sur­
face structure, and representative previous optima data 
might be employed in the decision making. Such optima 
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will be determined, in part, by the polymer degradation 
characteristics and therefore will not, in this case, be inde­
pendent of the samples used in the analysis. Instrumental 
control might employ a knowledge base of rules for the 
automation of events such as the initiation of sample pyrol­
ysis and data collection. Data reduction for this method will 
require the rules and data necessary for baseline correction, 
chromatographic normalization, and peak matching. The 
knowledge base requires a "memory" of previously col­
lected data to aid peak matching protocols, rules for baseline 
determinations, transformations for baseline correction, 
normalization rules and algorithms, and rules for acceptance 
or rejection of the chromatogram under consideration. Data 
interpretation on the other hand might require a library of 
previous chromatograms as well as rules andlor algorithms 
for interpretation of the current event based on a knowledge 
of past data with verified interpretations. 

Development of the knowledge base is the expensive and 
time consuming operation in the development instrumental 
intelligence even when the application is highly specific. It 
must be remembered that each operation that a human might 
perform automatically from experience must be pro­
grammed into the data system. For this reason, among the 
attributes of the system, there needs to be evolutionary oper­
ation. In other words, in addition to long term knowledge, 
facts about the current data and new conjectures under con­
sideration must also be easily accommodated. 

Expert Systems Driven Multivariate Data Systems: The 
response of many modern chemical instruments (e.g., spec­
trometers and chromatographs) is inherently multivariate. 
For such instruments, data reduction and interpretation often 
consume a greater portion of analysis time than data collec­
tion, and requires scientific expertise. The time delay be­
tween data collection and decision making has become an 
acute problem for newer hyphenated techniques, such as gas 
chromatography-mass spectrometry and mass spectrometry­
mass spectrometry, which are capable of collecting thou­
sands of mass spectral peaks in a short period of time. 

One possible solution to the problems imposed by large 
bodies of data is to incorporate into the instrument a data 
reduction system consisting of multivariate analysis meth­
ods. The problem encountered in the actual implementation 
of such a system is that few experts in instrumental analysis 
have the expertise for carrying multivariate statistical analy­
ses. It has become increasing apparent that instruments em­
ploying versatile multivariate based data systems should be 
capable of operating in a transparent data analysis mode. In 
order to accomplish this, the expertise of a chemometrician 
will need to be programmed into an expert systems driver 
for the instrument data system. Given a problem statement, 
and a knowledge base of rules from previous experience, the 
computer could decide from a variety of possibilities how to 
reduce the data and represent the results in a meaningful 
form. A relatively simplistic example of this is the problem 



statement "Is there a correlation between two independent 
variables?" Invisible to the user would be the operations for 
determining the integrity of the variable distributions. a 
computation of the correlation and a determination of the 
significance of the correlation coefficient of the relation­
ship. The result might take a simple form such as "there 
appears to be a significant correlation between the first vari­
able and the logarithm of the second variable. Would you 
like to see the computed values?" 

Demonstration of Expert System for Data 
Analysis in Curie-point Pyrolysis 

Mass Spectrometry 

Pyrolysis mass spectrometry has come to the attention of 
both mass spectrometrists and chemometricians because of 
its utility in the analysis of polymeric materials and the 
complexity of the mass spectra produced by natural poly­
mers and biopolymers. The technique involves degradation 
of the solid material by pyrolysis followed by mass spec­
trometry of the pyrolysis fragments. It has been demon­
strated by the pioneering work of Meuzelaar (for example 
see [8J) that Curie-point pyrolyses of samples of biomateri­
als can produce profiles which, when properly normalized 
[2J, are reproducible and diagnostic of the chemical similar­
ities and dissimilarities among groups of samples and are 
quantitative under appropriate experimental designs [9]. Be­
cause the process of pyrolysis followed by mass spectrome­
try of the network polymer of natural heterogeneous bio­
polymers produces mass spectra with peaks which tend to be 
highly correlated, tne interpretation problems created 
by the vast number of, and the overlap of, the masses are 
solved through multivariate analysis of the mass spectral 
profiles. A data system for a pyrolysis mass spectrometer 
would be of limited utility without multivariate statistical 
methods [2]. 

To test the hypothesis that an expert systems approach to 
data reduction is potentially helpful and feasible, an expert 
systems driver was implemented to mimic the data analysis 
portion of a Rocky Mountain Coal study done at Biomateri­
als Profiling Center in Utah. Detailed results of the original 
study can be found in [5.6] and of the numerical methods 
used in [2]. Briefly, 102 Rocky Mountain Coals were ana­
lyzed in quadruplicate by pyrolysis mass spectrometry. The 
pyrolysis profiles were added to a preexisting data set con­
taining conventional measurements on the same coal sam­
ples (see table 1). After normalization of the profiles by the 
method of Eshwis et at. [IOJ, average mass specta were 
analyzed using multivariate analysis techniques. 

Figure 2 is a minimal design for an expert systems driven 
data acquisition and analysis system for pyrolysis mass 
spectrometry. Figure 3 shows the design of the data bases 
for the present appliC<ltion. As diagrammed in figure 2, each 

Table 1. Conventional measurement contained in the "old data" data 
base for the Rocky ~ountain coals, 

COnl'entional Measurement.<i 

Vitrinite 
Fusinite 
Semifusinitc 
Macrinile 
Liplinite 
Vitrinite Reflectance 
% Silicon 
% Aluminum 
% Titanium 
% Magnesium 
% Calcium 
% Sodium 

% Potassium 
% PhQSptlOrus 
% Moisture 
% Pyritic sulfur 
% Mineral matter 
% Volatiles 
% Organic sulfur 
Calorific value 
% Organic carbon 
% Organic hydrogen 
% Organic sulfur 
% Organic nitrogen 
% Organic oxygen 

operation of the instrument requires an expert systems driver 
and decision module for its automation. A [lid~mentary ex­
pert systems was built to mimic the decision making used 
for statistical analysis of coal pyrolysis patterns. This sys­
tem demonstrates the problems and pitfalls associated with 
intelligent instrumental development. 

Normalization is rarely an option in pyrolysis techniques 
since the size of the sample undergoing electron impact is 
determined by the quantity of pyrolsates actually making 
their way to the ion source of the mass spectrometer. For 
this reason, spectra are normalized to place each sample on 
a relative quantitative basis. Furthermore, when replicates 
of a single sample are analyzed in detail, it is found that 
some peaks replicate better than others. For example, if an 
organic solvent is used during the sample preparation, the 
mass peaks due to this solvent replicate poorly. The same is 
true of contaminants absorbed to the sample matrix. On the 
other hand, because the sample size in terms of total ion 
counts is a variable in these experiments, often one or more 
replicate spectra will exhibit outlying tendencies when com­
pared to other replicates of the same sample. 

NORMA [2J, developed by Meuzelaar's group at Utah, is 
designed to select peaks with stable variance characteristics 
for inclusion in the normalization process. With this routine 
an expert interacts with the computer in a loop of peak 
deletions and replicate spectra deletions until a set of peaks 
is defmed which stabilizes the normalization process. 

An expert systems approach to the software interaction 
represents peaks by their variances over the samples and 
sample replicates and spectra by Euclidean distances be­
tween replicates over the mass units. A library data base for 
normalization is established which contains spectra patterns 
for commonly used solvents and commonly encountered 
contaminates as well as the background spectrum from the 
mass spectrometer. The expert sysems are initialized by 
computation of peak variances. The variances are ordered 
high to low and' the shape of the plot of ordered variances is 
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Knowledge representation takes 
AUXILLARY two fonns: I. knowledge which 

Data' from other instruments when taken as a whole Of in parts 

and analyses can be represented as a similarity 

Probablities associated or correlation; and 2. knowledge 
with composition for which antecedent clauses must 

Other auxiliary interpretative be satisfied in order f(lr the inter-
clues 

Interpretative rules 

analyzed. The library is searched under expert systems guid­
ance to account for the peaks exhibiting high relative vari· 
ance. For example, background spectrum is placed under 
consideration only when the total ion counts of the sample 
spectrum is less than a factor ct of the background. After 
examination of the library, a decision is made as to which 
peaks will be deleted based on their expected contribution to 
the peak variation and with restrictions on the total number 
of peaks that can be deleted at this stage of analysis. This 
first deletion is a permanent deletion of peaks. None of the 
casual base peak deletions is reexamined at later stages. 
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pretativeldecision making process 
to occur. 

The distance matrix of replicates is generated using the 
peaks remaining in the analysis and samples are deleted 
based on a comparison of their distances from the expected 
distance generated as a mean distance over the samples with 
variance ()" d' (Note that such a formulation may ignore sys­
tematic error among the samp]e replicates, and won't per­
form at the expert level under such a condition). 

The next stage on analysis involves computation of both 
peak variances and sample distances. The rank order of the 
peak variances is compared. If variance reduction seems to 
be exhibited by a small set of peaks upon deletion {)f the 



samples. the peaks involved are temporarily deleted. the 
samples previously deleted are brought back into analysis 
and the distances reexamined. The expert systems decide 
which will be deleted at this stage. peaks or samples based 
on the recomputed distances. The iterative decision mak­
ing-statistical computation continues until a key set of 
peaks remain activated for normalization over all spectra. A 
diagram of the proposed normalization experts system is 
shown in figure 4. 

The system. as described. does not completely emulate an 
expert for all applications of pyrolysis mass spectrometry. It 
has already been noted that the data evaluation does not 
address errors \vhich arise from time dependent or system­
atic error. In addition to this, the decision making process, 
while designed to emulate the human decision process based 
on statistical results, does not necessarily operate on a one­
to-one correspondence with a human expert. The problem is 
that two experts working on the same set of data may arrive 
at approximately the same results via slightly different pro­
cedural routes. The same is true of the expert system when 
compared to a human expert. The major deviations from a 

next 
iteration 

r 
I 

I 

Program Initialization 
Select samples 
Sort if necessary 
Evaluate ion intensities 

1 
Co:npute :rtass variances 
a. over all sam?les 
b. within replicates 
Compl;-=e sample distances 
a. Over all samples 
b. wicl1in replicates 
Sort all statis-:.ics 
Form F-statistic ratios 

1 
Expert system evall!ation 
a. of mass variations 
b. of sample distances 

1 
Expert system decisions 
a. delete mass peaks 
b. C:elete samples 
c. reactivate mass peaks 
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1 
Norl1'.alization of spectra 

convergence 

Quit and save normalization 

Figure 4-Interaction of e;l[pert systems and statistical computation for a 
ratiomtl nonnalization process for pyrolysis mass spectrometry. 
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human procedure found when working with this system is 
the lack of "intuition" or "fuzzy logic" that is used by the 
expert. The expert systems converges in more steps than is 
necessary by human interaction with the statistical al~ 

gorithms and for some data bases. has trouble defining con­
vergence at the solution. For example. the optimal cut off 
parameters for variance and distance change between data 
set.>. These and other problelll5 are best solved by training 
the expert systelll5 to recognize the structure of a good 
spec tal soIution in addition to the structure of good statistics. 

Correlation Based Hypothesis Testing 

Perhaps the most often asked question of large data sets 
involves finding relationships between the variables or be­
tween the variables and an exlernal parameter. Table 2 lists 
the form of the problem statements included in our data 
system for this demonstration. The term "relate" invokes 
one of several multivariate algorithms for the study of corre­
lations in the data. The possible responses are the Pearson 
correlation coefficient, linear regression, factor analysis or 
canonical correlation analysis. 

Consider the problem statement: What is the relationship 
of peak 34 (H,S) in the mass spectrum of coal to the total 
organic sulfur from the conventional data matrix. "Relate 
current data, mass 34 to old data, organic SUlfur over sam­
ples. all" result.> in a computation of the correlation coeffi­
cients, a estimate of significance and the confidence interval 
about the correlation. "Relate currelll data, mass 34 to old 
daw. organic. sulfur over samples, all; Interprete using old 
data. organic sulfur" results in the additional computation 
of (organic sulfur)=a (mass 34)+b with residuals Ei . The 
residual pattern is tested for randomness. A failure results in 
a search through the library for a reference residual pattern 
with similarities to the computed residual pattern. 

The next relate function asks for a study of the relation­
ships among variables in the current data set. "Relate cur­
rent data, all with current data. all over samples. all" 
results in the factor analysis of the data correlation matix. 
The loadings of the factor analysis are interpreted for the 
variable relationships seen along the orthogonal axes of the 
original rotation. This interpretation is an experts systems. 
based analysis of the major peak series and will be discussed 
later. 

Interpretation of the factor score is a difficult problem. 
Consider the two dimensional factor score projection of 
these data. Figure Sa is a projection without labels. Figure 
5b is the same projection after a human expert has assigned 
sample labels corresponding to the geological source of the 
samples and an interpretation. Figure Sa is representative of 
the information about the factor scores stored by the com­
puter. The addition of labels is readily accomplished but. 
without tmining. patterns formed by the sample labels 



Table 2. Variations of the expert system commands RELATE and INTERPRETE USING. The FORTRAN subroutine calling protocols are 
based on the data types used in each variable location of the command and on the command sequence. Note that the same command strings 
and rules can accomodate conlputation on questions about the data base transpose matrix when" ... OVER samples ... " is replaced by 
" ... OVER variables ... " 

RELATE data base 1, variable list 1 TO data base 2, variable list 2 OVER samples, sample list 

Examples: 

I. RELATE current data, mass 34 TO old data, organic sulfur OVER samples, match 
(Results: correlation coefficient and significance test) 

2. RELATE current data, mass 34 TO old data, organic sulfur OVER samples. match; INTERPRETE USING old data, organic sulfur 
(Results: correlation computed at least squares fit, significance test, and residual pattern evaluation) 

3. RELATE current data, all TO current data, all OVER samples, all 
(Results: Factor analysis of current data and loading interpretation) 

4. RELATE current data, all TO old data, calorific value OVER samples, match, active; INTERPRETE USING old data, calorific value 
(Results: Factor analysis of current data followed by target rotation to calorific value and interpretation of loadings) 

5. RELATE current data, all TO old data, all OVER samples, match 
(Results: Canonical correlation analysis of two data bases and interpretation of mass spectral loadings) 

within the space have little meaning. A generalized solution 
to this problem does not seem likely. Each study would 
require an elaborate knowledge base specific to the samples 
in order to interpret trends seen in this picture. 

For the coal data, the old data matrix of conventional 
measurements provides a more easily implemented route for 
hypothesis testing on the pyrolysis mass spectral factors. 
Consider once more the "relate" command. After matching 
the two data sets by the logic used in [5], factor analysis of 
thePY/MS set followed by "Relate current data 2, all with 
old data, calorific value using samples, active; interpret 
using old data, calorific value" results in the regression 
analysis of calorific value=:£ W (factor scores)py."" +b pro­
ducting both the variable and the sample relationships of the 
rotation of the Py/MS data to calorific value. The results are 
given in figure 6 and discussed in [6]. 

The last example of a correlation based statement is 
"Relate current data, all with old data, all over samples, 
all." This results in a cannonical correlation analysis factor­
ing both data matrics in such a way that the overlap in 
information between the sets is maximized. Four factors are 
extracted. The first two of these are shown in figures 7 
through 9. This analysis showed these data sets to be ap­
proximately 80% correlated over the coal samples. The 
major chemistry of the conventional measurement trends are 
given above the spectral representation form the Py/MS 
factors. 

Figure 5-Comparison of computer representation of factor scores (a.) to 
the same plot after interpretation by an expert (b.) Symbols represent 
sample specific relationships deduced by the expert. Dotted lines are a 
separation of the samples into classes not available to the computer in the 
pyrolysis data base. The knowledge base required to mimic the expert 
would fonn a reference book of information about the samples. The 
generation of such a knowledge base would be a fonnitable task. 
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Figure 7-First canonical variate loadings for the rotation of pyrolysis mass spectra of coal samples to the conventional data matrix described in 
tablel. The correlation of the data bases to the derived variate (Z) is 0.99 and to each other is 0.95. AcXc and ApXp are the linear composites of 
the conventional and pyrolysis data bases respectively. Only the signs of the strongly correlated variables of the conventional data are given. 
Loadings for the pyrolysis data are given as positive and negative. Interpretations of mass peak were accomplished using the system described in 

figure 10. 
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Figure 8-Second canonical variate loadings for the rotation of pyrolysis mass spectra to the conventional data matrix described in table 1. See figure 

7 for an explanation of the symbols used in this figure. Interpretation by the system described in figure 10 failed for the positive loadings labeled 
as isoprenoid signals? These were assigned by the authors. 

Figure 9-Canonical variate scores 
on the first two axes (described in 
figs. 7 and 8). Dotted lines separat­
ing classes were inserted by the au­
thors and not interpreted by the ex­
pert system (see fig. 5 for an 
explanation of implimentation 
problem for sample interpretation.) 
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The assignment of chemical interpretations for mass spec­
tra and for factor loadings is accomplished by an expert 
systems intepreter that can be used for any study in which 
the samples are coal. The data base for the interpretation 
includes commonly encountered chemical species in coal, 
the major peaks expected from their presence and, given two 
chemical species with similar patterns, the probability of 
their contribution as a major component to a coal pattern. 
Also included is a routine for generating molecular species 
from C,N ,0, and S given the base peak molecular weight 
and the ion series. The operation of the expert system along 
with the results of each iteration are given in figure 10. 
Because Py-MS spectra contain many low intensity masses 
of questionable interpretation, and because factor loadings 
are rarely pure, only the most intense ion series patterns are 
interpreted. The program is initialized by setting an initial 
threshold limit (TL3). The ions (mlz) above the threshold 
are collected, sorted and given temporary chemical assign­
ments. The threshold limit is lowered each time by a lesser 
factor until it encounters the "grassy" region of the spec­
trum. At this point, pennanent ion series interpretations are 
assigned. The "?" appearing in the figure for Mass 104 
means that no library interpretation of this peak was found 
and that the number of peaks in the ion series was below the 
limit set for generation of hypothetical molecular species. 
The entire system is diagramed in figure II. 

Discussion 

The correlation work described in this paper along with 
similar considerations of other algorithms seem to support 
the possibility that, for a given instrument, an expert sys­
tems driver for data analysis can be developed which is 
independent of the nature of the chemical problem. The way 
to accomplish this is to build expert systems drivers to 
interpret the problem statement and to interpret the data 
analysis results. Viewed in this manner, an instrument­
dependent expert system can generate the experimental de­
sign and optmization from the problem statement and pass 
to the data analysis driver the statistical elements necessary 
for its decision on the proper data reduction protocol. Learn­
ing is initiated when the data analysis system receives an 
unrecognizable set of elements. Otherwise, the expert sys­
tem selects from the knowledge base the algorithm sequence 
for data reduction. 

We are currently extending these concepts to the con­
struction of an expert system, EXMAT, for experimental 
deSign, optimization, data reduction and interpretation of 
measurements made on a sample by a variety of thermal 
analysis instrumental techniques. TIMM® (General Re­
search Corp., Mclean, VA) a FORTRAN-based expert 
system generator, has been enabled development of a 

heuristically-linked set of expert systems for material analy-
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Figure IO-Operation of the expert system used to interprete the pyrolysis 
mass spectra and spectral loadings in the demonstration. The rules used 
to sort and interprete the peaks are based on ion series produced by mass 
differences of 14 (CH2). Base peaks help tenninate series for resolution 
of multiple interpretations. ? is a peak not present in the data base. 

sis. The attributes of the TIMM® system are listed in table 
3. In order to accomplish the analytical goals of this project, 
we have combined the concepts of specific instrumental 
intelligence with the goals set forth in figure la to provide 
a data system capable of experimental designs utilizing one 
or several analysis techniques. Each instrument retains its 
own control, design, preprocessing and interpretative expert 
systems unit but the data analysis unit has, of necessity, 
been generalized for analysis of data from a single or from 



Figure ll-Steps in the expert sys­
tem interpretation on pyrolysis 
mass spectra of coals. 

SET THRESHOLD 
INTERVALS (TI) 

COLLECT PEAKS 
IN (TI)max 

ELIMINATE 
FORHULAS 

SORT P;2:AKS FOR 
ALKYL LOSS 

TI 

GENERATE 
FINAL STRUCTURES 

Table 3. Attributes of the TIMMR expert system. TIMMR was adapted to our application because addition of FORTRAN subroutine library 
calls is more readily accomplished than in other systems and because the decision logic can already use computationally based rules as 
well as chaining logic rules. 

TIMMR: A FORTRAN - BASED EXPERT SYSTEMS APPLICATIONS GENERATOR, General Research Corporation 

Forward/backward chaining using analog rather than propositional representation 

Knowledge base divided into two sections: declarative knowledge and knowledge body 

Pattern-matching using a nearest neighbors search algorithm to compare current situation with antecedent clauses 

Unique similarity metric computed fonn order infonnation in declarative knowledge giving distance metric over all classes 

Decision structure and knowledge body readily developed and modified by expert in any domain 

Heuristically-linked expert system using implicit and explicit method pennitting processing of "microdecisions" that are part of 
"macrodecisions" 

Each system independently built, trained, exercised, checked for consistancy and completeness and then generalized 

multiple measurement techniques. Table 4 gives a outline of 
the decision making process for the experimental design 
expert system, and for data interpretation. Rule generation 
under the system is demonstrated in figure 12. The expert 
system strategy for the chemometrics portion of the system 
is similar to that described previously in the Py-MS example 
with the added feature that the system generate the protocol 
of analysis based on the initial problem statement and the 
available data. The system is in its earliest stages of devel­
opment so any or all aspects of the proposed design are 
subject to modifications as experience is gained in training 
the system. Nevertheless, we feel that an expert systems 
such as ours offers a strategy for automation of laboratory 
instrumentation and interpretation under an expert systems 
approach. 

g!!!§U 
If: 

SCOPE IS R&D 
SAI1PLE AMT IS TRACE 
SAMPLE FORM IS POWDER 
SAMPLE PROCESS IS • 
SAMPLE HISTORY IS • 
INSTR. AVAIL IS ALL 

Then: 
ANAL STRATEGY IS SPECTRMS (1 QO) 

Figure,12-Example of rule generation in EXMAT using the TIMM® 
expert system. Rule is from the expert system for analytical strategy. 
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Table 4. Example taken from overall organization structure of 
EXMAT, an expert systems for materials analysis. 

ANALYTICAL STRATEGY 

CHOICES: 
CHROMGC 
CHROMLC 
SPECTRFrIR 
SPECTRMS 
THERMTA 
ELEMEL 

FACTORS: 
I. SCOPE 

QUAL 
QUANT 
PURITY 
QUAUQUANT 
TIME/FUND LIMIT 
TRACE 
R&D 
CORRELATION 
SCREEN 

DATAINTERPRETATON 

CHOICES: 
PATTERN RECOGNITION 
SAMPLE ID 
GROUP ID 
PEAKS ID 
NO ID 
COMBINE DB 
EXTEND DB 
CORRELATION 

FACTORS: 
I. DATA GENERATE 

FrIR DB 
MSDB 
LC DB 
TADB 
GC-FrJR DB 
GC-MS DB 

. GCDB 
2. GC DB TREATMENT 

DIRECT COMPARE 
CHEMOMETRICS 
DATA SET ID 

3. FrIR DB TREATMENT 
DIRECT COMPARE 
PAIRS SEARCH 

4. ETC. FOR EACH 
DATA BASE (DB) 
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DISCUSSION 
of the Harper-Liebman paper, Intelligent 
Instrumentation 

Richard J. Beckman 
Los Alamos National Laboratory 

There has been an instrumentation revolution in the 
chemical world which has changed the way both chemists 
and statisticians think. Instrumentation has lead chemists to 
multivariate data-much multivariate data. Gone are the 
days when the chemist takes three univariate measurements 
and discards the most outlying. 

Faced with these large arrays of data the chemist can 
become somewhat lost in the large assemblage of multivari­
ate methods available for the analysis of the data. It is 
extremely difficult for the chemist-and the statistician for 
that matter-to form hypotheses and develop answers about 
the chemical systems under investigation when faced with 
large amounts of multivariate chemical data, 

Professor Harper proposes an intelligent insttument to 
solve the problem of the analysis and interpretation of the 
data. This machine will perform the experiments, formulate 

the hypotheses, and "understand" the chemical systems 
under investigation. 

What impact will such an instrument have on both 
chemists and statisticians? For the chemist, such an instru­
ment will allow more time for experimentation, more time 
to think about the chemical systems under investigation, a 
better understanding of the system, and better statistical and 
numerical analyses, There would be a chemometrician in 
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every instrument! For the statistician, the instrument will 
mean the removal of outliers, trimmed data, automated're­
gressions, and automated multivariate analyses. Most im­
portant, the entire model building process will be auto­
mated, 

There are some things to worry about with intelligent 
instruments. Will the chemist know how the data have been 
reduced and the meaning of the analysis? Instruments made 
today do some data reduction, such as calibration and trim­
ming, and the methods used in this reduction are seldom 
known by the chemist. With a totally automated system the 
chemist is likely to know less about the analysis than he does 
with the systems in use today. 

The statistician when reading the paper of Professor 
Harper probably asks what is the role of the statistician in 
this process? Will the statistician be replaced with a mi­
crochip? Can the statistician be replaced with a microchip? 
In my view the statistician will be replaced by a microchip 
in instruments such as those discussed by Professor Harper, 
This will happen with or without the help of the statistician, 
but it is with the statistician's help that good statistical 
practices will be part of the intelligent insttument. 

Professor Harper should be thanked for her view of the 
future chemical laboratory . This is an exciting time for both 
the chemist and the statistician to work and learn together, 
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