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Different chemometric methods to improve calibrations are described. A Kalman filter is applied for

processing and predicting slowly varying parameters of a linear calibration graph. The results are used for the
evaluation of unknown samples, and for deciding whether to calibrate again or to analyze the next unknown
sample. Another approach of the calibration problem, particularly in chromatography, is the use of cor-
relation techniques. The noise reduction property of correlation chromatography is used to extend the
calibration graph to very low concentrations. Furthermore, an experimental technique to determine a cali-
bration curve and the unknown sample simultaneously under exactly the same conditions is described.
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1. Introduction

The computer has added a new dimension to anal-
ytical chemistry. Chemometrics, the application of
mathematical and statistical techniques, is improving the
quality of the analytical results concerning accuracy,
precision, time, and costs, and has created new possi-
bilities. An extended number of chemometric pro-
cedures are now available and are being increasingly
applied in practice.

However, the "off-line" application of chemometric
procedures, i.e., the processing of data or signals already
obtained with common analytical methods like titration,
chromatography, spectroscopy, etc., is dominating. The
computer is generally used as an off-line calculation
machine. The incorporation of the computer into exist-
ing analytical methods or the development of new meth-
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ods based on the capabilities of the computer is not far
developed; the intelligent analyzer is still in its infancy.

In this paper, some examples of chemometric on-line
computer applications in an analytical procedure and
analytical method are given. The calibration, which is
very important in analytical chemistry, is emphasized in
both examples-a generally applicable procedure using
an optimum recursive parameter estimation technique
(vector Kalman filter), and a method developed for one
particular analytical technique (chromatography).
More details concerning the basic theory are given in

[l]'.

Calibration and Optimum Estimation

An analytical system is usually very complex and in-
cludes chemical, optical, electrical, and mechanical
parts. All these parts are subject to several influences,
like contamination, changes in temperature, humidity,
etc., and, of course, aging. These influences result in a
decrease of the quality of the analytical data. Two main

I Figures in brackets indicate literature references.
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components can be distinguished: a stochastic com-
ponent resulting in stationary random fluctuations, and
a semi-random component caused by irreversible pro-
cesses like the mentioned contamination, aging etc. This
semi-random component has a non-stationary nature
and a regular calibration is required to maintain the
quality of the results respectively to reduce the influ-
ence of the drift in the calibration parameters. Ignored
drift seriously affects the accuracy in the analytical re-
sults and various off-line drift correction procedures
have been proposed [2-6].

A Kalman filter enables on-line drift compensation,
particularly suitable in the case of automated analytical
procedures. An optimum recursive estimator like a
Kalman filter requires a model of both the system or the
signal process, including the system noise and the mea-
surement (observation) noise. Using an appropriate
model, the Kalman filter can predict (estimate) future
values of the changing parameters and the samples can
be evaluated using these predicted parameters. The esti-
mation may also be used to determine when a re-
calibration is required. The criterion is a given preset
precision of the results. The final goal is to analyze
samples with a predetermined minimum accuracy.

System Model

A state space model is used to describe the system.
The linear discrete dynamic system

x(k)=F(k)x(k-l1)+w(k-l) (1)

whe

z(k)=h'(k)x(k)+ v(k)

:re

k :a time or a sequence nurn
x(k) in Xl state vector
F(k) :n Xn transition matrix
h'(k) :1I X n measurement vector
z(k) :measured signal
w(k - 1):n X I system noise vector
v(k) :scalar measurement noise

(2)

her

is representative for many analytical systems (fig. 1).
The model is linear because neither in the transition
matrix F(k) nor in the measurement vector h'(k) param-
eters x(k) are present. A commonly used calibration
graph is

y =a *c +b

where

a: sensitivity
b: intercept

(3)

c: concentration
y: measurement

Reformulation gives

y=(c,l)b
Using

(b) an( z)

h'= (c, 1) and z =y

and adding system noise and measurement
in a dynamic calibration curve

(4)

(5)

noise results

(a (k)\( O= ja(k-l)\ fwi(k-l)\
(b(k)I k0lIJkb(k- I)) +w2(k -1)]

z(k)=(c,l)( a(k) )+ v(k).

(6)

(7)

A common situation in practice is that the parameters
of the calibration curve are slowly varying in time. Sto-
chastic variations can be represented by the system
noise, introduced in the model. However, in practice
often a deterministic variation of the calibration parame-
ter can be observed; particularly an extension of the
model with a linear drift increases the usability.

A single parameter (state) x, affected by a linear drift
in the sequence k can be written as

x(k)=dk +e

where

d: (constant) drift parameter

e: x(0)

Evaluation of eq (8) leads to

x(k)=d(k-l)+d +e

=x(k-t1)+d.

(8)

(9)

The introduction of system noise and measurement
noise gives

(10)
{x(k)\ I x(k -1)) w,(k -1)
d(k) I I) )d(kl I)dk 1w2(k-f))

z(k)=(1,0) ((k))+v k).
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Figure 1-Linear dynamic system.

If both the sensitivity a and the intercept b are influ-
enced by random drift, two extra parameters have to be
introduced in the original model. The final model is

a(k)
b k)

a(k)
/3(k)

1010
0101
-0010
000 1

a(k-I)
ba(k-1)
a(k-l)
,/3(k-l)

w, k-1)

+ w3 (k-1)
w4 (k-1) (I 1)

mate the slope, the intercept, and the drift parameters of
the calibration curve [7]

x(k/k - I)=F(k)i(k - I/k -1)

P(k/k - 1)=F(k)P(k - I/k - I)F'(k)+Q(k -1)

x(k/k)=i(k/k - l)+k(k){z(k)-h'(k)i(k/k- 1)

(13)

(14)

(15)

a(k)
b (k)
a(k) +v(k).
:6(k)

The observability matrix is

C, C2 C3 C4

11 I1 1
0 c2 2c3 3c4

0 1 2 3 .

P(k/k)=P(k/k - l)-k(k)h'(k)P(k/k -1)

k(k)=P(k/k - I)h(k){h'(k)P(k/k - I)h(k)+

(16)

(17)

where:

(12)

The system is observable if there are at least two
different concentrations.

Q(k): system noise
R (k): measurement noise
k(k): Kalman gain factor (correction factor)

Equation (18) gives the innovation, i.e., the difference
between the experimental and the estimated mea-
surement

Sample Evaluation and Recalibration

Assuming the transition matrix F(k) in eq (11) is
known exactly and the measurement vector h'(k) is
known from the calibration, and assuming the statistical
properties of the system noise and measurement noise
are known ("white" noise with zero mean and normal
probability density function (pdf), the usual Kalman fil-
ter algorithms, given in eqs (13-17), can be used to esti-

v(k)=z(k)-h'(k)i(k/k - 1) (18)

with

E{v(k)}=0

E{v(k)v'(l}={h'(k)P(k/k-l )h(k)+R (k)}S(k,l)- (19)

The variance of the predicted measurement is also
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given by eq (19). The prediction of the Kalman filter can
be used to evaluate a constituent in an unknown sample.
Rewriting the calibration relation eq (3) gives

2, = (z(k) -b)l

var(.,) = (l/a 2){h'. P(k /k - l)h,, + Ru, (20)

with: hi. =(&u,,1,0,) and &,b from k(k/k-1).

The relative imprecision of an unknown concen-
tration ca. is given by

Nun=2/~cun&){h%,n P(k/k - l)h~s+R '}1 (21)

with: hu=(cl,, 1,0,0).

The available calibration standards are used to com-
pute Nu. in eq (21). The computed maximum im-
precision NmV, is compared with a predefmned im-
precision NH,. If N,,,>NC6 ,, a recalibration is
performed; if New < N,, the samples are processed.

Application in Practice

The described state estimation is applied in automated
flow injection analysis. The quality of the results is im-
proved by smoothing all the stored estimates of the
Kalman filter. An extensive description of the smooth-
ing procedure is given in [8].

Figure 2 shows an automated flow injection system
used for the determination of chloride in aqueous sam-
ples. Thiocyanate originating from Hg(SCN) 2 is substi-
tuted by Cl- in the presence of Fe3". Red coloured
Fe(SCN)3 is formed and measured spec-
trophotometrically at 470 nm. Each sample requires 40
seconds; 90 samples/hour can be processed.

Figure 3 shows the results of the repeated injections
of 2, 4, 6, 8, and 10 ppm samples. The chi-square values
given in table I are obtained with a noise variance
R =15.lo-6 and system noise covariances
Q,3 = Q4= 10- 10

As can be seen from table 1, a first order calibration
graph (4 parameter state, x I-x4) is obviously not satis-
fying and the model has to be extended to a second order
drifting calibration graph (6 parameter state, xl -x6).
In this case smoothing does not yield significant im-
provement in the estimation.

Figure 4 shows the result of the measurement of stan-
dards and "unknown" samples (6 ppm) at fixed positions
in the sequence. The on-line Kalman estimation is de-
picted in figure 5 and the improvement by the smoother
is shown in figure 6. The histograms figure 7 and figure
8 show the evaluated results.

The on-line processing of the uncorrected peak
heights permits one to decide to recalibrate or not. Fig-
ure 9a and figure 10 give an impression of the results,
respectively for the estimation of the state by the
Kalman filter and after the smoothing. If a given preset
criterian Ncr,, is exceeded by the maximum imprecision
eNm.. the system is recalibrated. After 9-12 calibrations
the system starts to evaluate the unknown samples and
recalibrates regularly.

computer

4? 0 N Figure 2-Flow injection system.
S=sample holder, C=column,
P = pump, D=spectrophotom-

D eter, l=injection valve, W=
waste.
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Figure 3-Repeated injections

Figure 4-Standards and unknown samples.

Table 1. Values ofx 2 for the flow injection peaks of figure 3.

Peak height Peak height Peak integral/300 Peak integral/300
baseline corrected corrected

Kalman filter 618.8 662.7 134.9 797.2

(1st order)

Smoothed 578.7 620.1 122.0 744.2

(1st Order)

Kalman filter 69.8 67.5 61.0 395.4
(2nd order)

Smoothed 62.0 59.3 53.8 354.4
(2nd order)

Figure 5-On-line Kalman esti-
mation.
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Figure 6-Improvement by smooth-
ing.
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Figure 7-Histogram of the Kalman estimation.
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Figure 8-Histogram of the smoothed results.
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Figure 9-On-line calibration sys-
tem. State and concentrations
used by the Kalman filter.
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Figure 10-On-line calibration sys-
tem. State and concentrations
used by the smoother.

Correlation Techniques

The introduction of correlation techniques permits a
completely different approach to the calibration prob-
lem, particularly in chromatography. In correlation
chromatography (CC) the usual impulse-shaped injec-
tion is replaced by multiple random injections. An exam-
ple of an application is given in [9]. The resulting ran-
dom response of the chromatographic system is
cross-correlated with the used input function. The
cross-correlation function of two signals, in this case the
input signal x(t) and the output signal y(t) of a linear
process, is by definition:

However, the autocorrelation function of x (t) is defined
as:

(26)

and eqs (25) and (26) can be combined to:

RxyQt2)= ){h(r)Rxx(t2-tnr)dr (7r>0) (27)

If x(t) is stationary, then:

(28)

and eq (27) becomes:
(22)

(29)
E[ ] denotes the expected value of the expression be-
tween the brackets. The output signal y(t) of a linear
system can be calculated as a convolution of the input
signal x(t) and the impulse response h (t) of the system:

y(t)=x(t)*h(t)=ft h(r)x(t-r)d. (23)

Combining eq (22) and eq (23) gives:

R,(t 3te2)=E [x(t){ h (r)x(t 2 - T)dr] . (24)

In this case integration and averaging can be inter-
changed, hence:

Rx,(tit 2)= f h (T)E[x (tl)x(t2-r)]dr (25)

Comparing eq (23) and eq (29) shows that the output
signal y(t) of a linear system with an input signal equal
to the autocorrelation function R.(t) of a signal x (t) is
similar to the cross-correlation function RX,(t) of the
input signal x(t) and the output signal y(t) resulting
from x(t).

A white noise, that is, white with respect to the band-
width of the system, has in impulse-shaped auto-
correlation function and can be used as input function
x(t) to determine the impulse response, in which case
Ry(t) =h (t).

On further consideration a chromatographic pro-
cedure can be regarded as the determination of an im-
pulse response; a chromatogram shows the response on
the impulse-shaped injection of the sample. The prime
objective of correlation chromatography is to determine
the chromatogram by stochastically injecting the sam-
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ple into the column and cross-correlating the input and
the resulting output. If the chromatographic system is
contaminated with noise, this noise is not correlated
with the input and its contribution to the overall cross-
correlation function converges to zero with increasing
correlation time. A considerable improvement of the
signal to noise ratio can be achieved in a relatively short
time.

AU.

5001-

50

0.

Application in Practice

The most suitable random input function, controlling
the input flow of the sample, is the pseudo random bi-
nary sequence (PRBS). This function is to be preferred
to other random inputs with approximately impulse-
shaped autocorrelation functions for the following rea-
sons:

1) It is a binary noise, the only two levels being + I
and - I or + 1 and 0. The levels can be used to
control simple on/off valves and correspond with
the injection of sample and eluent, respectively;

2) It can be easily generated and reproduced; and,
3) Its special properties offer the possibility of re-

ducing the correlation noise, which is caused by a
limited correlation time.

The PRBS is a logical function combining the proper-
ties of a true binary random signal with those of a re-
producible deterministic signal. After a certain time (a
sequence) the pattern is repeated. It is important that the
estimated autocorrelation function of a PRBS, if com-
puted over an integral number of sequences, is at all
times exactly equal to the autocorrelation function. Fig-
ure 11 shows a correlation HPLC set-up.

.05

phn calib aion cur.

ppt .0 Ppt '00ppt ppb .o ppb .o0 Ppb

Figure 12-Calibration graph of phenol with fluorimetric detection.

The analytical performance of CC is demonstrated in
figure 12. A calibration curve of phenol was measured
over five decades of concentration: 0.01 -100 pg -'.
Conventional HPLC equipment with fluorimetric de-
tection and a newly developed injection device for cor-
relation HPLC was used. The two higher concen-
trations (10-100 gg /') were determined by
conventional (reverse phase) HPLC and the two lower
concentrations (0.01-0.1 jvg 1-;) by correlation HPLC
with 16 and 3 sequences of correlation time, re-
spectively.

Measurements at the 1 ig -' level were performed
both by conventional and correlation HPLC (I se-
quence).

The bars indicated on the calibration graph represent
the peak area ± 3o-, (arbitrary units), when a-, is the
standard deviation of the integrated noise [10]. The in-
ner bars at the 1 Mig level represent the correlation re-

Figure 1l-Set-up of a correlation
HPLC system. The constant wa-
ter flow is depending on a PRBS
pattern directed either to the
sample or to the eluent reservoir.

SAMPLE LOOP
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suits and the outer bars the single injection results. The
detection limit for the single injection experiments, de-
fined as 3o-,, was about 0.5 Mtg 1'. The detection limit
with the 10 ng t1 concentration was estimated to be 3
ng l' (3 ppt).

Simultaneous Correlation Chromatography

On further consideration, the question arises whether
it is possible to inject different samples simultaneously,
each sample injection controlled by its own unique
PRBS. If these pseudo random sequences are mutually
uncorrelated, then the correlogram (chromatogram) of
each sample can be determined without any influence of
the other samples, even if the components in the samples
are the same. The problem is to find uncorrelated
sequences.

A possible solution is the following. A binary pseudo
random noise sequence is generated by a digital shift
register with a suitable modulo-2 feedback. Appropriate
digital multiplexing yields multiple uncorrelated pseudo
random outputs from a single n-bit shift register. Each
of the K output sequences is identical to the single shift
register sequence; they are staggered by 24/K bits, so
they will remain uncorrelated for l/K(2 0 -1) output
bits. These output sequences can be used for the men-
tioned simultaneous input patterns of a chro-
matographic column.

Figure 13 shows the result of a simulation experiment.
A separation of two components is simulated with four
different samples which were "injected" simulta-
neously. The "separation" is excellent.

The injection of n samples requires a correlation time
of n times the total elution time. Therefore, no time gain
can be expected. However, the method can be used for
a number of interesting applications. For example, si-
multaneous CC permits measurement and calibration at

PRES I

PROS 2

PROS 3

Figure 13-Simulated simultaneous chromatogram.

the same time under the same chromatographic condi-
tions.

Figure 14 shows an experimental set-up of a simulta-
neous chromatograph (HPLC) with four reservoirs
(three samples and eluent) together with four valves,
each controlled by a sequence uncorrelated with the
others. The flow stability is maintained by dividing a
clock period in four parts. In each part either eluent or
sample (respectively sample 1, 2, and 3) can be injected,
depending on the status (0 or 1) of the sequence con-
cerned.

The results of the analysis of three samples with naph-
talene, anthracene, and 1,2 benzanthracene is shown in
figure 15. The anthracene concentration in each sample
is the same; the concentration of the other components
in the different samples differ by a factor of 2.

The experimental injection system is not yet perfect,
and because of this, serves as a source of so-called cor-
relation "noise." This noise is not really random, but is

oETECTOR

Figure 14-Experimental set-up of a
simultaneous HPLC system.
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CONC. 1. 2-ENZANThRACENE ('g/l)

Figure 15-Simultaneous chromatogram of three samples, each con-
taining naphtalene, anthracene and 1,2 benzanthracene with differ-
ent concentrations.

Figure 16-Calibration graph for benzanthracene, simultaneously
determined.

Figure 17-Calibration graph for benzanthracene, successively deter-
mined.

composed of deterministic signals (ghost peaks). The
peaks of benzanthracene are used to construct a cali-
bration curve (fig. 16). Comparison of this curve with
the calibration curve determined in the usual way (fig.
17) shows the performance of the method. The advan-
tages are twofold: the random fluctuations are reduced
by the multiple injection and averaging property, and
both the unknown sample and the calibration sample are
measured simultaneously under exactly the same condi-
tions.

The final conclusion is that on-line chemometric tech-
niques, such as Kalman filtering and correlation pro-
cedures, create promising new possibilities in analytical
chemistry. The given improvements of the calibration
procedure are a typical example of the power of these
techniques.

Major contributions to this paper were made by P. C. Thijssen, J. M. Laeven and C. Mars.
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