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Kinetic models described by systems of linear differential equations can be fitted to data quickly and easily by
taking advantage of the special properties of such systems. The estimation situation can be greatly improved
when multiresponse data are available, since one can then automatically determine starting values and better
discriminate between rival models.
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1. Introduction

In this article we summarize the work of a series of
papers [1-3]' in which we deal with fitting first order
kinetic models to uniresponse and multiresponse data.
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We consider systems in which the expected responses
at K points in the system, (t)=(7 11 (t), 72 (t), --- . (t))
are described by the system of linear differential equa-
tions

(1.])

where A is a K XK system transfer matrix depending on
rate constants 0, 0 , ... , and ¢(t) is a vector input function
to the system. We assume further that there are K initial
conditions V90=(O1o 0, ..n,.-, Ij77)0, some possibly un-
known, and that r=t -Oo, where 0o is a (possibly un-
known) time delay. All the unknown parameters are
gathered into a P x I parameter vector 0.
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l Numbers in brackets indicate literature references.
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Example: Oil Shale.!
Asazrxarzpleaf a cherndcahwsstenm~desoribcd by s ,et

of linear differenrial equations, we cite; the pyrolysis of
oil shale in which the model, fitted by Ziegel and
Gornian [4] has the system diagram

6 6,

/ 61 °20*-l2-*-- 
II'1 1 3

0 3

In this system, 1 denotes kerogen, oo, bitumen, and )7A
oil. The model implies that kerogen decomposes to bitu-
men with rate consisxt 0,, -and to oil with rate constant
0,, and bitumen produces oil with rate constant 02, and
unmeasured by-products with rate constant 03.

The integral of the vector function is evaluated com-
gonentwise. CornpLtautual methods for .evaluadng the
convolution inregral are given in Moler and Vat. Loan
[8], when A is diagonalizable, and in Bavely and Stewart
[93, when A is nondiagonalizable.

22 Derivatives of the Expectation Function

To use a Gauss-Newton procedure to estimate the
parameters we need derivatives with respect to the pa-
rameters. As shown by Jennrich and Bright [6], a great
advantage to compartment models is that the deriva-
tives can be evaluated in she same fashion as the model
function itself. Instead of differentiating NQ) directly as
in Jennrich and Bright, however, we differentiate eq
(1.1) and solve the resulting linear system of differential
equations. This idea was discussed in another context in
Smith [10! and was used by Kalhfleisch el at. [I l].

To simplify notation, we use a subscript p to denote
differentiation with respect to the parameter Qp so

2. Expectation Functions and
With' Respect to the Parameters for

Kie tic Systems

Derivatives
First Order

apt(t)

for p = 1, 2, ... P. The derivative of (1,1) with respect to
0, is then

Several methods are used to estimate the parameters
in first order kinetic models. The most obvious method
is to solve the system of differential equations corre-
sponding to the particular comnpartment model and use
the resulting expectation function in a standard non-

linear estimation program. A second approach is to fit a
generai sum of axpnaetials rmodei by "peeling" [51, A
Thiru approach IS to use a sian&tArd nonlinear esimaDn
program, using numerical integration to solve the equa-
tions. A superior approach, proposed by Jennrich and
Bright 16]. is to obtain the general solution to the system
of equations by calculating values for the model func-
tion Eiq) and its derivatives directly, given values of B
and t and i(t).

2.1 The General Solution

The solution to a lineac systenm of differential equa-
tions can be expressed in terms of convolutions using the
matrix exponential [7]. The solution is

lQ)=e 'io~e"'*tft)

k (0 =-4 vp W +AP tt) + (P t)

for which the solution is

,q ,)= e' %9, (O) + e *IfAn(t) + tP (eN) (2.3)

' =e t t, - (t,) r + e ̀ *A PC.4S+e A AIe ,t f .

Dead time, 0,, can be incorporated by modifying ( 1. 1) to

i(,r) =A ti(r)+t
,Q(0)=Vo

where
v-Go 2>Oo

r 0 t6O0 .

If 8o is known, we simply replace (by r in eqs 1.1, 2.1,
and 2.3, but if Co is unknown and depends on a parame-
ter, the expression for the derivatives is extended to

(Z. )

where the '*' denotes convolution,

e t~tL)f= J eA(-JNt(g de.
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It is easy to evaluate A,,i, (0)=aio/a80, and r, since
they are constants and, in fact, usually two of the three
are zero. Also, for any t <00, r, is zero for all
p = 1, ... , P. Note that the method can be extended to
higher order derivatives.

Specifying the Model

A simple unambiguous computer notation can be used
to specify first order kinetic models in a parameter table
consisting of three columns, the first column giving the
parameter number. For a rate constant, the second col-
umn entry gives its source and the third column entry its
sink, a sink with compartment number 0 denoting elimi-
nation. For initial conditions, 110, the second column
entry is the number of the component in 170 and the third
column entry is -1. For a step input, t, the second
column entry is the number of the component in z and
the third column entry is -2. Dead time is coded as 0 in
column 2 and 0 in column 3.

Example: Oil Shale.2

The oil shale parameter table is presented in annotated
form. It is to be noted that a single parameter may repre-
sent more than one rate constant.

To determine the minimum of IZ'Z 1 it is advan-
tageous to calculate the gradient and Hessian and ex-
ploit Gauss-Newton optimization techniques. Efficient
numerical procedures for computing the gradient and
approximate Hessian are given in [2], and an algorithm
which performs the calculations in [1].

Alternative expressions for the components of the
gradient y and the Hessian r are

y,=81 VI/aO,=2I VItr[V-'Z'Z],
p = 1,2,...,P I (3.2)

and

r'mq=a21 VI/opaOq= (3.3)

='peq+ 2 I VI tr[V-lZ'Z 0 V-Z'Zp]
+21 Vltr[V-'Z'ZqV-'Z;Z]

+21 Vltr[V-'ZZq]+21 Vltr[V-'Z'Z,,
p,q=1,2, .,P.

The second derivative terms Z,, in eq (3.3) are ignored
to produce an approximate Hessian.

Table 1. Oil shale parameters.

Parameter Column Column
number (type) 2 3

l (rate constant) I (source) 2 (sink)
2 (rate constant) 2 (source) 3 (sink)
3 (rate constant) 2 (source) 0 (elimination)
4 (rate constant) I (source) 3 (sink)
s (dead time) 0 0

3. Multiresponse Estimation

In the multiresponse situation when the errors have
unknown variances and covariances but are assumed to
be temporally uncorrelated, the appropriate criterion
derived via a likelihood or Bayesian approach is to min-
imize the M XM determinant [12].

l V(0) I = Z'Z I (3.1)

In eq-(3.1), Z= Y-H is the NXM matrix of residuals
{Z0k}=Tkk(tl).-flk(t.)}, k = 1, ,2, ... , M, n = 1, 2,
N. The expected responses 17 are assumed to depend on P
parameters 0: except where explicitly required, we sup-
press the dependence on 0. For first order kinetic sys-
tems with all responses measured, M =K.

4. Practical Aspects

Linear Constraints

Sometimes the data matrix Y involves dependencies
as a result of imputation of responses or mass-balance
calculations. If these dependencies also occur in the ex-
pected responses, then important modifications to the
multiresponse estimation procedure must be made so as
to avoid convergence to spurious optima [13,14]. It is
therefore necessary to examine the residual matrix Z(0)
for singularities, which can be done by arranging the
rounding units in the columns of Y to be approximately
equal and taking a singular value decomposition of Z
[15]. As explained there, singular values on the order of
the rounding unit indicate singularity and should
prompt the analyst to search for constraints in the data.
Such examinations should be done at the beginning of
the analysis using the initial parameter values and at the
end of the analysis using the converged values. To aid
convergence, logarithms of parameters are used during
estimation.

Linear constraints can be dealt with easily by com-
bining the linear constraint vectors into a matrix, per-
forming a QR decomposition of that matrix, and letting
the rotation matrix W be the columns of Q which are
orthogonal to the constraint vectors. We then simply
minimize I(ZW)'(ZW)I, where ZW=YW-HW.
Clearly, the gradient and Hessian of this determinant
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are obtained from eqs 3.2 and 3.3 by replacing Z by ZW
and Z, by Z, W.

Constraints on the Number of Parameters,
Responses and Observations

The determinant criterion implies two constraints on
the number of observations [2,3]. First, N must be at
least equal to M since otherwise the determinant is iden-
tically zero. Second, N must exceed P otherwise the
criterion can be made zero by fitting any one response
perfectly, which can generate up to M distinct minima.
Thus the residual matrix has effectively N-P degree of
freedom. It may seem that there should be more degrees
of freedom since there are NM separate observations,
but the criterion can be locally controlled by any one
response so the effective number of observations is N
rather than NM.

Starting Values

An important part of fitting nonlinear models is deter-
mining good starting values. For uniresponse data, an
effective method is to use peeling in which we plot the
logarithm of the response versus time and fit a straight
line to the segment at large t values. The slope of the line
gives an estimate of the smallest eigenvalue of the A
matrix. Using the fitted line to generate residuals and
plotting the logarithm of the residuals versus t should
again reveal a straight line portion at large t values, so
the process is repeated, thereby obtaining estimates for
the eigenvalues. As mentioned in section 2, this process
is often used for parameter estimation, but we do not
recommend it.

In the case of multiresponse data for first order kinet-
ics, the problem is easily solved using linear least squares
by exploiting the linear relation between the rates and
the responses! As noted in [3], if we could measure the
rates 9 and the responses y at a particular time r, then
using 9(7-)=Ay(T) produces a linear relation between
the "dependent" variable y=y and the "independent"
variables xP =Apy in the form y =XO. We can thus
solve for 6 by using linear least squares. A simple pro-
cedure for obtaining starting values, then, is to use ap-
proximate rates from finite differences of the responses
at successive time points and xp values from the corre-
sponding averages. Alternatively, one could smooth the
data for each response by fitting splines so as to obtain
better rate and response values, and then use these in a
linear least squares routine.

a thorough multi-response analysis was presented in
[13]. The fitted model was described by the system

'2 01yi

Ili5 = 3 =02/
L°IY34O27V5

I-0373-04Y3 + 05Y=A M
03Y3

04Y3 -05^)Y5 

which can also be written y=XO, where

X= 01

0

L0

-7i
0

7 3
0
0

0
0

-Y3

Y3
0

0 0 j
0 0

-757
KY-'Y

Substituting estimated rates for each time and joining
them into a single vector y, and calculating X matrices
for each time and joining them into a single X matrix,
allows us to use linear regression to estimate starting
values for 0. The starting values obtained are listed in
column 2, table 2. Note their closeness to the converged
values, column 4.

Table 2. Estimation for a-pinene at 189.5'.

Box Bates and watts
Parameter Start et al. Full Reduced

Model Model

X 5.84 5.95 5.94 5.95
2 2.65 2.85 2.84 2.82
3 1.63 0.50 0.45 -
4 27.77 31.5 31.21 30.75
5 4.61 5.89 5.79 5.72

Determinant
600 28.4 29.0

Parameter estimates are listed in table 2 in
minutes-'X 10-5 ; that is a table value of 5.84 is actually
a rate constant of 5.84X 10-' minutes-'.

When some of the responses are not measured, it is
still possible to use approximate rates provided other
information, such as a mass-balance, is substituted.

5. Two Examples

5.1 Oil Shale

Example: a-pinene.1

Data on the thermal isomerization of a-pinene at
189.5' were reported by Fuguitt and Hawkins [16], and

The model and data presented by Ziegel and Gorman
[4] were fitted using the procedures described here. In
this problem the concentration of 7ll was not measured,
which introduces some complexity in determining start-

436



ing values. Second, the elimination compartment, corre-
sponding to coal and gas, was not measured. Third,
there was a time delay caused by the shale having to
reach the reaction temperature. The observed responses
are Y2 and y, , measured in percent of the initial kerogen
711, so K=3, M=2, with N=14.

To determine starting values in this case, we plotted
the data and obtained a rough estimate of Oo=6 min.
Estimating the initial slopes of i72 and 71 from the graph
gave values of 0.029 min-' for 0, and 0.013 min' for 04 .
This delay estimate and the rate constants were used to
obtain starting estimates of 02 and 03 as shown in column
2, table 3, following the procedure of section 4. The final
results, together with those of Ziegel and Gorman, are
shown in columns 3 and 4 of table 3.

Table 3. Parameter estimates for oil shale data.

Parameter Start Bates-Watts Ziegel-Gorman

1 0.029 0.0172 0.0173 (k,)
2 0.012 0,0090 0.0092 (k2 f2)
3 0.028 0.0205 0.0201 (k,(t-f,))
4 0.013 0.0104 0.0104 (k3)
Oo 6.0 7.8 7.7

Determinant
67980 429

5.2 a-pinene

In their analysis of the a-pinene data, Box et al. [13]
noted that response 4 was imputed using
y4=0.03(l00-y,), and that the data set was subject to a
mass-balance constraint, Y +Y2+Y3+Y4+Y5=100. To
avoid convergence to spurious optimal parameter val-
ues, they recommended that these data dependencies be
taken into account by using observation vectors consis-
ting of linear combinations of y, , y, y,, y4 and ys which
are orthogonal to the space defined by the vectors
(0.03, 0, 0, 1, 0)' and (1, 1, 1, 1, 1)'. We therefore
treaty 4 as an unmeasured component for estimation pur-
poses, and use linear combinations of the responses
which are orthogonal to the vectors a =(0, 0, 0, 1, 0)
and a,=(l, 1, 1, 1, 1). The rotation matrix M and the
modified responses can therefore be determined by per-
forming a QR decomposition on the matrix (a,, a,) and
using the last 3 columns of Q coupled with all the re-
sponses. In this case, K=5, M=3, with N=8.

Approximate 95% confidence limits for InO3 were
very wide, suggesting that 03 was badly estimated and
could be zero. We therefore fitted a reduced model
in which there was no path from ,33 to 714, see column 5.
The change in the determinant is 0.6 on I degree of
freedom, which, when compared with the scaling factor
s =28.4/3=9.46 on 3 degrees of freedom, is clearly

small, verifying that the reduced model is adequate for
this data set.

To further substantiate the adequacy of the reduced
model, we fitted both models to a second set of data
taken 204.50 [16]. The results of this fitting procedure
are presented in table 4. The reduced model appears to
be adequate for both data sets.

Table 4. Estimation for a-pinene at 204.5'.

Full Reduced
Parameter Start Model Model

1 23.0 22.6 22.6
2 13.2 12.6 12.6
3 8.3 0.02 -
4 76.9 72.8 72.8
5 16.0 15.6 15.6

Determinant
116 0.55 0.55

6. Conclusions

Several advantages of the direct multiresponse esti-
mation approach for systems of differential equations
are apparent. First, the model can be specified directly
from the network diagram. Second, there is no need to
obtain the analytic solution to the differential equations
describing the reactions. Third, there is no need to code
the model functions in a nonlinear estimation routine.
Fourth, the bothersome and error-prone step of obtain-
ing and coding derivatives of the expected responses
with respect to the parameters is eliminated. Fifth, ex-
cellent starting values can be determined automatically.
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DISCUSSION
of the Bates-Watts paper,
Multiresponse Estimation With Special
Applications to First Order Kinetics.

Michael Frenklach

Department of Materials Science and Engineering
Pennsylvania State University I

The authors presented an interesting approach to pa-
rameter estimation for first order kinetic systems. The
method is user oriented and particularly suited for com-
puter implementation as a "canned" program. Indeed,
present chemical kinetic codes input reaction rnech-
anism in a natural chemical language, that is, specifying
reactions (usually in unformatted READ routines) as
they are conventionally written on the paper. This infor-
mation is automatically converted to a so-called reac-
tion matrix and, based on it, to differential equations
describing the kinetics of reaction species. The reaction
matrix, which contains all the stoichiometry of the sys-
tem, can conveniently provide the required input infor-

'Michael Frenklach's contribution to the subject stems from work
performed in the Departmnent of Chemical Engineering, Louisiana
State University.

Another important feature, from the user's point of
view, is that the presented method is applicable to mul-
tiresponse data. It should be realized that modern prob-
lems of interest to chemical kinetics get tougher, as fot
example, formation of pollutants in hydrocarbon com-
bustion. The experimental answer to the growing com-
plexity of the systems is the employment of multiple
diagnostics for simultaneous monitoring of various pro-
cess variables. However, interpretation of the experi-
mental results cannot be fully realized without reliable
and convenient multiresponse methods.

The following are some of my thoughts on the needs
in this area:

I) Oftea, kineticists exhibit a philosophical re-
sistance to a multiparamneter approach to experi-
mation for automatic coding of the method of Bates and
Watts.
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