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O’Dea et al. (1983, J. Phys, Chem. 97, 3911-3918) proposed an empirical procedure for obtaining estimates
and confidence intervals for kinetic parameters in a model for pulse voltammetric data. Their goal was to find
a procedure that would run in real time, not necessarily one that would have well-defined statistical properties.
In this paper we investigate some of the statistical properties of their procedure. We show that their estimation
method is equivalent to maximum likelihood estimation, and their confidence intervals, while related to like-
lihood ratio confidence regions, have a coverage prabability that is not fixed and that is potentially quite large.
We suggest modifications of their procedure that lead to more traditional confidence intervals. We examine the
effect on their procedure of the presence of nuisance paramters. Finally we discuss the possibility of serially

correlated errors.
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1. Introduction

O’Dea et al, (1983} proposed a nonlinear regression
procedure for estimating, and obtaining confidence in-
tervals for, kinetic parameters describing the reduction
of Zn(Il) at a stationary mercury electrode in aqueous
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solutions of NaNQ;. In this paper we examine the statis-
tical properties of the procedure and suggest mod-
ifications to improve these properties.

In section 2 we describe O’Dea’s procedure, In sec-
tion 3 we show his estimation procedure to be equiv-
alent to maximum likelihood estimation. In section 4 we
show his interval estimation procedure produces inter-
vals that are related to higher-dimensional confidence
regions obtained by likelihood ratio theory, and we sug-
gest modifications to the procedure that will produce
confidence intervals with the desired coverage proba-
bility. In section 5 we question the assumption of



independent errors and examine the effect of including
another parameter in the model to describe the apparent
autoregressive error structure.

The notation used here is similar to that used by
O’Dea, but as is customary in literature on regression we
use Y as the dependent variable.

2. Description of the Procedure

O’Dea models the observed response at time 4 to an
arbitrary pulse sequence by

Yi=afi+c+e,

where a and ¢ are unknown constants that convey no
kinetic information, {¢;} is a sequence of errors that are
assumed to be independent with mean 0 and unknown
variance o. The function f=f(t,a,k,Ey) is the solution
of an integral equation. It depends on unknown kinetic
parameters a, k, and EJ, and it must be obtained by
solving the integral equation numerically.

The kinetic parameters are of primary interest, so
O’Dea uses a nonlinear optimization procedure to find
the values of these parameters that maximize the cor-
relation R between ¥ and f(¢,a,k,E]). These values are
taken as the estimates. Estimates of ¢ and ¢ can then be
obtained by simple linear regression of ¥ on f(,a,k ,EY),
and o can be estimated by the standard deviation of the
residuals from this regression.

With no error the correlation R calculated above
would be equal to unity. O’Dea measures the deviation
from unity by R =1 —R and defines R, as the optimum
value of R . To measure the uncertainty in his estimate of
a he fixes k and E} at their optimal values and finds the
two values of « that give R =3 R,;,. He calls the interval
between these values a “confidence interval” for a, but
he assigns no confidence level to the interval. He com-
putes similar intervals for &k and E..

3. Maximum Likelithood Estimation

A more traditional approach to a problem of this sort
would be to write the likelihood or log likelihood func-
tion for the problem and maximize it as a function of the
unknown parameters. For normally distributed errors
this is equivalent to choosing parameter values that min-
imze the sum of squared residuals. In this section we
show that the above estimation procedure is also equiv-
alent to maximum likelihood estimation.

It # is the number of observations, the log likelihood
L is given by
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The maximum is easily found by noting that for any
value of o, the expression is maximized by choosing g,
¢ o, &, and E! to minimize the sum of squared residuals
SSr=2(Y;—c—af)’. It is a simple matter to show
that if ¥+n"'SY, and SS;=3(¥,—F), then
SSe=(1—RHSSs, so 8§85z is a minimum when R is a
maximum (in absolute value). Therefore O’'Dea’s esti-
mates are the maximum likelihcod estimates.

4, Confidence Intervals

Confidence regions for unknown parameters are often
found by computing the maximum likelihoed estimates
and then finding other sets of parameter values for
which the likelihood function, or an approximation to
the likelihood function, is not much smaller. O’Dea’s
procedure is related to this approach.

Define L (a,k, EY) as the maximum over g, ¢, and o of
the log likelihood L(a.c, o,k EL0). Using the re-
lationships between R, SSg and SS; above and max-
imizing over o gives

La,k ED)=(—n/2)(1+log(2m)--logSSr
+log(1—-RY)—log n).

O’Dea’s procedure involves finding six points—the two
endpoints of the confidence intervals for each
parameter—with the same correlation R =1 —3I§min.
The above expression for L{e,k E)) shows that these
points have the same log likelihood as well.

Let 4,4 and E} be the maximum likelihood estimates
of @, k and Ey The quantity A=exp(L(&KEY)
—L(a,k E))) is called the likelihood ratio. It can be
shown that 2 log A has an asymptotic chi-square distri-
bution with 3 degrees of freedom if a, &, and E} are the
true parameter values, Then P[2 log A<7.815]=0.95, so
the parameter values for which 2 log A<7.815 form a
95% confidence region for the true values of the param-
eters. This region is bounded by the roughly ellipsoidal
surface Ma,k, E))=exp(3.908), as shown in figure 1. In
general, any surface of constant A bounds some con-
fidence region.

The confidence level of the region bounded by the
surface containing O’Dea’s points can be determined by
computing M. In his procedure

2logh = —n[log(l — (1R pin)) ~log(1—~(1—-3R )]
= —nlog(2R ;i./6R ni)=nlog3,

since (Rpin)’<<R,,. Here n=81, so 2logh=~89. By
comparison, the region bounded by the surface for
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Figure 1-Relationship between (’Dea’s intervals and a three-
dimensional confidence ellipsoid. The ellipsoid passes through the
endpoints of the solid line segments.

which 2logh=16.268 has a confidence level of 99.9%,
50 a three-dimensional confidence region found using
2logh =89 would be very conservative.

A more customary confidence level is 95%. Since the
likelihood ratio can be written as a function of the cor-
relation, it is possible to use a modification of O’Dea’s
procedure to find points on the boundary of a 95%
confidence region. Rather than increasing R by a factor
of 3, the appropriate factor is the value of 4 for which 81
log b=7.815, or b =1.10. For example, in a sample data
set that does not appear in (’Dea’s original paper,
@=.22522. Increasing R by a factor of 3 produces the
interval [.22139, .22916], while the factor 1.10 leads to
the interval [.22435, .22609].

On the other hand O’Dea’s goal was not to find points
in a confidence region for all three parameters, but to
find separate confidence intervals for each parameter. In
order to use the distribuiion of the likelihood ratio,
O’Dea’s procedure must be modified so that in com-
puting the endpoints of the confidence interval for one
parameter, the likelihood is maximized over the other
two parameters. Twice the log of this likelihood ratio
has an asymptotic chi-square distribution with one de-
gree of freedom.

In the case of a, for example, this is done by com-
paring 2logh=2[L(4,kE)—L(a,k(a),Ea)] to a chi-
square distribution with one degree of freedom, where
K(s) and E)(s) are the values of k and E that maximize
L{(a,k, E})subject to the restriction a=s. The 95% point
of this distribution is 3.841, so the values of a for which
2 log A<3.841 form a 95% confidence interval for the
true parameter value.

This is best illustrated in two dimensions, as in figure
2. Here approximately elliptical contours of constant A
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Figure 2-Comparison of confidence interval with interval computed
by O’Dea’s procedure in two dimensions.

are plotted as a function of a and & for constant E.. (The
complete contours are ellipsoids in three dimensions.)
The inner ellipse has 2logh =3.841, while the outer el-
lipse has 2logh =7.815. The endpoints of the confidence
interval for a are the points on the contour that have
tangents perpendicular to the o axis. This interval can be
compared with the interval found by O’Dea’s pro-
cedure, which is that portion of the k =K line that is
within the outer ellipse.

Which is larger? If the two ellipses have major axes
parallel to the coordinate axes, O’Dea’s intervals are
longer and their coverage probabilities exceed 95%.
While this is not desirable, it increases the probability
that his interval will contain the true parameters. But if
the major axes are not parallel to the coordinate axes and
if the lengths of the minor axes are small, O’Dea’s inter-
vals are shorter and have a coverage probability less
than 95%. Unfortunately it is not possible to determine
which is the case by looking only at the points examined
in his procedure.

There are two sensible remedies to this problem. The
first, the likelihood ratio method, is similar in spirit to
O’Dea’s original procedure. This method involves find-
ing the confidence interval as described above by find-
ing those values of the first parameter that produce the
proper likelihood ratio when the likelihood is max-
imized over the other two parameters. In this problem,
though, it is time consuming to calculate f; and its deriv-
atives do not have simple analytic expressions, so re-
peated maximization of the likelihood may be too com-
putationally burdensome.

The other method, an asymptoti¢’ normal approxi-
mation, is the one we use here. This involves assuming
that the maximum likelihood estimates have a multi-



variate normal distribution with a mean vector equal to
the true parameter values and with covariance matrix
equal to minus the inverse of the second derivative of
the log likelihood L. (This is equivalent to the likelihood
ratio method applied to a quadratic approximation to
the log likelihood.) Since there is no analytic expression
for the second derivative in this problem, we use a nu-
merical approximation.

In the example given above, the estimated covariance
matrix is

1.0334 —.6908 .0396
S =|—.6908 8.6984 —.7509 | x107".
0396 —.7509 1384

A 93% confidence  interval for a is given by
&.1.96(S,,)}, or [.22459, .22585]. This is narrower than
the interval obtained above using O’Dea’s procedure
with a factor of 1.10.

5. Residual Autocorrelation

The above derivations are valid if the errors {¢.} are
independent normal random variables with a common
variance. In practice this assumption must be checked.
This is especially true when, as in this case, mea-
surements are taken over time. It is often reasonable to

Current

suspect that measurements at neighboring time points
may be correlated.

The errors {&} are not observed, but they can be
estimated by the residuals, or the differences between
the observed ¥; and the fitted wvalues
¥.=2+a f(t,6,k E)). Figure 3 is a plot of ¥ and¥ as a
function of time. Figure 4 is a plot of the residuals
&=Y,— ¥, over time. If the residuals were independent
we would not expect to find any pattern here, but in fact
there is a pronounced tendency for residuals at neigh-
boring time points to have the same sign.

There are three possible causes for this phenomenon.
First, it is possible that this is an artifact of the fitting
procedure. Even when the errors are independent, fit-
ting an ordinary linear regression produces residuals
that have some correlation (for example, they sum to
zero). It is possible that minimizing the sum of squared
residuals in this more complicated model produces re-
siduals with some autocorrelation. However experi-
ments with the model do not support this hypothesis.

A second possible cause is model inadequacy. The
model relates an imposed voltage to an observed cur-
rent, and the voltage is highly correlated with time. If
the equation used here is not the true relationship be-
tween the current and the voltage, there may be cor-
relation between the current and the residuals, and this
dependence could be masquerading as time dependence.
The cure for this difficulty is to propose alternative
models that better fit the data.

Figure 3-Observed
Current.

and Fitted
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The third possible cause is actual autocorrelation in
the errors, and this autocorrelation can be modeled as
well, We proceed under the assumption that the true
errors have time-dependent correlation.

Two common models for time series are the first or-
der autoregressive model

=P €1
and the first order moving average model
&=Ui+p ti_y,

where in both cases {#} is a sequence of independent
normal random variables with mean 0 and common un-
known variance, and p is an unknown parameter be-
tween —1 and 1. Other possible models are the higher
order models, where terms from earlier time points are
used, and mixed models, where ¢ is modeled as a linear
combination of &_i,...,6_, and w;,...u;_,.

Two tools useful for identifying a good model are the
autocorrelation function and the partial autocorrelation
function. These appear in figures 5 and 6. The sample
autocorrelation function is simply the correlation of &
and ¢,_, plotted as a function of £. For a moving average
process of order g the true autocorrelation function is 0
for kX >g. For autoregressive processes and mixed pro-
cesses the true autocorrelation function approaches O as
k— o0, but it is not identically 0 for all £ beyond some
finite value. The sample autocorrelation function in fig-

ure 5 seems to be more consistent with that of the auto-
regressive and mixed models, since there does not seem
to be a sharp cutoff.

The partial autocorrelation function is more compli-
cated, but its interpretation is quite simple. It is the
“dual” of the autocorrelation function, in that it is 0
for all k > p for an autoregressive process of order p, and
it approaches 0 as k— oo but it does not vanish for mov-
ing average and mixed processes. The sample partial
autocorrelation function in figure 6 shows a large value
at k =1 and smaller values for k£ > 1. It is never exactly
0, but for most k values the sample partial auto-
correlation falls inside the boundary that marks the val-
ues that are significantly different from 0. The function
seems to be consistent with what might be expected
from a first order autoregressive process.

The new model

Yi=afi4c¢ ¢ with €§=PE&i_1+U;

is equivalent to

Yi=pYi_i+a(fi—-pfi-)+c(l—p)+u,
which is a nonlinear regression model with independent
errors.

There are now four parameters to be estimated, in
addition to @, ¢, and o. But if only the original three
parameters are of interest, it is possible to treat p as one
of the nuisance parameters by using a variant of the
Cochrane-Orcutt procedure, as follows:
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1) For any given a, k, and E}, compute {f}.

2) Estimate @ and ¢ by linear regression to get {e}.

3) Estimate p by the sample correlation of the {e.}.

4) Regress Yi—pY,_, on fi—pfi_ to get new esti-
mates of @ and ¢;and new residuals {¢}.

5) Repeat steps 3 and 4 until convergence.

6) Compute the sum of squares Zu}=3(e;—pe;_1)".

The computer time needed for these steps is much less
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than that needed to compute {f}, so the estimation is
much faster if the nonlinear optimization program
searches only in the three-dimensional space of (ki ED.
For each set of trial parameter values the above steps
can be performed to minimize the residual sum of
squares over the nuisance parameters. The resulting esti-
mate of a is .22473.

The other calculation can also be repeated for this
new model. The estimated covariance matrix is



4.8344 —5.6256 4766
S = |—56256 37.5982 —2.6193 |X1077,
4766 —2.6193 6513

This is roughly four times the previous covariance ma-
trix, so the length of the new confidence interval is
about twice that of the previous confidence interval.
The new interval is [.22336, .22600].

The four intervals around a are compared in figure 7.
The procedure used in O’Dea’s original paper produces
an interval obtained from a three dimensional con-
fidence ellipsoid with a very large confidence level,
and it is quite long. The interval is shortened by using a
95% confidence ellipsoid, but it still does not have a
95% coverage probability. The 95% confidence inter-
val is still shorter, Taking into account the apparent
autoregressive error structure leads to a confidence in-

terval that is about twice as long as the one in the inde-
pendence model, but still only a third as long as the
interval obtained by O’Dea’s procedure.

Thanks to Herman Chernoff for numerous discus-
sions. Thanks also to IBM for providing graphics hard-
ware and software,
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