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Interlaboratory Comparisons using common (reference) materials of known composition are an established means for
assessing overall measurement precision and accuracy. Intercomparisons based on common data sets are equally
important and informative, when one is dealing with complex chemical patterns or spectra requiring significant
numerical modeling and manipulation for component identification and quantification. Two case studies of
"Chemometric Intercomparison" using Simulation Test Data (STD) are presented, the one comprising STD vectors as
applied to nuclear spectrometry, and the other, STD data matrices as applied to aerosol source apportionment. Generic
information gained from these two exercises includes: a) the requisites for a successful STD intercomparison (including
the nature and preparation of the simulation test patterns); b) surprising degrees of bias and imprecision associated with
the data evaluation process, per se; e) the need for increased attention to implicit assumptions and adequate statements
of uncertainty; and d) the importance of STD beyond the Intercomparison-i.e., their value as a chemometric research
tool. Open research questions developed from the STD exercises are highlighted, especially the opportunity to explore
"Scientific Intuition" which is essential for the solution of the underdeternined, multicollinear inverse problems that
characterize modern Analytical Chemistry.

Key words: aerosol source apportionment; chemometric intercomparison; gamma-ray spectra; interlaboratory compari-
son; inverse problem; linear regression; multivariate data analysis; pattern recognition; reference materials; scientific
intuition; scientific judgment; simulation test data.

Introduction
Accuracy Assessment

Ideally, the results of chemical analyses performed by a
single laboratory using a well-defined Chemical Measure-
ment Process (CMP) should be characterized by reliable
measures of accuracy-i.e., imprecision and bias (or
bounds for bias). Meaningful statements of uncertainty
would then follow directly from these CMP Performance
Characteristics [l]l. Such is almost never the case, how-
ever. Once two or more laboratories perform measurements

About the Author: L.A. Currie is with the NBS Center
for Analytical Chemistry where he leads the atmospheric
chemistry group.

'Figures in brackets indicate literature references.

of the same material, interlaboratory errors become evident.
Collaborative tests, using common, homogeneous materi-
als, serve as one of the most powerful means for both expos-
ing and estimating the magnitude of this error component.

A familiar illustration of the outcome of interlaboratory
measurement is reproduced in figure 1 [2]. Here, following
the spirit of the "Youden Plot" [3], we show the results of
pairs of measurements by 10 laboratories of the determina-
tion of trace levels of vanadium in two Standard Reference
Materials (SRMs). A log transform has been applied to the
reported concentrations, in order to expose proportionate
errors among laboratories. As is generally the case, intralab-
oratory precision is comparable among laboratories, and
considerably better than the interlaboratory component.
Note that the line drawn in the figure is not fitted; its location
is fixed by the certified values of the SRMs (dashed box),
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Figure I-Interlaboratory results for vanadium (jigig) in two standard
reference materials. The plot shows proportionate interlaboratory errors
among nine participants using the same analytical method. The outlier
( derived from a second method, lacking internal replication. Dashed
region indicates the 'truth' [certified values),

and its slope is fixed at 450 (proportionate errors). SRMs or
samples having known composition carry a very important
attribute in interlaboratory tests, in that one can estimate
individual laboratory and CMP bias in addition to interlabo-
ratory variability. Also noteworthy is the "outlier" (marked
by the cross) which deviates from the line significantly more
than the other members of the interlaboratory set. Investiga-
tion of such outliers can sometimes yield important insight
into the causes of interlaboratory differences. (In the exam-
ple at hand the "outlier" resulted from a different analytical
method that lacked internal replication.)

Modern Analytical Chemistry:
Importance of Data Evaluation

Enormous advances in analytical methods have brought
great improvements in sensitivity, but at the same time,
significant complications in data interpretation. In little over
a decade, for example, "trace analysis" came to mean the
measurement of pg of an analyte rather than p.Lg [4]. Chem-
ical patterns or spectra are central to the interpretation of
complex mixtures, as are sophisticated analyte separation
techniques such as high resolution gas chromatography.
Practical demands on analysts also have accompanied the
increase in sensitivity; toxic chemicals, for example, are
regulated down to concentrations of 10-12 g/g. The magni-
tude of the problem can be appreciated from the fact that the
analyst in measuring a substance at a concentation of 10I1l
g/g in drinking water must contend with -'i0 5 compounds
which are more concentrated by at least a factor of 1000 [5].

When the Chemical Measurement Process involves sig-
nificant modeling or numerical operations in the data evalu-

ation or information extraction step, it becomes interesting
to consider the data analog of the SRM-the STD or Simu-
lation Test Data set. By providing participants with com-
mon, well-characterized sets of data which adequately sim-
ulate the observations of real experiments, one can directly
assess the imprecision and bias of the data evaluation proc-
ess, independent of confounding errors or unreliable as-
sumptions connected with the experimental parts of the
CMP. This, in turn, makes it possible to estimate the error
components associated purely with the experimental steps.
Simulaton Data, as opposed to Real Data, are beneficial
because "the truth is known"-i.e., the physical model
(functional relation) as well as the random error model can
be strictly controlled.

One might expect that little may be learned from such
"Chemometric Intercomparisons" since numerical opera-
tions can be reproduced quite rigorously from laboratory to
laboratory; but such is not the case. An illustration involving
Real Data comes from the reevaluation (auditing) of several
sets of chromatographic data from Love Canal soil and
sediment samples for toxic organic compounds. As shown
in table 1, compounds identified in common between ana-
lytical and auditing labs represented only about 60% of the
total identifications, where the discrepancy was due strictly
to differences in data evaluation [6].

Table 1. Real data-Love Canal soil and sediment samples: Compound
identification by GC/MS. (Data Tape Auditing).

Same Compounds TotaI Compounds
Lab Code Identified Identified

A 20 32
B 13 24
C 22 51
D 13 20
E 63 104

EPA 14 20
[intersection] [union]

A myriad of hidden assumptions, and even algorithm
changes exist in many of the pattern recognition and spec-
trum deconvolution schemes currently in vogue. Since the
actual number of degrees of freedom is generally negative-
i.e., the chemical model is never really known-numerical
solutions often require subtle injections of "scientific intu-
ition" or "scientific judgment." The importance of these
issues will be illustrated by two case studies, actual inter-
comparisons among expert laboratories of the data evalua-
tion phases in Gamma Ray Spectrometry and trace element
Aerosol Source Apportionment, respectively. The STD in
the first exercise was a data vector (nuclear spectrum); in the
second, it was a data matrix (set of samples each having a
trace element "spectrum"). The author was a participant in
the first intercomparison and instigator of the second.
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Figure 2-The Chemical Measure-
ment Process (CMP) which oper-
ates within the laboratory, and the
Analytical Measurement Process
(AMP) which operates within the
larger "Enviromrental" (or other
external) system. (See text for ex-
planation of symbols.)

Chemnometric Intercomparison
Structure of the Measurement Process

In order to introduce some notation and to put the STD
Intercomparison (IC) in perspective, it is useful to consider
the structure of the Chemical and Analytical Measurement
Processes (CMP, AMP) [4]. These two processes, which
symbolize the environment in which Analytical Chemistry
operates, are shown in figure 2. As indicated in the upper
portion of the figure, the CMP represents the laboratory
process, where a sample of composition x is operated on
(chemically) to produce a signal y, which in turn is operated
on (mathematically) to generate an estimate of x and an
uncertainty interval. The chemometric challenge thus is to
obtain a chemically-meaningful and mathematically-
consistent solution to the inverse problem as represented by
eq 1. Control of the overall measurement process is
achieved by injection of an SRM as a surrogate sample;
control of the data evaluation process is achieved by injec-
tion of an STD as a surrogate signal.

Except in limited laboratory investigations, the real object
of Analytical Chemistry is to provide information on an

external attribute (here represented by 0) through composi-
tional analysis. The lower portion of figure 2 describes this
broader context, where an external process (here labeled
"environmental") operates an 0 to produce the sample of
composition x. Following this, the imbedded CMP yields
the compositional estimate xi The final step, once again, is
the solution of a (generally more difficult) inverse problem
eq 2. STD injection in the AMP case means provision of a
surrogate sample whose estimated compositional pattern
corresponds to eq 2.

A fundamental difference exists between the CMP and
the AMP with respect to the chemometric task. That is, in
the laboratory, in principle, we can isolate ever-decreasing
numbers of analytes (chemical fractions or instrumental sig-
natures), in many cases leaving just a single term (compo-
nent) in eq 1. For the AMP and the corresponding environ-
mental, geochemical, or biochemical problem, for example,
Nature is seldom so cooperative. That is, real samples x are
determined by the external process over which we have
limited control (beyond the sampling design), so eq 2 nearly
always exhibits a multicomponent, multivariate structure.
Unique solutions are generally impossible in the absence of
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scientific knowledge concerning the external ("environ-
mental") system.

The following STD intercomparison consists of univari-
ate data (y) from a simulated CMP. The second example
consists of multivariate data (i) from a simulated AMP.
Both ICs took place because of analytical measurement
problems having major public import-the first related to
accurate monitoring of radioactivity; the second, to accurate
apportionment of atmospheric pollutants.

STD Vector-
IAEA Intercomparison

of Gamma Ray Spectrum Analyses

In connection with their Analytical Quality Control Ser-
vices program, the International Atomic Energy Agency
(IAEA) undertook in 1976-77 a broad interlaboratory data
evaluation exercise involving computer-simulated high res-
olution Ge(Li) gamma ray spectra such as might arise in
contemporary neutron activation analysis [7]. The purpose
of the intercomparison was both to assess the state of the
-y-spectrum evaluation art and to provide data sets of known
structure to assist in the improvement of that "art" (or sci-
ence?). To my knowledge this was the first numerical
chemometric intercomparison of such scope, using STD
vectors. The organization and structure of the IAEA exer-
cise are summarized in table 2.

Several features of the IAEA intercomparison were
analogous to those involving chemical measurement inter-
comparisons with reference materials. First, the STD were
well-characterized, with y-rays of known identity (energy)
and amplitude. The "samples" were absolutely homogenous
(identical numerical data to all participants), and they simu-
lated observations from actual laboratory samples. SRM

intercomparison organizers strive to also meet such condi-
tions, but of course they can only approach the homogeneity
and exact composition knowledge found with STD. The
IAEA data sets also had known random error distributions
(Poisson), a situation which is actually approached in many
nuclear experiments, but which can never be guaranteed.
Realism was preserved in the shapes of the y-peaks, in that
they were derived from high precision observations with
Ge(Li) spectrometers. The fact that these shapes were not
analytic was one of the more discriminating elements of the
IC, particularly for the resolution of doublets, where alter-
native analytic or empirical peak shape functions had to be
employed [8]. (Each peak was approximately Gaussian near
the top but decidely asymmetric near its base.) Referring
again to table 2, we can see that important planning took
place, over a three-year period, resulting in four categories
of data designed to provide initial "calibration," and to test
detection, accuracy and precision in quantification, and
doublet resolution. The importance of the pilot study cannot
be overstated; development of realistic STD of sufficient but
not excessive complexity does not come about without care-
ful initial trials and iteration.

Detailed results for the IC may be found in [7]. Some of
the highlights follow. Figure 3, for example, shows the
spectrum (pattern) offered the participants, in digital and
analog form, to address the problem of unknown peak detec-
tion. Participants knew only the calibration peak shape (as
a function of "energy" or channel number) from the Refer-
ence Spectrum #100 (not shown), plus the facts that the
unknown peaks were singlets and that random errors were
Poisson. The numbers and locations of the trace peaks were
to be determined. (The steep rise in the baseline near the
center of the spectrum was inserted by the IAEA to simulate
a Compton Edge.) The inset shown in figure 3 gives some

Table 2. Structure of the IAEA Gamma-Ray STD intercomparison.

Objectives

* To permit each participant to assess the accuracy of his data evaluation process.
* To determine the quality of alternative gamma-ray spectrum evaluation methods as applied in representative laboratories.

Evolution

* 1973: Proposed at Consultants Meeting.
* 1975-6: Pilot Study involving a small number of experts.
* 1976-7: Full IC, involving 163 labs in 34 member states.
* Currently: Simulation data offered as continuing pan of the IAEA Analytical Quality Control Service.

Data Sets

* Reference Spectrum: 20 high-precision peaks spanning 2000 channels.
* Detection Spectrum: 22 subliminal peaks, whose number and locations were unknown to participants; detection criteria (a-, P-errors) were left

to individual judgment.
* Precision Spectra: 6 replicate spectra having 20 known plus 2 unknown, large singlet peaks (Poisson statistics).
* Resolution Spectrum: 9 doublets of unknown location and relative amplitude.
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Figure 3-IAEA Gamma-Ray STD;
"Detection" Spectnum. Inset shows
discrete data for a peak detected
by about 50% of the participants.

Adapted from [7.]

idea of the discreteness and scatter of the digital data; this

"real" peak was detected by about half of the participants.

The results of this intercomparison were somewhat sur-

prising. Though most of the 200-odd participants submitted
results, no one correctly identified all 22 subliminal peaks.

Some six classes of methods, including one labeled

"unclassified," were employed, including: the relative max-

imum, first and second derivatives, cross correlation, and

"visual". It is interesting that the last gave the best result;

one "trained eye," using analog data only, identified 19

peaks correctly, with no false positives! Understanding the

process (Scientific Intuition) employed by this expert is

certainly one of the more intriguing aspects of this work. It

seems hardly pure chance, for only 5 out of 212 participants

correctly reported this many (19) peaks; yet 2 of the 5 were

"visual." (For comparison, the visual technique was em-

ployed by about 5% of the participants.) The second deriva-

tive and cross correlation techniques were close behind,

with up to 18 and 17 peaks correctly identified (w/o false
positives), respectively. Performance was quite diverse for
all methods, however: correct identifications ranged from 2

to 19 peaks, and false positives ranged from 0 to 23. Appar-

ently, Detection Limits were rarely estimated, for this issue

was not even mentioned in [7]. Histograms for the three

"best" methods are shown in figure 4. Though all three

exhibit considerable dispersion, it is clear that the visual

technique gave the best single result as well as the smallest

fraction of false positives. 2

The replications (Spectra 300-5) and resolution (Spec-
trum 400) exercises also indicated often inadequate and

2 Scientific Intuition, as employed by experts, is alleged to be much more
disperse that "rule-based" methods [9]. In the light of figure 4, it is not
obvious that this presumption is true, for even the "objective" numerical
techniques employed by different laboratories operating on exactly the

same data gave broad distributions.

SCIENTIFIC INTUITION
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Figure 4-Frequency distribution of results for peak detection according
to the type of method used. The upper boundary of each histogram
represents the data for all results regardless of the number of spurious

peaks reported; the upper boundary of the shaded region is for those

results which were accompanied by zero spurious peaks.
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widely varying performance. The majority of the results
submitted contained quite inaccurate or no estimates of un-
certainty for large singlet peaks, even though the random
error distribution was known; and less than 25% of the
participants even submitted results for the most difficult
doublet resolution case.

The IAEA Simulation Data Sets have been viewed of
sufficient importance that they have become an integral part
of the Intercomparison Programme of the Analytical Quality
Control Service of that organization. The most recent offer-
ing was issued in December 1984 [10] where STD Dray
spectra are included alongside isotopic and trace element
Intercomparison and Certified Reference Materials of im-
portance in many areas of nuclear and environmental analy-
sis.
STD Matrix-NBS-EPA Intercomparison of Source Ap-
portionment Techniques. The second case study com-
prises STD in the form of two-dimensional data matrices,
simulating sets of atmospheric aerosol samples each ana-
lyzed for up to 20 chemical species [11]. The stimulus for
this exercise, which is believed to be the first STD intercom-
parison involving Data Matrices, was the great potential but
great difficulty of identifying multiple pollutant sources via
their "chemical fingerprints" as preserved in ambient parti-
cles, (A vivid illustration adjoins [11], where one finds
discord even in assigning names to pollutant factors deduced
from elemental patterns observed in actual measurements of
[Houston] aerosol samples [12].) As noted at the beginning
of this section, this type of problem is characteristic of the
AMP, where superposition of multiple components is intrin-
sic to the nature of the system, so chemical manipulation
cannot simplify the structure of eq (2).

We designed the STD in coordination with (nearly) all of
the "Receptor Modeling" (source apportionment) experts in
the U.S. with the object of providing a few realistic data
matrices covering a range of problems. The overall structure
of the study is given in table 3. The data matrix x is given
by the superposition of source contributions (MO)j, where
each source has a characteristic chemical pattern or profile
Mi and a temporal (or spatial) intensity pattern Oj Three
classes of error typify such measurements, as indicated in
the table. A significant task involved building the database
of source profiles and error terms. Unlike the y-ray calibra-
tion profiles (peak shapes), the aerosol source profiles were
not even approximately analytic (fig. 5, top); reliable empir-
ical field data had to be sought and evaluated.

When generating data matrix STDs, one must pay atten-
tion to a major new element of complexity which is absent
from data vector STDs. That is, unless the simulation data
are to be no more than arbitrary superpositions of sources
with added random errors, it is essential to generate the
source intensity patterns by means of suitable source emis-
sion locations (emissions inventory map) plus realistic mix-
ing and transport to the receptor (sampling) site(s). This step
is intrinsic to the nature of the data matrix; it underlies its
multivariate character, and it highlights information (source
map, meteorological patterns...) external to the data
matrix, per se, which may be crucial for a successful data
analysis. The source map used for the simplest of our three
data sets is shown in the lower portion of figure 5. Stochas-
tic source impacts at the receptor R were generated by
bringing together the source map, emissions intensities and
operating schedules, actual meteorological data (from St.
Louis, September 1976), and the 'RAM' atmospheric dis-

Table 3. Structure of the source apportionment simulation test data.

Generating equation

P

ii,=L [M-ea,+el]Hynl +eu

where:

p = number of active sources (p - 13)
t=sampling period (l-tG 40)

x,="obscrved" concentration of species i for period t (T1_i6,ANI20)
j, =true intensity (at receptor) of source j(lqjlp)

M1 }='observed' source profile matrix (element j1)
ei =random niaesurenlent errors, independent and normally distributed
e,1 1=systenotic source profile errors, independent and normally distributed (systematic because fixed over the 40 sampling periods)
c=ranhdom source profile variation errors, independent and log-normally distributed

Data set characteristics

Set l: p=9 (including one unknown source)* enrors=el, em: City Plan No. I (fig. 5)
Set 11: p= I (all known); errors =eI,e,,; City Plan No. 2
Set III: p = 13 (all known); errors=ei, em. eH; City Plan No. 2

-For DOat Set I, participants were told only that pl-3.
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Figure 5-Source Apportionment
STD (Data Set 1), Upper portion
shows one column (transposed) of
the source signature matrix M, and
one row of the source intensity
matrix 0-both for source-2, IN-
CINERATOR. Mi2 has a discrete
pattern (individual chemical ele-
ments), the most discriminating el-
ements of which are marked by cir-
cles; the dashed line indicates
which elements exceed 1% of the
(Incinerator) particle mass. 02, has
a continuous underlying structure
(time series) which is sampled at
40 equidistant points; the dashed
line indicates samples for which
the Incinerator source contributes
more than 5% of the average aero-
sol mass.

The lower portion of the figure
displays the aerosol source emds-
sion map.

persion model [13]. Illustrations of a source (chemical) sig-

nature [M1 ] and a source intensity time series [0jI] are given

in the upper portion of the figure. Note that M 4j by its nature

(individual elements) is discrete, whereas %j, is a sampled

continous time series (intensity variations).
The objective of spanning the range of difficulty was

achieved. Our initial "pilot" data matrix was so transparent
that one of our participant-advisors was able to identify
sources by inspection. Caused in part by the narrowness of

the RAM model plumes, this was remedied in the final STD
intercomparison data sets, one of which was so difficult

(though realistic) that none of the participants submitted
results. Results for the data set of intermediate difficulty
(Set 11) were generated by three laboratories, all using re-
gression techniques. Two of these were identical: "effective
variance" weighted least squares (WLS), which took into

account errors in the observed chemical concentrations as
well as those in the source profiles. The third method was
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ridge regression, of interest because of the high degree of
collinearity among the 13 sources. For the most part, the
three sets of resuits were self consistent, and within a factor
of 2 of the truth. For four of the sources, however, widely
discrepant results were reported-a surprising outcome, for
similar or identical numerical methods were applied to iden-
tcal numerical data.

An exploratory graphical analysis of the results from the
two laboratories using weighted least squares (WLS-1, -2)
is shown in figure 6. This approach, which was inspired by
the "Youden Diagram" for bi-rmaterial inrercomparisons,
a4DwR us :o spot 'ouliiers"' from the line of concordance.
(As with the line drawn for .:e Youden Ll ot of figure 1. the
45° line in figure 6 was drawn independent of the data-i.e.,
it was in no way "fitted".) Exact results would fall at the
origin (0. 0), and equivalent data reduction bv the two
laboratories would prodLce results lying or: the line. Disper-
sion along the line derives from random enrors bLiit into the
common data set and systematic errors connected with the
common numerical model (WLS). Two of the sources (Ag,
0,) were well below their detection limits, and will not be
further discussed here. The three outlices (Cf point 'x' in
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Figure 7-Absolute errors ror each or the 13 source estimates for Data Set
Ii, byWLS-1 ix), WLS-2(+) iand Ridge Regression (i), plotted as a
function of the reported stucdard errerss. (On the average about 213 of the
points for a correct method should fall below the diagonat.)
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Figure 6-"Scientific Judgment" Plot. Correlation (Youden-type) Dia-
gram showing data evaluation resuts of laboraturry-2 vs laboslery-l
operatine on the same data set (iI) using the same method of numerical
analysis (weighted Least Squares). Deviations from the non-fitted tine
of concordance imply chemometric 'operator erior" (SJ).

[Source Codes: Steel-A (8,), Steel-B (S2), Oil-A (of Oil-B (02),
Incinerator (1), Class Nffr (G), Coal-A (Cl), Coal-B (C2), Aggregate

(Ag), Basalt (B), Soil (So), Auto (v). Wood Smoke (W)j

Figure I-G , W. and Cl-deserve oar attmntior. however.
As will be shown rin the next section, shby may be attributed
to what the laboratories involved labeled "Scientific Judg-
ment." Discovering this factor, and understanding its na-
tzre, was one of the unexpected but important outcomes of
the experiment.

Another major difference and inadequacy among the lab-
oratories relates to the uncertainties (i.e., SEs) reported. All
did report standard errors, but an examination of the actual
deviations from the truth for the 13 estimates from each lab
was illuminating. For one of the three, all 13 (absolute)
deviations exceeded the SEs by factors of 2 to 10, whereas
for another lab the deviations were all straller than. the SEs
by fattes of ahctfl 1.6 to 30. None cf the Abs -enrtzd
lxLnd5 for sylemnatic or mozel m LUI . (See fi . 7..

Because of Ile rnultvariat- cuanacte-cf the sorsceappor-
tionment data sets, both simple linear regression and factor
analysis (FA) techniques could be applied. The regression
methods ("Chemical Mass Balance", i.e., WLS) were the
more precise, when model information and source profiles
were available. When the model was not fully known and if
the number of interfering components was not too great,
factor analysis or certain hybrid methods appeared to yield
more acceptable results. Such was the case for Data Set I
%vhi'ch had 9 sourzes, one of which was unknown to the
participants. In Set 11, however, with 13 known sources
having a significant degree of multicollinearity, factor anal-
ysis was able to discern but four sources.
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Subsequent Developments:
STD as a Basis for

Chemometrics Research
A principal conclusion from the foregoing exercises is

that the data evaluation step of multicomponent and multidi-

mensional chemical (nuclear) analysis is not free from prob-

lems of imprecision and bias. Scientific Intuition (SI) and

Scientific Judgment (SJ), often manifest as subtle assump-
tions, can provide important guidance for pattern recogni-
tion, or it can be somewhat misleading. Collaborative STD
exercises appear to be an effective means for exposing and

perhaps better understanding these "expert" techniques.
The limitations found in the STD intercomparisons-

e.g. , limitations in accuracy, in model formulation, in un-
certainty estimation, in detection, and in utilizing external
information (non-negativity, meteorological data,. ..)-sug-
gest that an important part of experimental inaccuracy, as
seen for example in SRM intercomparisons, may lie with the

data evaluation process. Attention to this matter offers the
possibility of improved overall performance, either through
the reduction of needless data evaluation error, or through
improved measurement process design to reduce model
complexity and multicollinearity.

Both intercomparison exercises exhibited an afterlife. As
noted earlier, the Gamma-Ray STD have become a routine

part of the IAEA's Analytical Quality Control Service. The
source apportionment STD have spontaneously evolved into
a research data set for chemical element pattern recognition
method development. Initially, new research was under-
taken by participants who wished to try improved versions
of the their regression or FA methods in light of the IC
results and knowledge of the truth. More recently, requests
for the data tape have come from others for the testing and
development of multivariate pattern recognition methods
quite apart from aerosol source apportionment. A sampling
of post-intercomparison research with the STD data ma-
trices follows:

Investigator

M-D. Cheng,
P. Hopke*

L. Currie*
1. Frank, B.

Kowalski
G. Gordon*
R. Henry
P. Lioy
D. Lowenthal

et al.
T. Pace

Topic

Linear Programming

Detection, Design, Model Error
Partial Least Squares

Student Instruction, QA
Composite Components (SVD)
Student Research
Special Error Propagation

(Cov)
Sensitivity Analysis

Ref.

[14]

Table 4 includes results from some of these more recent

investigations, together with an examination of the
"outliers" and Scientific Judgment exposed in the correla-
don diagram (fig. 6). Table 4A lists results for the best prior
results (TTFA) for Data Set I and the new application of
Partial Least Squares (PLS). Though PLS results carry no
uncertainty estimates, they are clearly closer to the truth.
The two deceptions, as well as all of the source profiles,
however, were known for carrying out the PLS analysis.

Regarding TTFA and other prior analysis, the first decep-
tion-the linear combination of AUTO and SOIL to repre-
sent the ROAD component, including re-entrained dust-
was missed by all participants; the presence of a large,
additional component (SANDBLAST) was discovered by
all.'

Table 4A. Source apportionment STD (Data Set 1).

Truth
Source [tg/rn3 ] PLSI TTFA 2 A/SE2

Steel (c) 0.05 0,07 --- ?

Oil (c) 2.0 2.5 2.1±1.0 +0.1
Incinerator 1.3 1.4 1.9±0.14 +4.3
Coal-B 2.4 1.9 2.2±0.73 -0.3
"Crustal" (cl 12.7 13.0 12.5±0.75 -0.3
*Road 7.1 7.2 4.0 ±0.09 -34.4
Wood 3.3 3.4 4.3±0.52 +1.9

*Sandblast 4.2 4.1 4. I±0.20 -0.5
(Total) (+2%) (-6%)

(c) Composite components for multicollinearity reduction.
*Two Deceptions: Road (Soil+Auto); Sandblast (fUnk).

t. Frank and B. Kowalski [15] 2pf Hopke [11T.

Table 414. Source apportionment STD (Data Set I)-analysis of outliers.

Incinerator Glass Coal-A Wood
(I) (G) (Cd (W)

Truth
(ALg m3 ) 1.81 0.46 3.7 0.94
[N] [38] [36] [32] [40]__________ _____________

WLS-15

[N]

[15] WLS-2
2

[N]

1.5±0.05
[27]

1.5±0.43
[26]

WLS-33 151±0.14
[16] [NV] [31]

[171 LI4 1.60

0.16±0.03 4.3±0.3 0.5±0.1
[3] [II] [11]

0.28±0.11 5.3±t1.4 0.91±0.16
[8] [22] [26]

0.43±0.44 4.3±2.2 1.33±0.24
[231 [29] [36]

0.48 0.44 0.45

N=Number of actual or assumed non-zero occurrences of the source in
question among the 40 aerosol samples.

tHeisler, Slah [II].
2Cooper. DeCesar [11].

3Lowenthal, Hanumraa, Rahn, Currie [17].
4Cheng, Hopke [14].
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Participants of the original IC, known to be poramsisg advanced studies using the
STD. Most of the others listed subsequently requested the data tape specifically for
basic investigations of the numerical data evaluation process.



The outliers (G, Ct, W) from data Set 11 are examined in
table 4B for new and earlier analyses. The INCINERATOR
results, which fell directly on the line of concordance (fig.
6), are included for comparison. It is interesting that Ll
linear programming gave significantly improved results for
sources I and G, but much poorer results for the other two
sources. A conjecture, which bears investigation, is that in
the absence of experimental blunders, least absolute residu-
als carry too high a penalty in highly collinear problems. We
gain some understanding of Scientific Judgment (SJ) from
the three WLS results. It is apparent that the exercise of SJ
in deleting rare components from the model is operator-
dependent and generates important differences in overall
results. This is an issue deserving additional research, the
outcome of which could be the transformation of Ad-Hoc SI
into scientifically-based SL4

Conclusion
For modern Analytical Chemistry, where chemometric

approaches are mandatory to resolve complex signals from
multianalyte mixtures, Simulation Test Data serve two im-
portant purposes: 1) The assessment of interlaboratory data-
evaluation precision and accuracy; and 2) the exposure of SI
and SJ plus the generation of more powerful methods of
combining scientific knowledge with advanced techniques
of data analysis. The need for this is critical, because in
principle nearly all of our multicomponent "inverse" prob-
lems are underdetermined-i.e., solutions cannot obtain in
the absence of explicit (or hidden) assumptions. We con-
clude with a summary of recommendations for the prepara-
tion of STD data sets, and open research questions which
could be fruitfully addressed by chemometricians (table 5).

Table 5. STD exercises,

Observations and Recommendations

* Benefits: Controlled model, errors; Truth is known.
* Prerequisites: defined objectives, 'lab' population, plan, input datamodel.
* Pilot study advisable.
* Investigate 'surprises-unexpected accuracy, discrepancies.
* Blind; anonymous; don't score; discourage premature communication.
* Deceptions: mimic reality; be not too obvious.

Some Open Questions

* Adequate treatment of uncertainty-esp. bias (bounds).
* Further understanding of 'SI' and 'SI'-who are the experts?
* Utilization of external information: phenomena, data, "fuzzy" S& partial knowledge, constraints,...
* Treatment of the 'total' problem (simultaneous estimation over the entire data matrix), mdn. errors in y' and 'A'.
* Solution and uncertainties when the linear model doesn't apply (physical-chemical and mathematical strategies; eg, atmospheric transformation).

Special recognition should be given to the designers of the
two STD exercises discussed, as well as to the participants
and the scientists who are using the STD for continued basic
research in chemometrics. R.M. Parr (IAEA - STD) and
R.W. Gerlach (Source Apportionment - STD) made essen-
tial contributions. Others deserving special recognition are
listed as authors of references [7, 11], and [14 - 18].

3STD deceptions-i.e., realistic complications-are, of course. in order
for all but the simplest of exercises. Though organizers should attempt to
span the range of difficulty occurring with real data sets, they should not
do so in too obvious or regular a manner. Informing the IAEA y-ray STD
participants, for example, that the multiplets had just 2 components was
already a considerable simplification, but the regular spacing (1, 3, 10
channels) and relative amplitude (1, 3, 10) of the doublet members was
unnatural and could encourage a certain amount of guess work on the part
of the participants.

4The paradigm proposed here classifies experts' decisions or assump-
tioas as "intuitive" (SI) or "judgmental" (SJ) depending on whether they are
based on sound (though possibly subliminal) reasoning or ad hoc judg-
nments, respectively. These asymptotic classes may each yield correct or
incorrect results, just as target and contaminating populations may each
produce outliers or inliers. though with differing probabilities.
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The construction and use of Simulation Test Data (STD)
to help evaluate alternative chemometric methodologies is a
highly welcome contribution to the field. Dr. Currie, and the
agencies and colleagues whom he credits, are to be congrat-
ulated for an approach which has the potential to promote
improvements in the art of quantitative chemical analysis.

What follows is a brief discussion of some previous use
of standard data sets in statistical research, along with some
warnings about the possible pitfalls connected with the use
of such approaches. In particular, the parallel that Dr. Currie
draws between the use of standard data sets and interlabora-
tory comparisons using common reference materials cannot
be pushed too far. Many interacting factors lead to bias in
modeling and analysis of complex data sets; the contribu-
tions of these factors would be confounded in typical inter-
laboratory comparison designs. One factor, scientific judg-
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ment, cannot even be identified in standard frequentist
reports of statistical data analysis. This suggests that subjec-
tive scientific judgments need to be given more explicit
mention in reports of statistical analyses, perhaps through
the use of the Bayesian approach to inference.

To make standard data sets more closely resemble real-
world data, the use of the "bootstrap" is suggested. The
"bootstrap" can also help in providing the estimates of statis-
tical precision that Dr. Currie notes were lacking in the two
studies conducted to date.

Standard Data Sets in Statistics

Statisticians have long recognized the usefulness of hav-
ing common data sets on which new methodologies can be
tried out, and their relative merits assessed. For example,
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