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The NBS-2 balance was designed and built at NBS and transferred to the BIPM in 1972. It is presently used for the
comparison of national prototype kilograms with international standards. Excellent environmental conditions at the
BIPM have resulted in a long-term standard deviation of I microgram (I X to-9) for a comparison of two I-kilogram
standards. With this remarkable precision, one has begun to observe and quantify systematic biases of less than 5
micrograms. The nature of these biases is presented as well as the remedy adopted to eliminate their influence on both
the final measurement results and the variance assigned to those results.
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The NBS-2 balance [lI' permits mass intercomparisons
of standards of nominal value mo= I kg by a substitution
method. The features of this balance which are important to
the present analysis are: I) the balance has a single pan so
that substitution weighing must be used; 2) the on-scale
range of the balance is limited to about 40 mg; 3) a small
"sensitivity weight" can be added or removed from the bal-
ance pan by remote control, thereby provided a means of
calibrating the scale of the balance in mass units; 4) six
weights can be placed on a table within the balance enclo-
sure. The weight table may be raised, lowered, or rotated by
remote control, combinations of these operations permitting
any of the six weights to be placed on the balance pan; and
5) during the course of a day's measurements, the balance
knives are kept in contact with their corresponding flats at
full load. After measurements are completed, the balance is
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fully arrested (i.e., knife-flat contact is broken) until mea-
surements are recommenced the next day.

In what follows, we use the term weighing to denote an
ensemble of operations carried out successively and decom-
posable to a set number of elementary operations called
subbweighings in the course of which one determines the
mass difference between two standards.

1. Subweighing

Let A and B be the standards, having masses mA and m 5
which are used in a subweighing; let S be the sensitivity
weight, of known mass is, which is used to determine the
sensitivity of the balance.

One usually works with five operations (each yielding
one position of balance equilibrium). The five operations
consist of the balance being successively loaded with A, B,
B and S, A and S, and finally A; one notes the correspond-
ing positions of equilibrium, that is to say the readings XI,
A2, A3, A4, and X5 taken from the balance scale.

Let us introduce the notation A0 to designate the reading
which one would obtain if the balance were loaded with a
standard of mass exactly equal to mi. Because of continuous
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variations in ambient conditions, successive readings on a
single weight can shift from one balance equilibrium to the
next. For the moment, we assume that the balance readings
have no random errors associated with them. To conserve
notational symmetry, we adopt the convention that AO corre-
sponds to the third equilibrium observation and we intro-
duce the following drifts from this reading:

d/,

d,
dj
'12

between the first and second observation,
between the second and third,
between the third and fourth, and
between the fourth and fifth.

The readings which one would make with a mass standard
exactly equal to in0 would thus be, in succession,

Xo-dl-d,, Xo-di, AO, XO+d; and Xo+df+d.

Let a and b be the difference in readings corresponding to
mlA/mO and Inm-mo, respectively; let s be the difference in
readings corresponding to mS.

The five equilibrium positions are described by five equa-
tions:

Object on Pan

A
B

B and S

A and S
A

Equations

Xo-d, -d2+ a =X
Ao-d, +b =A 2
XO+b +S =X3

XO+di+a+s=X 4
Xo+d;+d;+a=X5

At this point, we recognize that the actual balance readings
Al . . . A5 are subject to random errors. One sees that Ao is
always associated with either a or b, so that it is preferable
to write

(XO+a)-d1 -d2 =X1

The justification for this hypothesis could be that in the
course of the 1" and 3 rd interval there is an exchange of
standards A and B, hence rotation of the weight table;
whereas, in the course of the 2 nd and 4 th there is only manip-
ulation of the sensitivity weight, S.

One is thus led to a system having five unknowns:

(X 0 +a)-d 1-d;=X 1

(XO+b)-d 1=X 2

(AO+b)+s =X 3

(Xo+a)+s+d;=X 4

(AO+a)±d1+d=AX5

The solution is:

(X0 +a)=(A 1+X 5 )/2

(Xo+b)=(X 2 +X 3 -X 4 +X 5 )/2

s =(-X2+ 3 +X4 -X5)/2

d] =(-X,+X 3 -X4 +X5 )/2

d~ = ( -XI+ A2- 3+ A412

By postulating that, after accounting for drift, the remaining
variations of balance readings are proportional to differ-
ences of mass, one has

MA-minB a-b_(An+a)-(An+b)

Ms S S

Now (AO+a)-(AO+b)=(A1-A 2-A 3 +A4)/2

(Xo+b)-dl =X 2

(Xo+b)+s =X3

(XO+a)+s+d;=X 4

ifA'fliu AX -A 2 --- 3 +A 4

mS -X2+X 3 +X 4 --A5

(Ao+a)+d;+d=AX 5

To solve this system (5 equations, 7 unknowns) it is
necessary to reduce the number of unknowns. The only way
to accomplish this is to make hypotheses about the drift.

1.1 Classical Hypothesis of Drift: One postulates that the
drift is the same during the 15' and the 3 rd intervals between
balance equilibria, so that d,=d;, and that it is also the same
for the 2 Ud and the 4t1J intervals between equilibria, so that

d, =d4.

If one assumes that the five independent readings Xi have
the same variance var(X), then var(a-b)=var(X).

Remark: The hypothesis according to which variations of
balance reading are directly proportional to differences of
mass is, perhaps, not strictly verified. Let us introduce,
therefore, a non-linearity in the form of a second-order term.
In place of the differences in readings a, b, b +s and, a +s,
proportional to differences of mass MA-MO, mB-mO,

mB+ms-mo, and mA+MS-mo, we write a+ka2 , b+kb 2 ,
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b+s+k(b+s) 2 , and a+s+k(a+s) 2 . The five equations
are thus written:

X0+a +ka2-d -d; =I

A0 +b +kb2- d± =2

MA-nIB a-b 15AI-16A2-12A3+12A4+A5
115 s -A -12A 2+ 12A3+ 16X4-1 5A5

Ao+b+s +k(b +s)2 =A3

Ao+a +s +k(a +S)2 +d; = A 4

Xo+a +ka2+dl+d;=A5 .

Then
A1 -A2 -A3+A4=2(a-b)[1+k(a+b+s)]

-A,+A 3+X4-X5=2s[l+k(a+b+s)] 

With the same hypothesis as above, var(a-b)=
55/56 var(A).

1.3 Quadratic Drift as a Function of the Sequence Num-
ber of the Equilibrium Observation: It is sufficient to add
to the total drift with respect to the third equilibrium position
a second-order term: 8 for the second and fourth equlibria
and 48 for the first and fifth.

The new system of five equations and five unknowns is:

(A 0+a)
and it is still true that

Al-AA2-3 +A4 -a-b _mA-m
-A\2-A\3-A\4-X5 5 MS

Equation (I) therefore remains valid for the new hypothesis.

1.2 Linear Drift as a Function of the Sequence Number
of the Equilibrium Observation: One thus has

d2 =di=d(=d2 (Let us call it d) and the system of five
equations and four unknowns is written:

(o±+a)-2d=Xl

(Ao+b)-d=A 2

(Ao+b)+s=A3

(AO+a)+s+d=A4

(X0+a)+2d=X5 .

One can solve this system by the method
The solution is:

(A0 +a)=(3AI+A 2 -A3 +A4 +3X5 )/7

(Xo+b)=(-3A 1 /4+5X2+2A 3 -2A 4 + I IA5/4)/7

s=(-A 1/4-3A 2 +3A3+4A4- l5X5/4)/7

of least squares.

(Ao+b) -d+8 =A 2

(Ao+b)+s =\3

(X 0+a)

(A 0+a)

+s +d±8 =x 4

+2d+48=A 5

The solution is:

(Ao+a)=(-AX +4X2 -41 3+4j 4 -X5 )/2

(Ao+b)=(-Xl+3A 2 -A3+A 4 )/2

s =(At-3A 2 +3A3-A 4 )/2

d=(-XI+A5 )/4

8=(XI-2A 2 +2A3 -2A4 +A5)/4

from which one extracts

a-b =(X2-3A3+3A4-A5)/2

so that

mA-nIB a-b A2-3A3+3A4-A5

MS s AX-3A2 +3A 3-X 4

d=(-Al+A5)/4 .

One extracts from this

a-b=(l5XA-16AX-I2A 3+12X4+A5)/28

With the same hypothesis as above, var(a -b)=5var(A).
Remark: At present, it is the first hypothesis tviz. 1.1]

which seems the best verified. In particular, the hypothesis

of a quadratic drift is not verified.
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2. Weighings

Classical weighing involves four standards, the mass dif-
ferences of which are determined from pair-wise intercom-
parisons in all possible combinations. Let A, B, C, and D
be standards having mass n'

1
A, inB, Inc. and 1D' respec-

tively. In the classic design one determines successively:

"A - =C 1112

11 ,4ll3 I~

where each m; (i = I . . .,6) is the result of a subweighing.
One considers mA as known. Thus the differences mB-mA,

mC-mA. and 'YID-111A, which we will designate nill, mn', and
11,, constitute the three actual unknowns. We should also
point out that each m; is subject to random errors associated
with the subweighing measurements. The six conditional
equations are thus written:

-m ' =111

By supposing the determinations of ml, m2 ,. . n M6 to be
independent and var(m )=var(m,) = . . .=var(m6 )n=var(m),
one has immediately

var (ms)3)=var(mn)=var(mD))=(l/2) var(m)

covar (miBnIc)=covar(mAm5D)

=covar(mOn,mB)=(l/4) var(m) .

The residual deviations are:

g- =mnl I +B =(2m-m 2 -IM3 +M4 +M5 )/4

g2=m,+mC = (-ml +2M 2 -m3 -M4+M 6 )14

g3=M3 +'nD =(-ml-m 2 +2M3-m 5-- M6 )/4

g4 =m 4 -mB +mM = (mI -m2 +2m 4-m 5+m 6 )/4

g5 =m 5 -mB+mD=(M I-m 3 -i 4 +2mn5 -m 6 /4

g6 =M6 -MtC+m'D=(1n2-M 3+M 4 -M5+2M 6)14 .

-min n=l3

3. Errors
InB'-mCn=m4

niBi -mDns15

One can solve this system by the method of
The normal equations are:

3mBn-mnC-mDn= -ml+m 4
1 -+M5

-mBg+3mCn-mnDS= -n,2- 4 +1n6

-mnB -mCi+ 3mD= -m 3 -tn 5 -m 6

By addition, one obtains

mA +mS+mD= - (111 +112 +m3 )

Following numerous weighings, G. Girard [of BIPM]
observed that the mass value found for a standard varies in
a rather reproducible fashion with the position taken by this
standard in the sequence of the four standards used during
the weighing. The reference standard (of supposedly known

least squares. mass) was, of course, always the same artifact. Another
indication of a problem arose in the comparison of values
obtained by a global treatment of the subweighings made in
the course of the following six weighings involving six
standards: (ABCD), (ABCE), (ABCF), (ABDE), (ABDF),
and (ABEF) compared with those which one obtains from
the following weighings: (ABCD), (BCDE), (CDEF),
(DEFA), (EFAB), and (FABC). Each set of six weighings
supplies 36 observations. Mass values of B, C, D, E, and F
can be obtained for each set by the method of least squares
assuming that the mass of A is known. The values obtained

(2) for the masses of B, C, D, E, and F using the two different
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Ls of six weighings shown above differ significantly. (For
ture reference, we refer to the first set above as Set I and

le second set as Set 11).
The subweighings are therefore tainted by errors, which

re to some extent reproducible. These errors are compen-

sated in the case of Set 11 (where all the standards play
identical roles), but not in the case of Set 1, nor in the case
of a single weighing.

It was first supposed that all the subweighings were

tainted by the same error, which could be caused by a
non-linearity of the drift in equilibrium position of the bal-

ance at constant load. The global treatment of a number of
subweighings has not confirmed this hypothesis, a result

consistent with the remark made in 1.3.
One then supposed that the error depends on the rank of

the subweighing-that is to say that the result of a sub-

weighing of rank i (i = 1 2,...,6) gives a result tainted by an
error El.

Thus each m .,in addition to random error, is biased by a

systematic error E1. To notate this explicitly, consider the
measured mass difference in]. The quantity ml, we now

must admit, has two components which we separate in the

following way:

MIl=Mi+El

where mj is an estimate of mA-MB subject only to random
errors having a variance var(m), and El is the bias in the
measurement. (As a first approximation, we suppose that
the E,'s do not themselves have a random component.)
Thus, it is incorrect to treat ml as an unbiased estimate of

11A-MB. We now assume that ml is in reality an unbiased
estimate of InA-mB+EI, i.e.

MA-InB+E1=M1.

The correct conditional equations corresponding to the
classic design of the weighing (ABCD) are thus

11A-fl B+EI=1l

mA-mC+E2c M2

mA- mD+E3=M3

mB-tnC+E4=M4

IMBfliD+E5=i5

SC-/nD+E6=M6

If one now assumes that each e, keeps a constant value for
weighings made on different days, but according to a sched-

ule and a procedure as invariant as possible, one may make

a global solution of a number of weighings and avail oneself

of sufficient conditional equations to find the six unknown
E1 's thus introduced. (Note that the el's cannot be uniquely
determined from Set I but can be uniquely determined from

Set 11.)

The first such estimate gave2

E 2 'E 3 -E 4 E5 E6- 2 .8 Lg, denoted by e;

El~-1.4 I.Lg=-E/2.

Introduction of the ejs into the treatment of results from
Set 11 has, in addition, led to a notable reduction of the

residual deviations. Typical data are presented in tables I
and 2.

Let us take up again the conditional equations used for the

classical weighing design (ABCD) in the form

tnAnBrrl I +El

fMCA-ic=m 2 +IE2

MA-mD=m3'+E3

ImB-mC=m4 +e4

tnB-mD-1n 5+E5

mnc-mD-M 6 +E6

Looking at the conditional equations in this form, we can
estimate how the e, 's would effect results calculated in igno-
rance of the bias which, in fact, exists.

It is very clear that the results obtained in section 2 are

immediately applicable, by replacing ml by el, in order to
find both the errors arising from the E 's as well as the
contribution of the el's to the residual deviations.

One obtains the following expressions and, taking ac-
count of the estimates given above for theE Ei'S, the following
numerical values:

AimB=(-2El-e 2-E3+e 4 +e 5 )/47+e/ 4~+0.7 pg

Amc=(-el-2E 2-E3-E 4+E6 )/ 4=- 5E/ 8 -l. 8 pg

AmD5 (-eI-E 2 -2e 3 -e5-e 6 )/4~-9E/8'-3.2 ktg

where Am', for instance, is the error in the calculated mass
value of B which is incurred by ignoring the existence of
bias.

2The results for the pritary kilogram comparator used at NB5 suggest that
{c ) ,=2.6 [.g.[2]).
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Table 1. Results from a modilied Set tf design (only five weights were used). The column labeled "w" lists deviations to the least squares solution
of the I X30 design matrix shown. The column labeled "w/o" shows deviations to the least squares solution of the 5X30 design matrix in which
the E 's are ignored.

B C D E E, 62 63 Ej 
6s E6

0.030 mg
Observations

+ -

-4-
±

+
+

+
+

+

+
+

+

+

+

+
+

+
+

+

+
+

+
+
+

+

±

+ +

+
+

+
+

+

+
+

+
+

±

+
+

+-
+

+_

-0.1792
-0.0562
-0. 2378

0.1226
-0.0589

+ -0.1790
0.1188

-0.0612
0.1059

-0.1822
-0.0139

+ 0.1702
-0.1861
-0.0161

0.0613
0.1703
0. 2434

+ 0.0755
0.1698
0.2446
0.0683
0.0735

-0.1018
+ -0.1723

0.0711
-0.0984

0.0179
-0.1741
-0.0548

+ 0.1210

Variance of the Fit:
Std. Dev. of the Fit:
Degrees of Freedom:

The following set of Ag1 are the residual deviations to the
least squares fit due only to the e, 's.

Agl=( 2El-E 2 -E3 +E4+E 5 )/4 -- E/4 -- 0.7 jig

Ag,=(-E t+2E2 -e3-e 4+E6)/4 +3E/8 + 1.0 jtg

Ag3 =(-E-E2+2E3 -E5-E6)/4--e/8 t-0.4 jLg

Ag 4 =(El-e 2 +2c 4 -e 5+E 6)/4 +EI8 +0.4 jig

Ag5=(el-E 3 -E4+2E5-E6 )/4 ~-3& 8-1.0 fig

Ag6 =(e,-E 3 +E4 -E5 +2E6 )/4 ~+E/2 -+1.4 jig

Z1i(Ag 1)
2'5E2/8 '4.9 [Lg2 .

Note that this result ignores cross terms which would be
present if the random error is non-negligible. The cross
terms, however, may be either positive or negative so that
considerable cancellation occurs in their summation. Thus
semiquantitative conclusions may still be drawn even
though the cross terms are ignored.

Now, ZSg2 is typically about 12 jLg2. For the classical
weighing design with 6 observations and 3 independent
unknowns the variance of an observation is s2=
(1/3) sZg72=4 jig2

, and the variance of a single result of the
weighing is s2 12=2 jLg2.

One sees that the E 's contribute in a modest (and, what
is more, not directly detectable) way to the residual devia-
tions, while they impose significant errors on the results of
the weighing.

Let us pursue this analysis by now considering groups of
weighings.
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A
Constraint

+4

w
- 1.4 8g
-L.5

0.1
1.2
2.7
1.7
0.6
0.7

-0.8
-0.4
-0.9
-0.9
-1.2
-2.8

1.0
0.3

-0.4
-0.6

2.9
1.0
0.8

-1.6
-1.0

1.3
-0.8

2.6
-1.0

0.5
-0.3
-1.5

w/o
-2.5 vg

1.0
3.3
3.1
5.5
4.9

-0.7
3.2
2.2
1.7
1.9
2.1

-2.2
-0.3

4.1
2.2
2.3
2.5
1.7
3.5
3.9
0.5
1.9
4.4

-1.9
5.3
2.1
2.6
2.4
1.5

+

60 gg 2

3 pg 2

1.7 pLg
20

260 ug2

10 ug
2

3.1 [tg
26



'[able 2. The variance/convariance matrix for the II x30 design shown
in table I as well as least squares solutions to A. B, C, D, E, and the
E 's, The mass values calculated for A-E would have been the same
even if the e 's had not been included in the model, Note that, assurn-
ing cancellation of cross terms,
(w/o)=-g7(w)+y(Agj) 2 , where E(Ag

data of table i verify this assumption.

we would estimate Zg7
)2 =5(XEC?)=195 pg 2. The

Introduction of the six supplementary unknowns e; into
the treatment appreciably reduces the variance of an obser-
vation. For the example shown in table I, which is typical,
the variance went from 9.6 jig 2 to 2.9 jig 2.

For the Set I weighings described above, numerical calcu-
lation gives

Variance/Covariance Matrix Am A±0.25c+0.7 jig

A B C D E {l 62 6' 64 '5 6E

0 0 0 0 0 0 0 0 0 0 0
0 2 1 1 1 0 0 0 0 0 0
0 1 2 1 1 0 0 0 0 0 0
0 I 1 2 1 0 0 0 0 0 0
o X I 1 2 0 0 0 0 0 0
o 0 0 0 0 3 0 0 0 0 0
0 0 0 0 0 0 3 0 0 0 0
o I 0 0 0 0 0 3 0 0 0
0 0 0 0 0 0 0 0 3 0 0
0 0 0 0 0 0 0 0 0 3 0
0 0 0 0 0 0 0 0 0 0 3

Divisor=15

Least Squares
Results

A 0. 1030 mg
B 0.2797
C 0.1602
0 0.3441
E 0.1760

Std. Dev.

0.0 pg
0.6
0.6
0.6
0.6

Am6-0.58e-l.6 jig

Aml)'-0.78e-2.2 jig

Ammo-0.98e-2.7 jig

Amn, - I.l18e -- 3.3 jig

and, for the variance of an observation, 0.15e 2 1.2 jig 2.

Once again, these are approximate errors which one would
suffer through ignorance of the existence of a bias.

One thus sees how imprudent it would have been to
choose the design which gives the smaller variance since,
for this design, the e, s impose significant errors on the
result of the weighings while, for the design which gives the
greater variance, they impose no errors.

4. Remedies

-1.1 g
2.6
3.1
2.0
2.8
3.1

0.7 ug
0.7
0.7
0.7
0.7
0.7

For the Set 11 weighings described above (36 observa-
tions, 5 unknown weights), an examination of the least
squares solutions with and without the E, s treated explicitly
shows: the e 's do not impose any error on the results, which
would be the same either for a treatment derived from start-
ing equations such as mA-mB=ml or from equations such
as mA-mB+EL=mIl. The failure to consider the e;'s explic-
itly, however, adds a residual deviation of e; to each sub-
weighing of rank i. The sum of the squares of these contri-
butions is

65iE"-6(E'/4+5E')=63E'/2,

a value which contributes to the variance of an observation
(63E 2/2)/(36-5)= 1.02L 2z8 jig 2 . Once again, this is only
an estimate because cross terms involving random error
components have been neglected. Similar conclusions can
be drawn from the Set 11 weighings shown in tables I and
2 (30 observations, 4 unknown weights).

It would not be judicious to retain the classic design for
weighings, choosing a set of such designs which ensures
that the contribution of the ei's to the final error of the
results is zero. For such a case, the contribution of the E 's
to the variance of an observation would lead to a serious
over-estimation of the variance. One could, of course, in-
clude the e,'s explicitly in the analysis. However, this ap-
proach would greatly increase the number of necessary ob-
servations over what had been previously required, and it
would be based on the assumption that the E 's are constant
throughout the many days required for a set of measure-
ments.

It goes without saying that the solution lies in discovering
the physical cause for the existence of the ei's and in elim-
mating it. But, in the meanwhile, one must carry out weigh-
ings and, since it is impossible to eliminate the cause, it is
necessary to eliminate the effect; that is to say to ensure that
the e,'s compensate themselves as exactly as possible, or,
put another way, to find an unbiased observation which will
estimate mA-mo, for example.

The reader may have been struck by the fact that we have
adopted for all the E, (i = 2,3. . . ,6)'s the same value E, while
El = -E/2. Without doubt, he or she has good reason to think
that it would have been simple to obtain El =E operationally;
for example, by the addition of a preliminary subweighing.
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The expressions
case to be:

derived above would be modified in this

Avlm=-E/2 Th jug
with

fy -tlx + es 1MT,
Amt= -E = -2.8 jg

AkmS)=-3E/2=-4.2 jig

Ag, = +E/2 = + 1.4 jig

Ag2=0

Ag 2= -e/2 =-1.4 jig

Aq4 = +e'2 = + 1.4 [ig

Ag 5 C0

Ag 6 = - e/2 = + 1.4MAg

XjA. j)2=el =7.8 jig2.

One would thus obtain both a worsening of the errors
attached to the results and an increase in the residual devia-
tions.

For Set 11 weighings the error attached to the results
would, of course, remain zero but the contribution of the
e, s to the variance would be of order 6X6e'/3]=
l.16ec29 g2I .

For Set I . a numerical calculation indicates that one would
then have

Amnill--O.5E -1.4 lag

A'm=-M09e -- 2.7 uig

Arn --1. 15e-3.2 uIg

An4- -1.35E -3.8 pIg

AmFn'- 1.55E=-4.3 jig

and, for the variance of an observation, 0.23E2 '1l.8 Iag
2.

Contrary to what one might intuitively think, the act of
making the ej s equal would not automatically eliminate
errors in the results.

At this juncture, a remark must be made. In the course of
the subweighing of rank i, if one intercompares standards Y
and X instead of X and Y, one replaces the equation

which is equivalent to "'x-my-ein; 2 The sign of e; is
thus reversed.

One could hope that by changing the sign of certain,
judiciously chosen, Ei's one might eliminate, for each
weighing, errors in AinB, Amn5c Ain. Unfortunately, there
is nothing to be gained from this approach; in essence, one
would then have (see eq (2)) Amj+Amc+Ar)n=
±E,-tE,-E1 an expression which cannot vanish as long as
eL =E 2 =E;#O.

But rather than replacing the intercomparison of X and Y
by that of Y and X. it is quite clear that one must make both
comparisons, which we will call "opposed comparisons,"
under as identical conditions as possible and. in particular,
in subweighings of the same rank. The two equations writ-
ten above give, assuming that EL keeps the same value during
the two subweighings.

e, =(nill +im,2)/2

and

inZx-in n=(i.,-/nij.2)12.

It is this last value which ought to be introduced into the
conditional equations. This approach requires that the e 'S

remain essentially constant for only two successive days.

The problem is, therefore, to define a weighing design to
which one may make a corresponding "opposed design." A
priori, if one sticks to the principle of the classic weighing
in which four standards are involved for which one deter-
mines six paired differences, one can devise 6!26=46080
different designs (since one can imagine all permutations of
the 6 difference determinations and each difference deter-
mination can be realized by one or the other of two opposed
comparisons). The ensemble of the designs is composed of
23040 pairs such that, in each of them, subweighings of the
same rank correspond to opposed comparisons.

We now note that, in the course of the classic subweigh-
ing involving the intercomparison of X and Y (which we
will write as (XY)), the first and fifth operations involve X.
If the following comparison is (XZ). with of course Z*Y,
the first operation again involves X and there is no rotation
of the weight table between these two comparisons. On the
other hand, the two opposed comparisons (YX) and (ZX)
are separated by a rotation of the weight table. One might
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worry that the value of e; is a function of whether the
subweighing of rank i is or is not preceded by a rotation of
the weight table. It is therefore preferable that absences and
presences of these rotations correspond in the opposed de-
sign, but we have just seen that an absence of rotation

always corresponds to a rotation in the opposed designs. We
must therefore exclude all designs for which a subweighing
is not preceded by a rotation- either in the first design or in
the opposed design. This can be simply expressed through
the following conditions: for the two consecutive compari-

sons (XY) and (ZT) it is necessary that Z*X and T*Y.
With these restrictions, there still remain 1776 pairs of pos-
sible designs. 3

One of the paired designs is, for example,

(A,B)

(1,C)

InIA mB= (inl 1111 1.2)/2

n0B - C (11i I - ni,,)1 2

Ifc-IrnD= 0I3,1 r-n 3 2 )/2

" - I -nA (In4 -m4.2)/2

1A- 'C -I -,, 5 .)

i B-iln D h6. Il-1116.2)2

in which the differences derived for a subweighing of rank
i (i= 1,2,. . .6) are denoted by In,. for the direct weighing
and in11, for the opposed weighing.

(B,A)

(C,B) References

(C,D)

(D,A)

(D,C)

(AD)

[I] Atler. H.E.. J. Res. Nat. Bur. Stand. (U.S.) 76C (I and 2): 1-10
(January-June. 1972).

[2] Davis. R.S .1. Res. Na. Bum Stand. (U.S.) 90-4 263-283 (July-
Auguslt. 1985).

(A,C) (C,A)

(8,D) (D,B)

The first column (i.e., the direct weighing) corresponds
to the following conditional equations

mA-MB+E ]m]

mBE-inc+E2m,

)nC 'D+E 3 =)1n3

mD-n1A+E4 -m 4

inAilc+E5t111

InB-mID+E6=M6

This design, used by itself, would not have a marked
advantage over the classic design. It can be shown that it
would lead, nevertheless, to smaller errors but also to a
significant overestimation of the variance of an observation.
It is understood that if one chooses it from among designs
which satisfy the conditions we have imposed (and which
seem equivalent), one must also use the opposed design and
take as conditional equations

3P. Camf has rigorously derived this number. We have chosen, for the sake of
brevity, to omit the derivation here.
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