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The thermodynamics of stressed crystals that can change phase and composition is examined with particular 
attention to hypotheses used and approximations made, Bulk and surface conditions are obtained and for each 
of them practical expressions are given in terms of experimentally measurable quantities. The concept of 
open-system elastic constants leads to the reformulation of internal elastochemical equilibrium problems into 
purely elastic problems, whose solutions are then used to compute the composition distribution. The atmosphere 
around a dislocation in a cubic crystal is one of several examples that are completely worked out. The effects 
of vacancies and their equilibrium within a solid and near surfaces are critically examined, and previous formulas 
are found to be first order approximations. Consequences of the boundary equations that govern phase changes 
are studied with several examples. Finally, problems connected with diffusional kinetics and diffusional creep are 
discussed. 
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Introduction 

The literature of the thermodynamics of solids spans 
more than a century and has appeared in many fields. It 
has been marked by long controversies, some even re­
garding the very existence of equilibrium under condi­
tions of nonhydrostatic stress. The resulting concepts 
and relations have been used in applications to global 
equilibrium problems, and as local equilibrium condi­
tions in nonequilibrium problems of diffusion, creep, 
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electrochemistry, and phase changes. The formulations 
have been gradually generalized to include multi­
component anisotropic solids, containing vacancies and 
other defects, that are nonhYdrostaticalIy and non­
uniformly stressed. Considerable attention has been 
given to multi-phase systems and to conditions of equi­
librium at interfaces between phases that are in mechan­
ical and thermal contact, that can exchange matter and 
under conditions of slip or no slip (incoherent and co­
herent, resp.). In view of the importance of the field, a 
clarification of the controversies seems in order. 

Thermodynamics lends itself to many formulations 
based on different definitions, conventions and no­
tations. When properly done, all these formulations 
should identify the same measurable quantities and give 
identical relationships among them. Discrepancies arise 
when the formulations differ in assumptions made about 
the behaviour of matter. There are also many sim­
plifications that may not be valid or necessary. Invalid 
assumptions have been made about the laws of 
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thermodynamics and about the conditions for equi­
librium. We will examine the main formulations for their 
assumptions to find their range of validity. Whenever 
possible we will identify the most general formulation 
and show how the other formulations follow as special 
cases, compare predictions, and identify sources of dis­
crepancies. But since general formulations are often 
more cumbersome to apply, we will examine a set of 
simple applications to display how one uses the main 
results in this field. 

It may be worthwhile to categorize broadly the main 
controversies and to illustrate with one simple example 
how they arise. These center around: 1) the question of 
the existence of equilibrium if diffusion is permitted; 2) 
the various methods of distinguishing solids from fluids 
in a formulation, these involving models of solids and 
constraints on the variations that can occur in solids; 3) 
the definitions of chemical potential of species inside 
solids, since in some formulations one cannot arbitrarily 
add atoms to the interior of a crystal without removing 
other atoms or destroying vacancies; 4) how one formu­
lates the conditions for equilibrium when the familiar 
minimum Gibbs-free energy which works only for con­
stant hydrostatic pressure is inapplicable, and when so 
many different chemical potential conventions have 
been proposed; and 5) clear distinctions between the 
accretions that can occur at surfaces and at interior de­
fects, such as climbing dislocations, and the addition of 
atoms to sites inside of crystals. 

In addition, there are a variety of simplifications with 
obvious limitations on the applicability of the results. 
Among them is one, homogeneity, which has led to 
major misconceptions. Many situations will lead to ho­
mogeneous systems at equilibrium, but if one requires in 
tests for equilibrium that all variations keep the system 
homogeneous, one may constrain the system unneces­
sarily. 

With these controversies in mind, let us examine the 
simple example of a solid cylinder containing one or 
more components and a straight axial dislocation. Let us 
first ignore surface effects and let the cylinder be infinite 
in all directions. Let there be no restriction on diffusion. 
If the solid is crystalline, an equilibrium will be reached 
with the dislocation retained in which the solid is het­
erogeneously and nonhydrostatically stressed. If the 
solid is multi component, it will also be compositionally 
heterogeneous. The system can reach an equilibrium 
which of course means that all diffusional flow has 
ceased, in spite of the shear stresses and the hetero­
geneity. 

If the cylinder had been a highly viscous liquid in 
which the dislocation had been introduced by a cutting, 
displacing, and welding procedure, the dislocation 

would disappear on annealing. Equilibrium would not 
be compatible with shear stress or heterogeneity. It is 
apparent that crystallinity imposes restrictions on the 
variations that lead to a different type of equilibrium. 

Even in a one component solid, there will be a gra­
dient in the Helmholtz-free energy density at equi­
librium. Any definition of a chemical potential, which 
for a one-component system reduces to the local free 
energy per atom, cannot subsequently be used by asser­
ting that such chemical potentials must be constant at 
equilibrium or, if not constant, will lead to diffusional 
fluxes. Care must be exercised in the definition of chem­
ical potentials in one or multicomponent systems to en­
sure that they are useful. 

The constraint which crystallinity imposes in this ex­
ample is that some of the atoms cannot be moved at will 
without a counterflux of some other species, including 
vacancies, to take their place in the crystal structure. At 
the surface and at the core of dislocations capable of 
climbing, this constraint does not apply and atoms can 
be inserted or removed at will. 

To illustrate the importance of separate equilibrium 
conditions at surfaces, let the cylinder in our example 
have a finite radius and permit surface rearrangement. 
An equilibrium shape could be reached where transfer 
of small amounts of any species of atoms from one sur­
face location to another does not change the appropriate 
free energy. This would be a thermodynamically sta­
tionary state in which all fluxes would cease, but it 
would be metastable or possibly unstable equilibrium 
because moving the dislocation out of the cylinder 
would lead to a lowered energy. 

2. What Is a Solid? 
Formulations of thermodynamics differ considerably 

in how the essential aspects of solidity are represented 
mathematically. Many authors purporting to deal spe­
cifically with solids reach conclusions that are the same 
as for very viscous liquids that may take a long time to 
reach an equilibrium that does not support shears. 

Various models, composed of springs and dashpots, 
have been proposed to represent the viscoelastic behav­
ior of matter. Whereas the Maxwell model creeps con­
tinuously under load, the Meyer-Kelvin-Voigt [1]1 solid 
reaches a mechanical equilibrium when the load is en­
tirely carried by the spring. The elements of these solids 
do not dissolve or diffuse, and Gibbs [2] devised a model 
of a solid that did both. 

Gibbs introduced the idea of a solid component which 
does not diffuse. Like Mayer-Kelvin-Voigt's solid, it 

I Figures in brackets indicate literature references at the end of this 
paper. 
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can deform elastically but it always retains its con­
nectivity. In addition Gibbs considered surfaces, where 
he did permit the solid to grow by accretion or to shrink 
by vaporization, to melt or to dissolve into contacting 
fluids. He also incorporated the concept of a fluid com 
ponent which can diffuse and distort the solid. He fully 
developed the thermodynamic properties of such a 
solid, including its equilibria, and revealed a variety of 
surprising properties. Since the solid component was 
not involved in any chemical variations except at the 
surface, there was no need to define a chemical potential 
in the solid. When the solid was equilibrated with a 
fluid, the chemical potential of this solid component in 
the fluid was readily calculated. One important result 
was that the chemical potential in the saturated fluids in 
contact with a homogeneously stressed solid depends on 
the orientation of the surface. There is thus not only no 
need to define a chemical potential of the solid com­
ponent, but it does not seem to be definable. The fluid 
component on the other hand has a defined chemical 
potential that is constant at equilibrium throughout all 
phases even if they are heterogeneously stressed. Gibbs' 
solid is therefore quite active chemically and yet it is 
different from a fluid. The key was the solid component. 
Even though this component can dissolve, essential 
solid properties are obtained. 

Gibbs was strongly influenced by the law of definite 
proportions and required his solid component to be a 
single element or a stoichiometric compound. If it was a 
compound, the chemical potential in the saturated fluids 
is calculated even if the compound dissociates or reacts 
with the solvent. Modern examples of Gibbs solids are 
polymer fibers which also can absorb solvent molecules, 
and silicate glasses in which the silicate network is the 
solid component while modifier ions can diffuse about. 
A very good example of the kind of equilibrium Gibbs 
was able to calculate is the bending of a damp wooden 
beam in which the water redistributes at equilibrium and 
affects the compliance. Li, Darken, and Oriani [3] 
pointed out that mobile interstitials in metals at tem­
peratures where the substitutional atoms did not move 
was a valid metallurgical example of a Gibbs solid with 
a fluid component. An example of the equilibria of a 
dissolving Gibbs solid occurs in stressed electrodes. The 
equations predict the effect of elastic stress on the elec­
trode potential [4]. 

Solid state diffusion of every component is counter to 
the strict definition of Gibbs' solid component. As a 
result most thermodynamic formulations that permit un­
restricted diffusion to take place do not ascribe to the 
solid any property that differs from a viscous fluid. As 
the example in the introduction points out, unrestricted 

diffusion consistent with our knowledge of the solid 
does permit new kinds of equilibria. 

Gibbs' solid component, because it did not diffuse, 
served as network for defining displacement and hence 
strain, as well as the local composition of the fluid com­
ponent. The local energy and entropy density were 
functions of the local strain and composition. What was 
needed was a network which continued to define un­
ambiguously the same place in the solid even if all atoms 
were capable of diffusing. In crystalline structures, the 
lattice serves this function, and a thermodynamics has 
been developed. Robin [5] has simply let the lattice itself 
be the solid component, and has found that "component 
differences" become the exact analogues of Gibbs' fluid 
components. Instead of modifying Gibbs' concept we 
have defined a network solid as one in which there is an 
unambiguous method of locating the same place after 
diffusion, and where the thermodynamic properties are 
functions of the strain and local composition defined by 
this network [6]. Gibbs solid component is one example 
of such a network; the lattice is another example. 

Most of our work has been with simple crystal struc­
tures in which there is one type of substitutional site and 
one type of interstitial side. Atoms ofa given species are 
assumed to be either substitutional or interstitial. The 
substitutional sites served as a network. Bravais solids 
where lattice sites are occupied by substitutional atoms 
are an example. Recently attention has focused on spe­
cies which could occupy both interstitial or substi­
tutional sites [7], and this has led to the generalization of 
structures in which many different sites are occupied in 
a unit cell and where a particular species can occupy 
several sites. One can even include the case where no 
species occupies the origin in the unit cell which serves 
as network marker. 

In crystal structures, the network imposes what we 
have called the network restriction. A site exists, regard­
les of the species that occupies it, or even if it is empty. 
Atoms exchange among sites 

(2.1) 

where I and J are different types of sites: Sites that are 
mostly filled are occupied by what are called substi­
tutional atoms, while sites that are mostly vacant are 
occupied by what are called interstitial atoms. 2 

'The term interstitial compound is an unfortunate term in which the 
interstitials are merely small atoms fully occupying a site in the struc­
ture [8]. The usual definition of interstitials, that these are atoms oc­
cupying sites that are mostly empty, has important consequences in 
thermodynamic formulations. An empty substitutional site is called a 
vacancy, while empty interstitial sites are usually ignored, since their 
concentration or activity in, e_g., the law of mass action, hardly differs 
from unity. 
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Vacancies are capable of diffusing or reacting with 
atoms on other sites. Letting B be a vacancy, (2.1) be­
comes 

(2.2) 

where I and J are different sites. If I is an interstitial site, 
this can also be written 

(2.3) 

One of the main results of the network restriction is 
that there is no need to define separate chemical poten­
tials of individual network species. Within the crystal 
only their differences are ever needed. 

The network is unambiguously defined only as long as 
the structure is not severely distorted. The network can 
be modified at surfaces and dislocations and these have 
led to special equilibrium conditions. Of particular inter­
est is the fact that there are differences between solid­
fluid interfaces and solid-solid interfaces regarding equi­
librium c~mditions. Two types of solid-solid boundaries 
have been treated [10]: incoherent interfaces where 
there are two independent networks with no re­
lationship between them and coherent interfaces where 
there is an exact correspondence between network sites 
in the two crystals, and a connectivity across the inter­
face that survives the distortions of a phase change that 
transfers sites from one crystal to the other. Thus many 
restrictions in Gibbs' solid have been eliminated. Mod­
ern understanding of solid solutions, crystalline defects, 
and diffusion have been incorporated. In addition, solid­
solid equilibria, interfaces, and phase changes have been 
considered. 

3. Derivations of Usable 
Equilibrium Conditions 

3.1 Thermodynamic Formulation 

The basic two laws of thermodynamics are quite gen­
eral and applicable not only to all equilibrium conditions 
but also in specifying what cannot happen in non­
equilibrium conditions. They often are cumbersome to 
use, but from them special conditions have been derived 
(such as constant temperature at equilibrium) that are 
easier to apply. In addition, there are certain restrictions 
or constraints that occur commonly that permit even 
simpler specialized but rigorously applicable procedures 
to be developed. A good example is the Gibbs free en­
ergy. Under the special restriction that temperature, 
pressure, and the mass of various species be held con­
stant, it can be shown that the laws of thermodynamics 
reduce to the simple condition that the Gibbs free en-

ergy monotonically decreases to a minimum. For these 
common restrictions, it is not longer necessary to start 
from the basic laws. For equilibrium, one begins with 
the minimization of Gibbs free energy knowing that this 
is fully equivalent to the basic laws. The procedure is a 
general one, subject only to the easily verifiable re­
strictions on temperature, pressure, and mass. The re­
strictions are important. When temperature decreases 
(as in an endothermic reaction held adiabatically), pres­
sure increases or mass is added, the Gibbs free energy 
can increase and has lost it usefulness as a simple condi­
tion for equilibrium. 

Whenever we encounter new restrictions or con­
straints, it is necessary to return to the two basic laws to 
find new conditions for equilibrium that are general, 
subject only to the restrictions or constraints. It is im­
portant that the restrictions or constraints are verifiable 
and that they be general enough to include many im­
portant situations, but not so general as to lead to cum­
bersome conditions. The procedures for finding simpler 
equilibrium conditions subject to new restrictions or 
constraints are straightforward and if done with mathe­
matical rigor, need only be done once. Applications 
then follow from these derived conditions. The deri­
vation often identifies the useful free energy. It is dan­
gerous to assert conditions for eqUilibrium under new 
restrictions (some type of free energy to be minimized or 
some potential to be constant) without a derivation that 
begins with the basic two laws. 

There are various derivations in the literature. They 
differ in the model of "what is a solid" expressed in 
terms of restrictions on possible variations. They also 
differ on whetlier or not they require homogeneity. 
They differ on whether they begin with the basic two 
laws, or with some derived law. 

It is not difficult to start with the basic laws used by 
Gibbs: "For the equilibrium of any isolated system, it is 
necessary and sufficient that in all possible variations in 
the state of the system which do not alter its entropy, the 
variation of its energy shall either vanish or be positive" 
[9, p. 56]. It is quite straightforward to permit the system 
to be heterogeneous. 

Since the general state of a solid is heterogeneous, the 
energy, entropy and mass of its various components will 
be integrals over the volume, and the minimization pro­
cedure is done by standard variational calculus. Such a 
formulation permits the solid to change its shape by 
elastic deformation or by a process of network mod­
ification which we will call either accretion, dissolution, 
or phase change. 

These methods of variational· calculus were used by 
Gibbs every time the system under· consideration was 
not homogeneous; the influence of gravity [9, p. 144], 
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stressed solids [2], surfaces [9, p. 238), multiphase sys­
tems [9, p. 64], etc. A variational statement of the first 
and second laws of thermodynamics for the multi­
component network solid has been carried out (6]. It 
very neatly produces all the conditions for 
equilibrium-mechanical, thermal, and chemical-in 
the bulk and at the interfaces. There is usually no need 
to assume linearity, ideality, or isotropy. The derived 
equations identify and define important functions and 
usually can be manipulated to suggest methods of mea­
surement. 

The imposed constraints are incorporated into the 
formulation as Lagrange multipliers and this introduces 
quantities which must be constant throughout the sys­
tem at equilibrium. Since sites in a unit cell or a network 
exist whether occupied by atoms or not, vacancies ap­
pear as a conserved species within a network. We for­
mulated three different rules for the transfer of material 
across an interface [10]. Network sites could be added or 
subtracted to the solid at solid-fluid and at incoherent 
solid-solid interfaces. At a coherent solid-solid interface, 
a single network describes both solids, and during phase 
changes, sites are transferred but do not change their 
relative locations. 

3.2 State Variables and Notations 

The procedure outlined can be followed once the 
state variables have been identified. With network sol­
ids, a strain can be defined. The energy density is as­
sumed to be a function of that strain (either the usual 
small strain, or the deformation gradient to include the 
cases of large strains), of the entropy density, and of the 
density of the various atomic or molecular species. 

The choice of the strain or deformation gradient as a 
state variable that describes the mechanical state of the 
solid by no means exhausts the possible choices. Con­
tinuum mechanicians and others [11-141 have described 
much more complex solids, where higher gradients of 
displacement or composition come in the picture. We 
feel that our choice is sufficient to describe many metal­
lurgical materials. In any case, thermodynamics uses as 
input data the results of measurements of mechanical 
and thermal properties, and inadequate specification of 
state variables would become apparent. 

Only small strain theory will be explicitly used here. 
The relations that are valid without this approximation 
have been derived [10, 15], and effects that might mod­
ify the small strain results will be mentioned and dis­
cussed in the course of this article. 

The reference state for strain in the solid is quite arbi­
trary. It can be at zero stress, or under hydrostatic pres­
sure, and at any arbitrary constant composition. It 
merely serves to identify the same point,!' in a solid 

after composition change and strain. For many elastic 
energy equations, a convenient reference state is zero 
stress. There are also useful standard states for thermo­
dynamic quantities. These are often at hydrostatic stress 
that is not zero and at definite compositions. As a result 
there are advantages to be flexible about the reference 
state for strain. We will try to point out in each applica­
tion which reference state we have used. 

When the point ,!' of a solid is displaced by!:!., the 
small strain is defined by3 

(3.1) 

A change of reference state from ,!' to ,!" (x ') where 
,! " -,!' = E leads in the small strain approximation to a 
new strain E ij given by 

(3.2) 

The density of energy, entropy and component I are 
respectively denoted by €, s, and PI' Be~ause the elemen­
tary volume of solid is affected by its state of strain, 
densities per unit volume in the deformed state always 
contain a strain effect. As such they are not very con­
venient to use. Much better variables are the densities 
per unit volume in the reference state. These will be 
noted by primed symbols. The relations between primed 
and unprimed densities are 

€'/E=s'/s=pi/PI=PO/PO='" (3.3) 

= Vo/Vo= 1+Ekk (3.4) 

where Po is the molar density of lattice sites, and its 
inverse Vo is the molar volume of lattice sites. 

All of our chemical densities PI and pi will be atomic 
or molar densities (moles/volume). This is especially 
preferred to mass densities when we consider vacancies 
as a species. It is useful to introduce dimensionless com­
position variables 

This is the classical mole fraction for single-site substi­
tutional alloys. For an interstitial alloy with no va­
cancies on the substitutional sites, CI given above is the 

1 All vectors and tensors are expressed in terms of components with 
respect to an orthonormal axis system. Small subscripts like i andj are 
understood to have value I, 2, or 3. Repeated indices are understood 
to be summed (Einstein convention) and subscripts preceded by a 
comma are derivatives, e.g. 

Eii=EII+E22+Ell 
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molal composition. The mole fraction c/ is then 

which reduces to c/at small concentration. We will drop 
the distinction between CI and c/. 

3.3 Lagrange Multipliers 

From the entropy constraint comes the standard con­
dition that the temperature is everywhere equal to a 
Lagrange multiplier, and is therefore constant. It allows 
us to define a Helmholtz free energy density by a Leg­
endre transform 

f'=€' -Os' (3.5) 

which we subsequently use because it is more con­
venient in many practical applications. 

From the conservation of mass conditions come La­
grange multipliers that differ substantially from stan­
dard fluid equilibrium, a direct consequence of the net­
work constraint. As with fluids, conservation of N 
chemical components lead to N Lagrange multipliers 
that are constants at equilibrium. Whereas for fluids they 
can be identified with N chemical potentials, for a sys­
tem consisting of a network solid containing N substi­
tutional species only N -1 quantities can be identified 
with physical processes replacing one specie with an­
other on a site. The quantities thus identified with La­
grange multiplier differences we have called diffusion 
potentials. The notation is M 1K, where K is the de­
pendent species. Vacancies are considered a species that 
can be ignored in some applications. Because of their 
definition as Lagrange multipliers, the M 1K, like the tem­
perature are constants, and take on a precise local mean­
ing everywhere within the system 

M1K=constant everywhere within the system. 

(3.6) 

Since the Clare not independent, we have introduced the 
differential operator 

(3.7) 

for a unit composition increase of species I, an equal 
decrease in species K, holding the composition of all 
other substitutional species on that site fixed. For bin­
aries we drop the subscripts and adopt the convention 
c =CI and (alacl2)=(alac). 

From this definition we have 

MIJ= -MJI; Mn=O. (3.9) 

In the case of equilibrium with a fluid, MIK is equal to the 
difference in chemical potential of I and K in the fluid 

(3.10) 

If the vacancy is chosen as K, we have 

(3.11) 

It might seem natural to use the M h , and keep the for­
malism of hydrostatic thermodynamics. This has been 
done in a number of formulations [7]. However, it has 
practical drawbacks (see sect. 5.5), and we have found it 
preferable to keep the flexibility of choice for the de­
pendent species K. 

The Nth Lagrange multiplier which we will call ILK 
cannot be identified in many problems. It is eliminated 
from all equilibrium calculations for internal equilibrium 
of a crystal away from surfaces and dislocations that can 
climb. It also is eliminated from all equilibrium calcu­
lations at coherent boundaries. Only in fluids, at inco­
herent boundaries and climbable dislocations can we 
identify IL K with the chemical potential of the K specie. 

The chemical potentials of interstitials are constant 
and equal to the chemical potentials of the correspond­
ing species in the other phases, 

(3.12) 

We shall see in section 5, where multisite solids are 
considered, that there is no need to differentiate be­
tween substitutional and interstitial sites. An increase of 
composition of the interstitial species I, holding the 
composition of all other interstitial species fixed, results 
in an equivalent decrease of vacancies on interstitial 
sites. But unlike vacancies on substitutional sites, va­
cancies on interstitial sites always have a concentration 
close to the total number of possible sites and can be 
dropped from consideration. In order to standardize and 
simplify the notation, we also call these chemical poten­
tials diffusion potentials, and in order to simplify the 
notation in the various expressions, MIK is understood to 
represent all diffusion potentials. 

(3.8) 

The restriction in the number of potentials necessary 
to calculate an equilibrium is a direct consequence of the 
crystalline nature of the solid and therefore should apply 
to the same solid under hydrostatic stress. In this case it 
can be shown (Appendix 1) that the previous equations, 
together with the boundary conditions to be discussed 
thereafter, are strictly equivalent to the standard condi­
tions for equilibrium between fluids. 

472 



3.4 Mechanical Equilibrium 

The variational calculus gives us [6,10] the very stan­
dard form of the mechanical equilibrium equation. It 
states that the divergence of the stress tensor is zero 

Tij,j=O. (3.13) 

This equation is also true for the large strain case, but the 
derivative is with respect to variables:! rather than:! I, a 
distinction that is not made in the small strain approxi­
mation. Large strain forms involving:! I have been ob­
tained [15]. 

3.5 Interface Conditions 

Along each interface, there are conditions for me­
chanical equilibrium, and a condition for phase change 
equilibrium. They both depend on the nature of this 
interface. 

3.5.1 Solid-Fluid Interfaces 

For solid-fluid interfaces, the mechanical equations 
state that the normal is a principal direction of stress. 
The principal value associated with it is equal in mag­
nitude to the pressure in the liquid and opposite in sign. 
The pressure is here the classical thermodynamic pres­
sure, which is positive in fluids, and the convention for 
stress is such that the stress corresponding to a tension is 
positive. 

The phase change equation can be written 

(3.14) 

where /-LY are the chemical potentials in the fluid, while 
the PI and f pertain to the solid. Because of the (N -1) 
equalities (3.10) 

(3.15) 

Because MKK =0 the summation over all species is the 
same as the summation over all species but K. We can 
therefore drop the restriction and adopt the notation 
that L without any qualification means summation over 
all species I. To simplify notation it is convenient to 
define the w function as 

(3.16) 

where /-LK is the Lagrange multiplier associated with the 
Kth species. At this stage neither w nor ilK has physical 

meaning. Once all the equilibrium equations are written 
they will have a specific meaning, or are eliminated. In 
a fluid w is equal to minus the pressure, and thus because 
ILK = ILk eq (3.15) could be rewritten 

(3.17) 

We should emphasize that these equations are between 
unprimed quantities, that are usually not convenient to 
use for solids. The conversion follows eq (3.4) and gives 

(3.18) 

3,5,2 Incoherent Interfaces 

Along an incoherent solid-solid boundary, the equi­
librium equations are 

(3.19) 

(3.20) 

(3.21) 

where nf (resp. n1) are the components of the normal to 
the interface oriented from a to /3 (resp. /3 to a). They 
all contain wand hence the Lagrange multiplier /-LK' 

Equations (3.19) and (3.20) imply that the normal is a 
principal stress axis and that in this case (r) is the value of 
that principal stress. Multiplication of (3.19) by nf and 
summation over i gives 

(3.22) 

From (3.20) we can obtain a similar expression for wp• 

Therefore (r)a and (r)P are identified for this problem. 
Using the definition of (r) we obtain 

(3.23) 

Substituting this value of ILK in (3.21) and (3.19) gives the 
equivalent system of equations 

(3.24) 

(3.25) 

Equations (3.24) and (3.25) contain only known quan­
tities and are the usable ones. Equation (3.23) can be 
interpreted as a definition for the chemical potential of 
the K species and this potential is constant along the 
interface. Along an incoherent interface we can then 
calculate a chemical potential for every specie, some­
thing which is not possible at any other location within 
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the bulk of the a and /3 phase. Let us note that each side 
of eq (3.24) depends on what specie is chosen for K. 
Because the expression 

is independent of K, the equation itself is independent of 
this choice. A comparison of(3.23) and (3.15) shows the 
similarities between solid-fluid and incoherent solid­
solid equilibria. 

3.5.3 Coherent Solid Interfaces 

In a coherent solid-solid equilibrium, the mechanical 
boundary conditions 

(3.26) 

indicate that the tractions (but not necessarily the stress 
tensor) are continuous across the interface. If the same 
reference state for strain is chosen for a and /3 the phase 
change equation (Appendix 2) reads 

v,'fa ~M a v,'( T,a'n 'a 2roaT,a 'a 'a) o -,.:. lKCl + 0 - ijni nj + Uij jkni nk 

4.1 Geometric Variables 

The lattice constants are readily-determined non­
linear functions of composition, temperature, and stress. 
From the lattice constants in the reference state we can 
compute po. From a comparison of the lattice shape in 
the actual state and the reference state, we can compute 
the strain, or, if the strain is large, the deformation gra­
dient. Since the actual state and the reference state are 
usually chosen to be at the same temperature but not 
necessarily at the same composition, the strain Eij is a 
sum of a contribution due to composition change with 
no change in stress, Eij, and one due to stress. The gen­
eral case when neither contribution is isotropic has been 
treated [15]. The tensor Eij is subject to the same crystal 
symmetry restrictions as the thermal expansion tensor 
[17]. For the present we will concentrate mostly on the 
isotropic case. Defining k such that 

(4.1) 

and assuming Hooke's law of linear elasticity we can 
write 

(4.2) 

(3.27) The dilatation Ekk is given by 

where .aij is the small rotation tensor 

1 
!l·=-(u· .-u··) '1 2 '·1 ,." 

(3.28) 

For this type of interface equilibrium, the Lagrange 
multiplier J.LK has disappeared from the equations. In 
contrast to the two cases treated before, no definition of 
individual chemical potentials for each species arises, 
even at the interface. As we will see none are needed to 
solve problems. This is a direct consequence of the re­
strictions in a fully coherent phase change, where no 
network site is created or destroyed. 

4. The Data Base 

We have identified a number of important thermo­
dynamic quantities that determine the state of a system, 
and a number of functions of these state variables that 

(4.3) 

In cubic crystals, Eij is also isotropic, so that the formula 
in eq (4.1) is still valid. 

The constant po appears repeatedly in various formu­
las because elastic energy naturally appears as energy 
per unit volume, whereas other energies will be per 
mole. po is the conversion factor that transforms one into 
the other. Its inverse Va is the molar volume of the 
lattice sites. Combining (3..3), (3.4) and (4.3) we have for 
isotropic solids • 

(4.4) 

The derivative of Eij with respect to composition in 
binary allows also occurs commonly 

enterinto the equations of equilibrium. We now examine 1jij = dEi}ldc. (4.5) 
how one might determine these quantities from the usual 
quantities that are measured and available in com- For systems with orthogonal axes 
pilations. They turn out to be identical to those used in 
ordinary solution thermodynamics and elasticity. 1ju =(0 Ina,./oc) (no summation) (4.6) 
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where the aj are the lattice parameters. When Eij is iso­
tropic 

(4.7) 

In binary isotropic and cubic systems 11 is also related to 
the partial molar volumes 

(4.8) 

If 11 is constant 

(4.9) 

where Co is the composition of the reference state chosen 
to measure the strain. It is to be emphasized that the 
anisotropic and nonlinear versions of these equations are 
readily available [15]. 

4.2 Thermochemical Quantities 

The two important quantities to be determined are!' 
and M 1K• There are several convenient paths of integra­
tion from a hydrostatic state, where these quantities can 
be determined with standard thermodynamic methods, 
to the actual stressed state. We begin with the differ­
entialof!' 

(4.10) 

The function </>', defined by a Legendre transform 

<f>'=/'-TijEij (4.11) 

proves to be useful. Its differential 

Chemical potentials are assumed known at a hydrostatic 
pressure P, and composition Cl, C2 , ... 

M1K(P,Ch C2, .•. . )=).L,(P,Ch C2, .... ) 
-j.tK(P,C" C2, .... ). (4.17) 

It is customary to define standard chemical potentials).L~ 
and activity coefficients such that 

(4.18) 

where 'Y~ is chosen for convenience. Depending on the 
problem, it is chosen to approach 1 either for dilute or 
concentrated solution. Vacancy potentials also are fit to 
this convention. Since J-Lv(P,cv) =0, where cv is the equi­
librium vacancy concentration at P, 

(4.19) 

where 'Yv is the vacancy activity coefficient. If it is con­
stant, the chemical potential of vacancies under pressure 
P can also be written 

(4.20) 

The expressions for the chemical potentials are intro­
duced into eq (4.13) and the resulting expression inte­
grated along a constant composition path to the stress 
Tij. For a binary solution 

v.' ..,.. V~ dSiiklT T V~ dSiikkp2 v.' P. 
- 011,jl ij- 2 dc ij kl+ 2 de - O'Y/kk' (4.21) 

(4.12) If the solid is isotropic, this expression becomes 

permits us to deduce the following Maxwell relation 

(4.13) 

Hooke's law at constant composition is 

(4.14) 

or 

(4.15) 

where the Cijkl are moduli of elasticity, and the Sijkl com­
pliances. Both are composition and temperature de­
pendent. From (4.15) we deduce 

(4.16) 

475 

+ Va ~(~)(Tkk)2- Va ~(1 +V)T..T .. -3V.o'''fIP 2 dc E 2 dc E If lJ ./ 

(4.22) 

These expressions contain terms both linear and qua­
dratic in stress. They simplify considerably when the 
elastic coefficients are not composition dependent. 
Equation (4.22) for instance becomes 

(4.23) 



To obtain!, we calculate cP' with eq (4.12). It is first 
integrated along a path of constant composition, from 
pressure P to stress Tij. Using Hooke's law (4.15), this 
gives 

(4.24) 

and using (4.11) 

(4.25) 

Since under hydrostatic stress, the familiar liquid ther­
modynamics is valid, the Helmholtz free energy f '(P ,c) 
is known. It may be obtained from the more commonly 
tabulated molar Gibbs free energy Gm by subtracting 
PVo and dividing by Va. This gives 

j'(P,c)=poGm-Ppo/po. 
Since 

(4.27) 

one obtains, after replacement of Gm by its value as a 
function of composition 

!'(P,c)=pb{c [p,7(p) +R e In 'Y1c]+(l-c)[J-t~(P) 

+Re In 1'2 (l-c)]}-P(1+EZd+SjjkkP2. (4.28) 

Combination of (4.25) and (4.28) gives the final result 

!'(Tij,c)=Po{c[J-t7CP)+RO In 'Y1c]+(I-c)[J-t~(P) 

+R() In 'Yz(1-c)]}-P(l +Et;d 

(4.29) 

For an isotropic solid, this relation becomes 

l+v T .. y .. 3(l-2v)p2 
+2E IJY 2E . (4.30) 

Because it always appears in the boundary conditions, 
the expression for the quantity Vo!' -M12c is useful. 
Combining (4.22) and (4.30) we get, in the isotropic case 

Va!' -Ml2c =J-t~(P)+R 0 In 'Y2(1-C)+ va[ -P(l +3k) 

- 2~ (Tkk)Z+ Iii; TijTij+cTJ(Tkk +3P) 3 (l;jV)p2 

; :C(~)(Tkk)2+ ~ :cC~V)T,jTij 

_;c !C~2V)p2]. (4.31) 

When the elastic coefficients are not composition de­
pendent, this becomes 

Va!' -M12c =p,~(P)+R e In 'Y2(l-C)+ Va[ -PO +3k) 

-~(T 2 l+v 3(1-2v) 2 
2E kk) + 2E TijTij 2E P 

+C17(Tkk +3P)J. (4.32) 

In a crystal of arbitrary symmetry, this expression is 

(4.33) 

Expressions (4.21) to (4.23) apply to substitutional bi­
nary solutions. For interstitial binary solutions the inte­
gration along a constant composition path from the hy­
drostatic stress to the stress Tij using (4.13) gives the 
elastic terms identical to those in (4.21) to (4.23). Be­
cause there is no network constraint or interstitial con­
centration we use (3.12) for M[ and obtain for dilute 
interstitial solutions 

_ Va dSijk'r..r _ Vi P+ Va dSUkk p 2 
2 dc Y kl OTJkk 2 dc . (4.34) 

Equations for the special cases of isotropy and constant 
elastic coefficients are like (4.34) except that the elastic 
terms take the forms they have in (4.22) and (4.23). We 
will see in section 5.7 that there is no need to distinguish 
between interstitial and substitutional solutions. Had we 
chosen the vacancy on the interstitial site as component 
2 we could have obtained (4.34) directly from (4.21) by 
noting that J-t~=0 for the vacancy. 

5. Internal Equilibrium 

The study of internal equilibrium requires the simulta­
neous solution of the equations of elasticity and those of 
chemical equilibrium. The method we have found useful 
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recognizes that the strain is a function of stress and 
composition. But the composition at equilibrium with a 
given diffusion potential is determined by the local stress 
alone. Thus the strain at a given diffusion potential is a 
function of stress alone. If we obtain this stress-strain 
function, we can solve these problems as if they were 
ordinary elastic problems, without any further regard to 
chemical problems whose effects are now implicitly ac­
counted for. 

There are several derivations. The simplest and most 
easily generalized for large strains and nonlinear effects 
parallels in its first steps the thermodynamic methods 
used to derive the relationships between isotropic (ad­
iabatic) and isothermal elasticity. In the first section we 
review the main results and then apply them to various 
problems. 

5.1 Open-System Elastic Constants 

After a straightforward manipulation of partial deriv­
atives, the following expression, valid for a two­
component solid, is obtained (Appendix 3) 

(5.1) 

Making the usual small strain approximations, and an 
expansion of the strain around To =0 produces the con­
stant chemical-potential form of Hooke's law 

(5.2) 

The coefficients of the stress have been called open­
system compliances, S * and are related to the constant 
composition compliances S by 

S * -S Vo' /(ilM12) ijkl - ijkl + a 1) i(fJkl ac 
Tm, 

(5.3) 

where (aM12/ac)Tmn is evaluated at Tmn =0 and where all 
the quantities except Va are functions of c. The second 
order terms that are neglected in this expansion have 
been discussed [15]. Introducing the notation 

for substitutional binary solutions, the open systems 
compliances, for isotropic solids are given by 

E*=E/(1+X'I')2E) 

v*=(v-X1)2E)/(1 +X'I')2E) 

(K- 1)* =3(1-2v*)/E*=K- 1 +9X'I')2 (5.6) 

G*=G 

where K is the bulk modulus and G the shear modulus. 
Far away from spinodals and critical points, the ex­

pression (5.3) is not very sensitive to the composition. It 
is then appropriate to use the values of the open-system 
constants, at a composition near the average com­
position of the specimen. The elastic coefficients be­
come constants, and the elastic part of the problem is 
now independent of the compositional part. For a closed 
system, the obvious choice is the average composition. 
For a system that is in contact with a chemical reservoir, 
the composition at equilibrium under zero stress is usu­
ally a good choice. In the case of a very high average 
stress, the equilibrium composition at some high pres­
sure may be more appropriate. With such replacement 
of the composition in (5.3) or (5.4) to (5.6), all the solu­
tions of ordinary linear elasticity become directly appli­
cable to elasto-chemical problems. 

5.2 Finding the Composition Field , 
Finally, even though we have eliminated the com­

position to solve the elastochemical problem, the com­
position field is easily obtained from the solution. At 
constant diffusion potential, composition is uniquely de­
termined by the local stress. For a binary for example 
(4.21) can be solved for the composition 

(~IC ) constantxexp[elastic terms/ROJ (5.7) 
1'2 -c 

where constant=exp[{M12-(IL?-JL~}/RO]. (5.8) 

i.e., 

A useful linearized version of eq (5.7) is obtained by 
(5.4) linearizing the elastic terms of that equation or of (4.21) 

to (4.23) and differentiating at constant M 12, P, and O. 
Using (5.5) this gives 

1/ =pOR (} (1 + aln 'Yl) 
X caIn c (5.5) 

(5.9) 

or 
for interstitial solutions, and 

(5.10) 

1/ pOR (j (1 + aln 'Yl) 
X c(1-c) alnc where Co is a constant of integration and is the com-
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position that an element of unstressed solid would have or 
if it were in equilibrium with the system. 

For the isotropic case this becomes 

(5.11) 

Had we linearized about a hydrostatic pressure P the 
result would have been 

C -C(P)=Xl1(Tkk +3P) (5.12) 

There are several ways of evaluating the constants in 
(5.8) or (5.10), but basically they are all methods of 
evaluating MI2 at equilibrium. If the system is in contact 
with a materials reservoir with specified MI2 the answer 
is straightforward. Ifit is equilibrated with a fluid phase, 
eq (3.10) applies. If the composition and stress are speci­
fied at some point in the system, eq (4.21) can be used. 
This occurs in some problems where almost all of the 
solid acts as a reservoir in the sense that most of it is 
homogeneous in composition and stress, and that trans­
fer of components to small inhomogeneously stressed 
parts of the system hardly affects the composition of the 
homogeneous part. 

For the typical case of a closed heterogeneous system 
the overall composition is specified. At equilibrium the 
diffusion potentials become a constant whose value must 
be determined as part of the solution. This is a standard 
procedure in the method of Lagrange multipliers. Equa­
tion (5.7) is a one-parameter family of composition pro­
files. For each assumed value of the parameter M 12, we 
can determine the overall composition by integration. 
The one that satisfies the specified composition is the 
solution and this fixes M 12• 

This procedure is simplified if linearization of (5.7) to 
give (5.10) is valid. Using this to obtain Co from 
which we can obtain M 12• We use the conservation of 
mass for the entire solid of total volume fi' in the refer­
ence state and average composition c 

J cdV'=fl' C. 
U' 

(5.13) 

Substituting (5.10) we obtain 

(5.14) 

which can be substituted into (4.21) to (4.23) to obtain 
M 12• Once Co is known we have the composition profile 
of the inhomogeneously stressed system 

(5.15) 

where 1'ij is a component of the volume averaged stress, 
and X and 11!i are evaluated at c. This is the linearized 
equation for composition in a closed system. 

5.3 Internal Equilibrium of Vacancies 

We consider a single component solid with vacancies 
as the second component. If, as is often assumed [18J, 
there is no relaxation around a single vacancy at any 
level of applied stress and the elastic constants do not 
depend on vacancy concentrations, the diffusion poten­
tial M.!> given by eq (4.23), is a function of composition 
only. Therefore a constant diffusion potential would 
imply a vacancy composition field that is constant re­
gardless of the stress distribution. Even with these as­
sumptions we will later see (sec. 6.2) that the local equi­
librium vacancy concentration at the interface does 
depend on stress at the interface. 

A more reallstic model assumes relaxation. Let the 
partial molar volume of vacancies differ from the molar 
volume of the species. If the elastic constants do not 
depend on vacancy concentration, eq (4.23) yields with 
p=o 

o C. - -
M.I=M.I+RO In-1--(V.- VI) Tkk/3 (5.16) 

-C. 

At equilibrium, this is constant, leading to a vacancy 
concentration field given by (with cv<l) 

- (VV-VIT) c. =cv exp 3R 0 kk (5.17) 

where C. is the equilibrium concentration of vacancies at 
p=o. 

5.4 Dislocation Atmospheres 

5.4.1 Atmosphere Around a Dislocation 
in an Isotropic Solid 

Let us consieer a substitutional two-component in­
fmite isotropic solid, with a negligible concentration of 
vacancies. A straight edge dislocation with a Burgers 
vector of magnitude b is located in the solid along the z 
axis. If the sizes of components 1 and 2 are different, 
there wiJ] be a segregation around the dislocation. This 
problem has been solved, considering one of the atoms 
as a defect [19]. This means that its concentration has to 
be relatively small. Indeed in many cases only vacancies 
or interstitials are considered. These are unnecessary 
restrictions as we shall see. 
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Far from the dislocation, the solid is at composition Co, 

and is stress-free. Therefore we can think of this far­
away solid as a chemical reservoir. The solid with the 
dislocation and its atmosphere has the same diffusion 
potential as the stress-free solid at Co. For convenience, 
we choose the solid at Co as the reference for strain. Since 
we have shown that under small strain approximation, 
the elastic part of the problem is equivalent to a constant 
composition problem with the open-system elastic coef­
ficients, eq (5.6), the stress field, with the atmosphere 
present, is given by 

_ _ -Gbsinp 
Trr - T<I><I>- 2?T(l- v*)r 

T _ GbcoscfJ 
nj>-2?T(I - v*)r 

-Gbv*sinp 
?T(1-v*)r 

(5.18) 

and the composition field is, to a first approximation, 
using eqs (5.11) and (5.18) 

A - (1 + v*)Gb sinp 
c - -X'Y/ (l-v*)?Tr . (5.19) 

(These equations correct an algebraic error in reference 
[6].) Replacing the open systems constant by their val­
ues, we finally obtain 

- Gb (1 + X'Y/ 2 E)sinp 
2?T(l-v+2X'Y/2E)r 

Gb(1 +X'Y/2E)COSp 
T r4> 2?T(I-v+2X'Y/2E)r 

b.c -X'Y/(1 +v)Gbsinp 
?T(I-v+2X'Y/2E)r 

(5.20) 

where the subscript 0 has been dropped from all the 
variables since all of them have to be evaluated at com­
position Co, including the Burgers vector magnitude. In 
our case (substitutional solution), X is given by eq (5.5) 
and 'Y/ by (4.7) and (4.8). 

We first note that, since X is positive for a stable solid 
solution, the stresses are decreased, by a fraction of the 
order ofX'Y/2E. This factor tends to zero for highly dilute 
solutions. But for a concentrated solution, it can be sig­
nificant. Taking an ideal solution, co=O.5, po= 105 mol 
m-3

, RO=104Jmol-1, E=1011 Nm- 2
, and 'Y/=0.1 gives 

a value of 0.25 for XTJ2 E. This change in the stress field, 
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which is readily obtained here, has, to our knowledge, 
not been calculated within the framework of the defects 
model. 

At low concentration, the following approximation 
holds 

and 

and we can neglect 2X'Y/2 E in comparison to (I-v) 
obtaining thereby the classical point-defect solution 

b.c- -COevl- V2)(1 + v)Gbsinp. 
3?TRO(I-v)r 

But it is to be emphasized that the composition eq (5.7) 
can be solved exactly by numerical methods. Our result 
is more general in that it includes in a self-consistent way 
all the interactions that may be present, specifically in 
concentrated solutions, between the defects themselves 
and the defects and the matrix. In particular, it takes into 
account the nonideality of the solid solutions in a phe­
nomenological way that is model independent. If no 
measured value is available for the activity coefficient 
function "lit specific statistical mechanical models 
[20-22] can of course be used and the result directly 
introduced in the value of X. 

5.4.2 Dislocation Atmosphere in a Cubic Crystal 

Analytic expressions are rarely known for the elastic 
fields caused by point-forces in a medium of arbitrary 
symmetry [23]. Hence the usual integral methods for 
calculating atmospheres cannot be used. On the other 
hand the introduction of open system compliances is not 
restricted to isotropic solids, and formulas have been 
developed for the most general elastic solids [15]. Be­
cause the elastic field has been found for several cases of 
dislocations in these non-isotropic single-component 
crystals, the concept is most valuable. 

By a simpfe substitution of the open-system elastic 
coefficients, the same elastic calculations are valid for 
solid solutions equilibrated to constant diffusion poten­
tials. The composition fields are given to first order by 
eq (5.10) or more exactly from the solution of eq (5.7). 
We shall treat the case of a [llIJ screw dislocation in a 
cubic crystal. The X3 axis is along the dislocation, the X2 

axis is along [1IOJ and XI along [112]. The stress field has 
been given by Steeds [24]. Because the equations are 
rather long, we shall derive only the composition field. 



In cubic crystals, the change in composition with stress 
is given to first order by 

(5.21) 

as for the isotropic case. At constant composition, Tkk 
has the value 

_ Gb 8s44 sin 34> 
Tkk - 4Y27Tr(I-8 cos3 34»(1-8Y12S(3sll-2S) (5.22) 

with 

a factor which is zero for isotropic crystals, 

and the S,] are the standard two indices compliances, 
referred to the cube axis. For cubic crystals, the open 
system compliances are 

i andj <3 (5.23) 

i andj>3 

therefore 

S*=S 

and 

8* 

Combining (5.21), (5.22), and (5.23), we obtain the com­
position field 

where all the constants that depend on the materiaL have 
to be taken at Co, the composition far away from the 
dislocation. This result, obtained by a simple algebraic 
manipulation, has, to our knowledge, never been ob­
tained by other methods. 

5.4.3 Dislocation Atmospheres: Nonlinear Effects 

At constant diffusion potentials, when the com­
position changes from the unstressed to the stressed 
state are small, we have shown that the strain is linearly 

related to the stress, as in the usual theory of elasticity. 
But this law has a smaller range of applicability than in 
the constant composition case. The thermodynamics of 
solutions introduce nonlinear terms in the stress-strain 
law. When the strain is expanded as a function of stress, 
we have identified four second-order effects [15]: (a) 
non-linear stress-strain laws at constant composition, 
due, for instance, to rearrangement of interstitial atoms 
into sites that become nonequivalent under stress; (b) 
change of compliances with composition; (c) deviation 
from Vegard's law; and Cd) non-linearity of the solution 
thermodynamics. The first two effects have been con­
sidered within the framework of defects theories. It does 
not seem that the two others have been treated [25]. 
Since solutions of non-linear elastic problems have been 
found [26J, they can be used, with the second-order 
open-system compliances, to find second-order effects 
on dislocation atmospheres. 

5.5 Internal Equilibrium of a Binary Substitutional 
Solid With Vacancies 

We have seen in section 4 that, for a binary substi­
tutional solid with vacancies, in equilibrium with a fluid, 
the following is true 

(5.25) 

(5.26) 

where.uf and,tt~ are the chemical potentials of species 1 
and 2 in the fluid. It seemed therefore rather natural to 
use these equations, which have the same form as those 
for fluid equilibrium, rather than the mathematically 
equivalent 

(5.27) 

(5.28) 

From a theoretical point of view, there is no difference. 
Although these equations are valid for nonlinear in­
homogeneous and anisotropic solids, we give as an ex­
ample expressions for constant elastic coefficients and 
isotropy 

_ 0 011l£!. VI-Vv 
Mlv-M lv +R n - 3V,' Tkk I'v c, a 

(5.29) 

(5.30) 

The concentration of vacancies is small compared to CI 

and C2' Measurement of c" 1', and Vvare therefore sub 
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ject to potentially large errors. These affect eqs (5.25), 
(5.26), and (5.28) but not (5.27). For computational pur­
poses, it is then better to use the second formulation. 
Besides, if we are only interested in the composition CI 

and C2, we can neglect the vacancies and use only eq 
(5.30) for equilibrium calculations. By keeping the flex­
ibility of choice for the dependent substitutional species, 
we can eliminate species whose concentration has been 
found to have a negligible effect on the chemical behav­
ior of the solid solutions, including vacancies, even if 
they are essential to the mechanisms by which chemical 
equilibrium is attained. 

5.6 MuItisite Solids 

Up to this point, we have focused our attention on 
crystalline solids that are most common in the metal­
lurgical world, where there is only one substitutional 
site, that is highly occupied, and an interstitial site that is 
lightly occupied. But in many instances crystals have 
several non-equivalent sites, occupied by mixed species 
of atoms or molecules or vacancies. The fraction of 
empty sites can vary for each type of site from 0 to 1. In 
the description we can of course eliminate sites that are 
and remain empty. They don't contribute to the energy 
or entropy of the system. For all other sites, we can 
describe their status by the densities of the atoms and the 
densities of vacancies on each of them. As for the substi­
tutional site with which we have been dealing in the 
preceding section, there will be a constraint condition: 
the total density of atoms and vacancies is constant for 
each site. Using the method described in section 4, it can 
be shown that at equilibrium, the diffusion potentials are 
constant, equal on all sites, and equal to the correspond­
ing difference in chemical potentials when equilibrated 
with a fluid 

(5.31) 

where the superscripts label the different sites. There are 
cases where there is no species K that is present on all 
sites, or where it is not convenient to use the same K­
species for all sites. The formulas can easily be trans­
formed, using eqs (3.8) and (3.9) 

(5.32) 

If a species is not present on one site, it cannot be used 
as the dependent species on that site, and its diffusion 
potential equation drops from the set of eqs (5.31). The 
vacancies are to be considered as a species, since an 
exchange of an i -site vacancy for a j -site vacancy pro-

duces no change of state, exactly as the exchange of a K 
atom on an i -site with a K atom on a j -site. 

Equations (5.31) govern the equilibrium partitioning 
of I atoms on the different sites. If only the total density 
is of interest, one can interpret eqs (5.31) differently. 
They state that along an equilibrium path, the Helmoltz 
free energy density is only a function of the total density 
of the (N-I) independent species.4 Calling MIK the com­
mon value of the diffusion potential for each site, we 
have 

(5.33) 

Equation (5.33) shows that the formulas developed in 
the preceding section can also be applied, with the total 
density of each species as composition variables (or the 
ratio pi/po, po being a chosen total density, like the total 
density of sites, or the density of sites I, (I = 1, ... , v) 
whatever is most useful). 

In the equations used in section 5, the interstitial site 
was sparsely occupied, and we used eq (4.34) for the 
diffusion potential of this species. But rigorously its dif­
fusion potential is 1111v , where v represents the vacancies 
on interstitial sites 

Mlv=MPv +Re In I'ICI +elastic terms. (5.34) 
I'v c, 

If there are v interstitial sites per substitutional site, I've, 
tends to one as Cv tends to v. Therefore, in dilute inter­
stitial solutions 

(5.35) 

which is the expression we have used. In almost all 
cases, site occupancy is either high or low. Phase trans­
formations occur before intermediate occupancy is 
reached. But hydrogen in metals is an important case 
where the occupancy can span all the possible com­
position field without a phase change. In such cases, the 
rigorous diffusion potential has to be used. Equations for 
the internal equilibrium between sites have been given, 
with the preceding approximation by Li et al. [27]. It is 
clear that there is no need to make the distinction be­
tween interstitial and substitutional atoms. A single for­
malism with multisite occupation is possible and avoids 
the confusion that can arise if a specie occupies both 
substitutional and interstitial sites [7]. For most metal-

'When a function F(Xl' Xl> .•. , xn) is such that, for all values of the 

then F is a function only of the sum (XI +Xz+ . .. xn). 
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lurgical examples, species do seem to occupy only one 
site. 

We next turn to phase change equilibrium at solid­
fluid interfaces. The case of a stoichiometric compound 
already illustrates the principal features. Let species A 
completely occupy a equivalent sites a per unit cell, 
species B b equivalent sites {3, etc. Because there is only 
one species on each site we cannot define a diffusion 
potential. In the liquid each species has a well defined 
chemical potential. The equation for equilibrium is 

f -(a/-Li+b/-L~+c/-L~ .. ·)Po=-P (5.36) 

where po is the total density of sites in a unit cell. This is 
a straightforward expression of chemical equilibrium for 
the dissolution of the compound A.BbC •... , which 
continues to hold under stress. It is Gibbs' eq (393) [9] 
since he quite clearly considered solids to be compounds 
(CP) and defined a single chemical potential /-Lcp for 
them in the fluid even if they dissociated 

(5.37) 

In defining /-Lcp there is a rigid adherence to a law of 
definite proportions dictated by the numbers of equiv­
alent sites fully occupied in the crystal structure. 

If we now let the a sites be occupied by several spe­
cies I, J, K including vacancies we obtain diffusion po­
tentials. Choosing species K as the counterspecies the 
equilibrium equation is 

The term in the parenthesis is the chemical potential for 
the stoichiometric compound KaBbC. . . .. There are 
obvious advantages to choosing K to be the major spe­
cies on site a. If site a is a lightly occupied interstitial site 
the compound is BbC •... and /-LK is set to zero. 

If several sites are each occupied by more than one 
species the equations are not changed if a different spe­
cies is chosen as counter species for each site. If the same 
species is chosen as counter species of several sites the 
terms combine. In particular if the same counter species 
K is used for all sites we obtain 

Summing over all sites we obtain 

This is identical with eq (3.15) if we redefine po in terms 
of atom site density instead of unit cell densities. 

6. Interface Equilibria 

In this section we illustrate various aspects of equi­
libria involving three kinds of interfaces that stressed 
solids can have but ignoring capillary effects. Most of 
our examples will be uniformly stressed, and have only 
as many components as are necessary to illustrate the 
points to be made. When the solid is multicomponent 
and non uniformly stressed, the interior equilibria can be 
solved by the methods of the open-system elastic con­
stants of the previous section. This converts a multi­
component elastic and thermochemical problem into an 
elastic problem alone, although possibly a nonlinear 
one. 

6.1 Change of Solubility With Stress 

Our first example is a Gibbs solid-a pure substance 
for instance-in equilibrium at pressure P with a fluid in 
which it can dissolve along a flat interface. Forces are 
applied to the solid so that its state of stress is now Tij. 
To maintain mechanical equilibrium, one of the prin­
cipal values of Tij is -P, and the corresponding prin­
cipal direction of stress is normal to the fluid-solid inter­
face. What is the change in the chemical potential of the 
fluid necessary to keep the system in chemical equi­
librium? The only equation, besides mechanical equa­
tion, is the boundary conditions, eq (3.18) which be­
comes for a one component linear elastic solid 

(6.1) 

Following Gibbs [9, p. 196], we compare this equi­
librium with that of the same solid phase equilibrated 
under hydrostatic stress with the same fluid. Using bars 
to indicate the values of the thermodynamic quantities 
in this equilibrium we write 

(6.2) 

Subtracting these two equations, we obtain 

if' -I') is the elastic energy stored in the solid on going 
from pressure P to stress state Tij and P(Ekk -Ekk) is the 
work done on the solid by the liquid. The l.h.s. of eq 
(6.3) is thus the work that has to be done to bring a 
hydrostatically stressed solid to the nonhydrostatic state 
while surrounded by the liquid. It is necessarily positive, 
and the fluid in equilibrium with a nonhydrostatically 
stressed solid is always supersaturated with respect to 
precipitating a hydrostatically stressed solid by the 
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amount given in (6.3). If we let CL and CL be the concen­
tration of the solid component in the fluid in equilibrium 
with respect to the nonhydrostatically and hydro­
statically stressed solid, we can use eq (4.32) to obtain 

As usual, this system of equations can be solved numer­
ically, or, if the changes are small, we can linearize the 
equations and solve with Gramer's rule. 

3(1-2v)p2 1-2vT P 
+2E +E kk· (6.4) 6.2 Vacancies Equilibrium in a One- Component Solid 

Let tl> 12, and -P be the principal values of stress. If 
the change in solubility is small, and the solution is dilute 
or ideal, we get 

CL-CL= 1 
CL 2pOR fJE 

Because -1 <v< 112, the right hand side of eq (6.5) is 
positive, except of course when tl =t2= -P, where it is 
zero. The solubility of the solid in the liquid is always 
increased when a stress is applied to the solid. The solu­
tion is supersaturated with respect to a hydrostatically 
stressed solid at pressure P, a classical result that was 
derived by Gibbs. 

We now turn to the case of a two-component solid in 
equilibrium with a melt. We have two conditions for 
equilibrium 

(6.6) 

(6.7) 

We compare again to the equilibrium of the solid with 
the fluid under pressure P. 

(6.9) 

Subtraction of (6.8) from (6.6) and (6.9) from (6.7) gives 
two equations for the change of composition in the fluid 
and the solid to maintain equilibrium under stress. 

Assuming for simplicity (i) P = 0, (ii) terminal solu­
tions (i.e., both solid and liquid are dilute solutions), (iii) 
no change in elastic coefficients with composition, we 
get 

(6.10) 

Consider a cylinder of isotropic hydrostatically 
stressed solid in contact with a fluid in which it cannot 
dissolve at pressure P, with an equilibrium concen­
tration of vacancies cV ' A load is applied that produces a 
stress whose components are Tzz> Trr = Teo. We want to 
calculate the equilibrium concentration of vacancies 
along the surfaces Sr and Sz. Since the components of the 
solid don't appear in the fluid, there is no equation like 
(3.12). But the phase change eq (3.15) applies, and in this 
case since J1.K is identified with J1.~ =0, the equation be-
comes 

(6.12) 

where -P is the normal traction. Let us first adopt 
Herring's simplifying assumptions that (a) there is no 
volume relaxation around vacancies, (b) there is no 
change in elastic constants with vacancy concentration, 
and (c) the solid obeys the law of dilute solutions. Using 
(4.32) we get (i) under pressure P 

(ii) under stress, along Sz 

J1.0(p)+R8lnc~+vo[ -P-i~(2Trr+Tzz)2 

1 +V(2T 2 T 2) 3(l-2V)j>2] 
+2E rr+ zz + 2E 

(iii) under stress, along Sr 

o - r ,[ - 1 v 2 
fLv(P)+R 8 lnc v + V(} -P-2 'B(2T" + Tzz } 

1+V(2T 2 T 2)+3(1-2V)p 2 ] 
+2E rr+zz 2E 

, [1-2V ] = VoTrr 1 +--g-(2Trr + Tzz ) . 

(6.13) 

(6.14) 

(6.15) 
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It is quite clear that c~ and c; are different, unless 
Tn = Tzz> i.e., when the system is under hydrostatic 
stress. Since we have assumed no relaxation around va­
cancies, 7]=0, and therefore according to eq (4.23), Mh 
is different on Sz and Sr. As a result, a vacancy flux will 
appear. This is further discussed in section 8.4. 

Making the further assumption that P = 0, and ne­
glecting quadratic terms in stress, subtraction of (6.13) 
from (6.14) and (6.15) gives 

In (c~/c,)= V~Trr/R () (6.16) 

This is Herring's [18, 28] well-known formula: to first 
order in stress, only the normal pressure affects the equi­
librium vacancy concentration at an interface. We will 
get the same results, whether this interface is a solid­
fluid interface or an incoherent solid-solid interface. 

The order of magnitude of the quadratic terms can be 
easily obtained by making Trr =0 so that linear terms 
disappear in (6.15). We obtain, along Sr 

(6.17) 

Within the small strain approximation, this effect is less 
than 1 % of the effect on Sz' But there are cases where it 
might be significant (cf. sec. 8.4). 

Conditions (a), (b), and (c) can easily be removed 
through the use of the general formulas developed in 
section 4. As an example we treat the case where there 
is a volume relaxation around a vacancy. Using (4.32), 
assuming P = 0, and following the above procedure, we 
get, to first order in stress 

(6.18) 

(6.19) 

The corrective term, proportional to 7], contains the 
trace of the stress tensor. As such other components 
than the normal pressure influence the vacancy concen­
tration at.a particular interface, if elastic relaxation 
around vacancies are taken into account. 

6.3 Using Open-System Elastic Constants for 
Multicomponent Phase Equilibrium 

For the general multicomponent phase-equilibrium 
under stress, the fact that the MIK are constant gives 
(N -1) relationships between stress and composition. As 
shown earlier, it is possible to solve these equations for 

composition as a function of stress and obtain the strain 
Eij that results from composition changes. The result is 
a stress-strain relation at constant M 1K • This relationship 
was used to solve elastic problems within a single phase 
as if it were composed of a single component. 

These same relationships apply to each individual 
phase in a multiphase equilibrium, but the phase change 
boundary conditions of section 3.5 contain a similar cou­
pling between stress and composition. In the present 
section we shall demonstrate that by using open-system­
elastic constants, the compositional part of these equa­
tions can also be eliminated. In fact this method allows 
us to treat multicomponent equilibrium as if each phase 
were a one-component purely elastic part of the system, 
and that for such a solid, the (U function is equal to the 
elastic energy apart from a constant (cf. eq (3.16». Fi­
nally once the elastic problem has been solved, the com­
position field is obtained by the methods of section 5.2. 

We will use as an example binary isotropic linear sol­
ids, although the proof can be made for a multi­
component anisotropic system. We shall f~rther assume 
constant elastic coefficients, and that, at zero stress and 
potential M 12, the composition is c. Let .6.c be the change 
of composition due to a change of stress. Expanding f I 

around the unstressed state we find using (3.6) and (5.4) 

(6.20) 

Let us consider the function 

f'* =f'(O,c)- 2~f,.(Tkk)2 + 12~~* TijTij (6.21) 

where we have added to the free energy of the solid 
under zero stress and at potential M 12, an elastic energy 
computed with open-system elastic constants at M 12• Re­
placing these constants by their values (5.6) we obtain 

But the change in composition .6.c is given by (5.11) so 
that (6.22) can be written 

The function [f' - p~(c + t::..c )M12J that appears repeat­
edly in the phase change boundary equations (cf. (3.24) 
and (3.27» is thus obtained as 

f ' - p~(c +.6.c )M12 = f ,* - pbcM12 (6.24) 
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Or, if we replace M12 and! '(O,e) 

(6.25) 

Thus the various phase change boundary conditions are 
expressed in terms of an open-system Helmholtz free 
energy for each phase. This free energy has the same 
form as a Helmholtz free energy of a one-component 
phase. Its elastic constants are the open-system elastic 
constants of section 5.1. The reference state of each 
phase is the unstressed multicomponent phase with the 
same value of M. Its composition is e in (6.24) and (6.25), 
its lattice parameter is used to define strain, and its con­
stant composition elastic constants are to be used in eqs 
(5.3) or (5.6) to calculate the open-system constants. 

By examination of (6.25), we can see that the use of 
these open-system constants allows us to treat, as far as 
the stress is concerned, any multicomponent system just 
as if it were a one-component system. Thus elastic solu­
tions developed for one component inclusions, for in­
stance [23], can now be used for similar muiticomponent 
inclusions. 

After finding the stress field, the results of section 5.2 
can be used to obtain the composition field. 

An interesting consequence of the preceding results 
occurs in a binary system in which both phases have the 
same conventional elastic constants. In an infinite single 
component system the Bitter-Crum theorem [16] holds. 
There is no elastic interaction between particles. The 
system is degenerate with respect to particle shape and 
dispersion. In a binary system if the X or 1/'s differ, the 
open system elastic constants would differ even if the 
conventional elastic constants did not. As a result there 
is now elastic interaction between particles that is en­
tirely the result of the compliance due to composition 
changes. 

7. Partial Equilibrium-Local Equilibrium 

When the general conditions for equilibrium are not 
satisfied, the system will tend to equilibrium. The rates 
of various processes are usually so different that in the 
time scale of an experiment we may often assume that 
some processes have reached equilibrium while others 
have not occurred at all. In this section we briefly dis­
cuss these partial equilibria. When processes are too fast 
for thermal and chemical relaxation, we obtain the re­
sults of classical adiabatic elasticity. The relation be­
tween isothermal constant composition elastic coeffi-

dents Stkl and adiabatic elastic coefficients Sijkl is a well 
known thermodynamic result [17] 

(7.1) 

Qij is the thermal expansion coefficient, and C T the heat 
capacity, both at constant stress. 

When thermal and elastic equilibration occur but 
without diffusion or interface motion, we have classical 
isothermal elasticity. Comparing eqs (5.3) and (7.1) we 
note that they are quite similar except that temperatures 
instead of compositional derivatives are used. Thus the 
relationship between adiabatic, isothermal, and open­
system elastic constants is one of increasing equi­
libration first with thermal and then with materials res­
ervoirs. 

Diffusion of some species, e.g., interstitials, often is 
orders of magnitude faster than that of other species. 
Such a partial equilibrium, called paraequilibrium [29], 
is often reached in phase transformations of multi­
component alloys. Only hydrostatic cases seem to have 
been treated. When stresses are important the mod­
ification from corresponding binary interstitial alloy 
problems seems straightforward. 

Interface processes, crystal growth or dissolution and 
grain growth all involve network modification pro­
cesses that may be quite slow. Grain boundary sliding 
may not occur. For calculation of such partial equilibria, 
the corresponding equilibrium equations must be sup­
pressed. Polycrystalline averages of the properties can 
be used to obtain corresponding averages for stress and 
composition fields. 

The most common partial equilibrium occurs when 
all processes except diffusion have relaxed to equi­
librium. The only suppressed condition is that MIK need 
be constant, but MIK remains continuous across all inter­
faces that have reached equilibrium. This partial equi­
librium is called local equilibrium at interfaces. 

Many experiments are done under conditions where 
partial equilibrium is maintained while some or all of the 
remaining variables are observed while they relax to 
equilibrium. The laws of most of the relaxation pro­
cesses have been studied. Interface relaxation is compli­
cated and often nonlinear. On the other hand, heat flow 
in response to thermal gradients is coupled with elas­
ticity and constitutes the subject of thermoelasticity. 
Diffusion in response to non uniformity of the MIK is also 
well understood, regardless of whether the origin of the 
gradients in MIK are from composition gradients, stress 
gradients or interface conditions. The next section ex 
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amines a set of problems involving diffusional equi­
libration under isothermal conditions with local equi­
librium assumed. 

8. Diffusional Kinetics and Creep 

Many problems of diffusion involve stress. In dif­
fusional creep the applied stress is the motivating force 
for the diffusion. Compositional heterogeneity results in 
a self-stress that affects diffusion in a way that is too 
often ignored in the diffusion calculation. As we have 
seen, stress affects the diffusion potential and interface 
equilibrium conditions. It has an effect both on the rate 
and direction of the diffusional flux within each grain 
and on the boundary conditions to the diffusion equa­
tions at each interface. 

Often only some of the effects of stress have been 
considered, or approximations have been made that ig­
nored effects of the same order or larger than the effects 
considered. In this section we will examine the effects of 
stress on ·.diffusion and creep, inside the grains and at 
interfaces, and with both applied stresses and the self­
stresses that arise from the compositional in­
homogeneity. 

We begin with a formulation for multicomponent dif­
fusion that is consistent with our thermodynamic formu­
lation and has the proper in variances with respect to 
arbitrary choices of the species K. We then examine 
problems of inhomogeneous stress when the network is 
unaltered. Much of this was the subject of a recent over­
view [30] in which a hierarchy of increasingly difficult 
problems was discussed. We next turn our attention to 
diffusional network alteration phenomena, such as creep 
and phase change, both under applied stress and self­
stress. Because of the importance of vacancies in this 
problem, interesting phenomena occur even in one­
component systems. We reformulate and simplify the 
general equations to examine a few problems of dif­
fusional creep in a one-component system with va­
cancies. 

8.1 Multicomponent Diffusion in Isothermal 
Network Solids 

As shown in [31] the invariant formulation of substi­
tutional multi component diffusion flux J ( in an iso­
thermal isotropic or cubic network solidS is given by 

.IV 

-J(= "'2:.BIJ grad MJK 
- J=( 

1= I, .. .N. (8.1) 

SThe reference geometry for diffusion is usually the unstressed state. 
With the notation we have used. the fluxes should be noted with a 
prime. Since there is no confusion possible, we shall drop it here. 

BIJ is a mobility, function of composition and stress at a 
given temperature. It has been shown that the Bu are 
independent of the choice of the species K. There are 
(N -I) chemical species plus vacancies. There are 
(2N-1) independent network restrictions on the BIJ 

"'2:.B[I=O 
( 

"'2:.Bu=O 
J 

J=I, ... N 

I=l, ... N. 

(8.2) 

(8.3) 

As a result there are (N -1 Y independent coefficients 
which is the expected number of phenomenological co­
efficients for the diffusion of (N -1) interacting species 
without a network constraint. It is also the number ex­
pected for (N-I) interstitial species. For a one­
component solid with vacancies there is only one term 

(8.4) 

Similarly for the diffusion of a single interstitial species 
there is one term 

(8.5) 

For a two-component substitutional solution there are 
four independent B. With vacancies as the K species the 
M" terms disappear and we have 

with the restrictions that 

Using species 2 as the K species we have the same coef­
ftcients in different combinations with the diffusion po­
tential M 

(8.7) 

The knowledge that B remains the same in various 
formulations should permit flexibility both in gathering 
data and in formulating and applications. 

Stress affects both Band M in the flux equations. B is 
affected by the level of stress alone. We expand about a 
stress state which can be either zero 
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(8.8) 

or some other convenient state TO 

(8.9) 

The gradient of 1W depends on the stress and the stress 
gradient. From the Maxwell eq (4.13) the coefficient of 
the stress gradient is the strain produced by a unit com­
position change 

(8.10) 

which is precisely defined and readily estimated from 
lattice parameter-composition data. For cubic or iso­
tropic cases 

(8.11) 

and 

Strictly this should be at the actual stress, but in most 
cases data for unstressed crystals should be adequate, 
and lead to a linear formulation. Combining (8.1) with 
(8.12) and retaining only terms linear in Twe obtain for 
cubic or isotropic cases 

(8.13) 

The factor pb needs to be introduced since the care 
defined to be dimensionless rather than molar densities, 
where 

(8.14) 

Because diffusion fluxes and gradients are independent 
of the choice of K, AI and the BIJ can be shown also to 
be independent of that choice, but to be consistent the 
DIJ(K} must depend on the choice in the way shown in 
(8.14). To avoid large uncertainties in the DIJ(K} it is 
again clearly advantageous to choose K to be the major 
species, rather than vacancies. 

8.2 Diffusion Without Network Changes 

Conservation of matter is expressed by the equation 

/ aCI d' J 0 Po-+ tv r= . 
at -

(8.15) 

Compositional heterogeneity produces a long-range 
stress field and changing compositions change this field. 
Since stress and stress gradients affect Band M, the 
stress and diffusion equations have to be solved simulta­
neously. It has been common to ignore this mutual inter­
action and to study either the stress resulting from dif­
fusion or the effect of stress on diffusion alone. When the 
ignored effects are small, this is valid, but for most cases 
it is not. 

A straightforward technique for solving the stress and 
diffusion equations has been developed [30]. As in sec­
tion 5 the relationship between elastic stress and an arbi­
trary composition field often remains solvable and can 
be used to eliminate stress from the diffusion equation. 
Plastic stress accommodation would render this tech­
nique invalid. 

A hierarchy of increasingly complicated problems 
was examined for cases of diffusion in binary alloys in 
which there was no applied stress. All stress was due to 
compositional heterogeneity alone. 

The mutual interaction in most cases is a major factor. 
In the case of spinodal decomposition, it can change the 
sign of the diffusional flux and is responsible for the 
metastability between the chemical and coherent spin­
odal [32]. The stress effect is so long ranged that com­
positional heterogeneity can affect diffusion elsewhere. 
Fick's law which states that the flux depends only on 
local gradients is often not valid. Because this stress 
effect is proportional to the local concentration it can be 
neglected in dilute solutions. 

Interface boundary conditions for diffusion in inter­
stitial solutions have been examined for cases in which 
the network is chemically inactive. The boundary con­
dition is a simple continuity of M at a fixed location in 
the reference state. It depends on the level of stress at 
the boundary. For local equilibrium eq (5.7) is applica­
ble. 

8.3 Diffusion with Self-stress and Phase-change at the 
Boundary 

In our previous work [30] on the effect of self-stress 
on diffusion the network was conserved at the bound­
ary. There are many metallurgical problems, such as 
diffusion controlled phase growth, where the network is 
not conserved, but where equilibrium prevails at the 
interface. This equilibrium is governed by eq (5.7) and a 
phase-change equation that depends on the nature of the 
boundary. 

Self-stress is what we call the stress that is the result 
of sample heterogeneity. Generally its value at a point is 
a function of the composition distribution everywhere. 
For special geometries its value becomes a simple ex­
pression involving principally the local composition, 
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and the effects of self-stress on the thermodynamic vari­
ables can be expressed in terms of the local composition 
only reducing self-stress problems to composition prob­
lems. 

One such geometry is the semi-infinite solid with con­
centration fields that are functions only of the distance 
from the surface. We will consider the case of a semi­
infinite couple, with diffusion in a and {3, and an inco­
herent boundary. Under pressure P, the equilibrium 
compositions are ea and cP. When diffusion takes place, 
the compositions are Co and d far away from the bound­
ary, and ea and cP at the boundary (fig. 1). We shall 
further assume, for simplicity, that the pressure P is zero, 
and that the diffusing sample is under zero external pres­
sure. This implies that the tractions are zero at the a-{3 
boundary. We also assume no change of elastic constant 
with composition for either phase. Under these hypoth­
eses, the mechanical equilibrium at the interface, eq 
(3.25), is always fulfilled. Equations (5.7) and (3.24) be­
come, using (4.22) and (4.32) 

and 

l+v
a
T aT a -a uTa] + 2Ea ij ij +C 1') kk 

r,"fJ[ ! vfJ(TfJ)2 1 +v
fJ
T fJT fJ -fJ fJ fJ ] + "0 -2 EfJ kk + 2EfJ ij ij +C 1') Tkk . (8.17) 

At equilibrium under zero pressure, these equations 
become 

(8.18) 

We first have to find the stress field. In a half-space 
specimen, we have found [30] that its trace depends only 
on the local composition 

(8.20) 

(8.21) 

Where Y =E/(I- v). Introducing these values in 
(8.16) and (8.17), and after subtraction of (8.18) from 
(8.16) and (8.19) from (8.17), we obtain the system of 
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Figure I-Compositions in a self­
stressed diffusion couple with an 
incoherent interface. The com­
positions far away from the in­
terface are cg and cg. The self­
stress generated by the 
composition gradient has shifted 
the equilibrium composition at 
the boundary to ca, i..Jl from·their 
unstressed phase diagram values 
ofca , cPo 



equations to solve for eU and (:i3 .As we have seen before, 
it can be solved numerically or, if (eU-co) and (e/3 -d) 
are small, it can be linearized, and the resulting system of 
equations solved by Cramer's rule. 

Under the assumption that there is no normal stress 
across the a-{3 interface, a common tangent construc­
tion is possible (see Appendix 4 for the demonstration). 
To the Helmholtz free energy per mole we have to add 
the elastic energy per mole, which is just a function of 
the local composition. Its value is 

f- VaE 2(-U U)2 
el= I- v 'YJ c -co (8.22) 

where Va is the molar volume at composition Co. The 
construction is shown in figure 2. This type of construc­
tion has been used by Hillert (33] for the case of massive 
transformation, in which it is proper to assume that the 
phase which is forming is homogeneous, and by Purdy 
et al. [34] for diffusion-induced grain boundary mi­
gration. 

8.4 Effect of Vacancies: General Formulation 

When vacancies, in addition to providing a mech­
anism for diffusion, also interact with the stress, and 
provide a means for creating or destroying network at 

>­
<..') 
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0:: 
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an interface, new phenomena appear, in particular dif­
fusional creep. In this section, we consider only one­
component systems, where these effects are not ob­
scured by the phenomena previously described in this 
chapter. We first formulate the creep as a boundary 
value problem and then turn our attention to specific 
creep problems. 

The Partial Differential Equation 

The flux of vacancies I is given by 

(8.23) 

where Bij is a tensor function of the temperature 8, Cv (the 
concentration of vacancies) and the stress. An expansion 
around T =0 gives 

(8.24) 

The coefficient of order 0 is given by 

BZ =D~v(1-cv)IR 8pb (8.25) 

where Dij is the self-diffusion matrix. Usually it is not 
very much dependent on the vacancy concentration. 

The tensors B~ and B ~ being properties of a crys­
talline material follow the rules of crystalline sym-

Figure 2-Common tangent con­
struction that gives the com­
position of figure 1. The un­
stressed free energies (heavy 
lines) are shifted by an amount 
equal to the elastic energy 
VoE'1)' (c -co)2/(l-V) to give 
the light curves. The common 
tangent construction gives c· 
and cPo 
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me tries. For isotropic materials 

(8.26) 

and 

BO=c,(I-c,)DIR 0po. (8.27) 

The tensor B I~kl has the same form as an elastic tensor 
for an isotropic material 

(8.28) 

where {3 and 'Yare two constants. This equation reveals 
that if the tensor Bij is stress dependent. it introduces a 
stress-coupled anisotropy in an otherwise isotropic dif­
fusion coefficient. 

Neglecting second order effects in stress in Mvh that is 
assuming that the elastic coefficients do not depend on 
vacancy concentration, the gradient of the vacancies 
diffusion potential can be written 

If dilute solution laws apply. this equation simplifies into 

(8.30) 

which, for isotropic material becomes 

dC, DV'2 at=s+ c,. (8.35) 

Initial Conditions. The initial conditions consist in a 
given vacancy concentration field. For steady state. 
these conditions are not needed. They are unimportant 
at long times, as long as a steady state can be reached. 
Boundary Conditions. The boundary conditions depend 
of course on the problem that is treated. The most useful 
seems to be given by an equilibrium condition along all 
surfaces of the solid. Written for an isotropic solid. con­
stant elastic coefficients, a reference pressure P = 0 (with 
an equilibrium vacancy concentration c,), dilute solu­
tion behavior, and a reference composition c, =0 for 
strain, this reads (eqs (3.18) and (4.31» 

(8.36) 

or 

R e In(c.lc,)= -PVo( 1 + 1 ~2VTkk +3C.'l').) 

- Vo[ -~ ~(Tkk)2+ I i;TijTij -(l-c,)'f/vTkk ]. (8.37) 

V'MI" =(R Olc,)V'c. - V~"f)V'(trT). (8.31) Since c, ~ 1, these equations can be simplified into 

The conservation equation is expressed as usual 

,ac, J ' P0at + i,i =spo· (8.32) 

The source and sink terms. which is the number of va­
cancies created per unit volume, come, for instance, 
from the vacancy source at a moving dislocation. The 
complete diffusion equation for vacancies is obtained by 
combining [8.23] with [8.32] 

(8.33) 

In an isotropic solution, one gets 

ac, ,,2 DVo"f)" " -=s+Dv c --Rll vCv'VTkk at '17 
(8.34) 

where we have neglected the stress dependence of By. 
When the relaxation of the lattice around a vacancy can 
be neglected, the last two terms of the r.h.s. disappear, 
and one obtains the simple equation 

Because it is the dominant term linear in stress, the 
r.h.s. is usual1y-PVo. Only this term was taken into 
account in Herring's theQry of diffusional creep. We 
shall see in the next section cases where the quadratic 
terms are important for new effects. 

Network modification along the surfaces due to the 
vacancy flux is simply given by 

, (ax: V. J) 0 
ni a,+ ° i = (8.39) 

where the x: are the coordinates of a point of the inter­
face. This equation tells us that the shape of the speci­
men changes as diffusion takes place. due to the vacancy 
creation and annihilation at the surfaces. 

Stress Equilibrium. Up to now we have been concerned 
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with the diffusion equation. Stress equilibrium in this 
quasi-static model obeys the partial differential equation 
(3.13) 

(8.40) 

with proper boundary conditions. In most problems 
they will be given in terms of tractions along the surface. 
It is important to note that, because of the network 
modifications there, they are specified on a changing 
(and usually unknown) surface. 

To specify the problem fully in term of stress, we need 
the Beltrami-Mitchell equations [11,30]. For isotropic 
materials, the expression is 

8.5 Some Creep Problems 

8.5.1 Herring's Classical Problems: 
Diffusional Viscosity of a Polycrystalline Solid 

Let us first show that with Herring's assumptions and 
approximations [18] the equations presented in section 
8.4 become identical to his starting equations. Only 
steady state is considered. There is no volume change 
associated with a vacancy (i.e., the average volume of a 
vacancy is equal to the atomic volume). This implies 
1]=0; therefore the interactions between stress and com­
position appear only in the boundary condition per­
taining to network modification. Furthermore all terms 
nonlinear in stress are neglected, and the reference pres­
sure is zero. The solution of atoms and vacancies is ideal 
(i.e., there is no interaction with vacancies and their 
concentration is very small). Finally, there is no source 
term within a grain. 

With these approximations, the diffusion eq (8.33) be-
comes 

(8.42) 

The expression for the diffusion potential is 

Ml,=J.t~(O)-J.t~(O)+Re In[(l-c,)!c,] (8.43) 

and the boundary condition (8.29) becomes 

J.t~(O)+R e lnc,= -PVo. (8.44) 

Subtracting (8.44) from (8.43), and neglecting In(I -c,), 
one gets 

This is the boundary condition used by Herring (his eq 
(2» for the partial differential eq (8.42) since our P 
equals his -Pzz • The stress equilibrium equation is the 
same, and he implicitly used condition (8.37) to get the 
rate of displacement of the interface (e.g., to go from (3) 
to (4) in his paper). Thus within the assumptions explic­
itly spelled out at the beginning of this section, we re­
cover Herring's equations and boundary conditions. 

His solutions combined a mean field (the average of 
the stress tensor within a grain is equal to the applied 
stress) and a perturbation analysis (the shape of the grain 
does not change as diffusion proceeds). 

The formulation of the problem with fewer assump­
tions is possible using the equations of the previous sec­
tion which contains important additional terms in the 
diffusion eq (8.33) and boundary conditions (8.29). We 
next explore a few problems chosen to illustrate the 
physical consequences of these additional terms. 

8.5.2 Quadratic Effects 

Usually the linear term of the r.h.s. of (8.36) is the 
dominant one, but, whenever the specimen surfaces are 
all immersed in a fluid of constant pressure, this term is 
constant and at steady state does not contribute any 
gradient. Under these conditions the higher order terms 
are the only ones present. We consider two examples in 
which we approximate condition for which P is constant 
over the surfaces of interest. 

The first treated by Roitburd [35] is a pore in a speci­
men under uniaxial stress in which he examined the 
shape change by vacancy fluxes that redistributed mate­
rial around the pore. Other vacancy sinks and sources 
were assumed so far away that fluxes between them and 
pores could be neglected. Because P in the pore is con­
stant, the effects depend entirely on the quadratic terms. 
The result of the calculation is that a spherical pore will 
distort to an oblate spheroid with the minor axis along 
the stress axis. Because this conclusion arises from qua­
dratic terms the same result is obtained regardless of 
whether the specimen is under tension or compression. 

A closely related problem is a long single crystal rod 
of nonuniform cross section under a uniaxial load ap­
plied at the ends. If the characteristic length of the non­
uniformities is short compared to the specimen length, 
we may examine the redistribution of material along the 
lateral surfaces by vacancy flux and ignore the fluxes 
between these surfaces and the specimen ends. Along 
the surface P is again constant. If we assume 'l']v =0 and 
that the elastic constants are independent of c., (8.36) 
becomes 

(8.45) J.t~(0)+R8 lnc y = - Vo[ -~ ~ (Tkd+ I~VTijTij]. (8.46) 
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The r.h.s. is minus the elastic energy of the solid. Let us 
note that the rod is unstable to necking. A small inden­
tation (or any change in cross section) will produce a 
higher stress at its root (or at the minimum cross sec­
tion). Vacancy flux will remove material from the root 
(or at minimum cross section) and deposit it nearby at a 
place of lowered elastic energy. The rod is unstable to 
necking by diffusion creep regardless of whether it is 
under tension or compression. This is the same result as 
Roitburd's pore,which can be considered an internal 
notch. 

This counterintuitive result is consistent with thermo­
dynamics. Consider the work done by the loading sys­
tem, applied force times distance moved. The compli­
ance of a rod with nonuniform cross section increases if 
the rod necks down, and thus the load system does work 
on the specimen. Conversely if the rod were to become 
more uniform under load, its compliance would de­
crease and it would have to do work On the load system. 
This would be in violation of thermodynamic principles. 

Another interesting result of eq (8.46) is the case of a 
uniform rod, in which we again can ignore the ends as 
vacancy sources or sinks. The equation states that for 
1/v =0 and elastic constants independent of Cv the equi­
librium vacancy concentration is a maximum at zero 
stress, and is lowered equally by tensile and compressive 
stresses. This result is again understood if we realize that 
the cross-section will be reduced if vacancies leave the 
system, increasing the specimen's compliance. The re­
sult will be modified if we assume that the elastic con­
stants are a function of Cv and if we let 1/, differ from 
zero, but for small changes it will not affect the sign. 

8,5.3 Balancing Quadratic and Linear Effects. 
The 21T Wedge Disclination 

Linear effects do not automatically dominate qua­
dratic effects. An interesting example where both are 
present and cancel identically is a hollow tube com­
posed of a 21T wedge disclination in which there is a 
pressure difference between the inside and outside of the 
tube. 

To form the 21T wedge disclination we take a rectan­
gular sheet of a perfect single crystal, bend it into a tube 
and weld the seam to insure perfect matching of lattice 
planes (fig. 3). 

At this stage there are tangential compressive stresses 
at the inner surface and tensile stresses at the outer sur­
faces. MI. at the two surfaces is the same because the 
stresses at the two surfaces have the same magnitude. 
Because of this the system reaches a vacancy equi­
librium in this heterogeneously stressed system in which 
vacancy gradients and stress gradients combine to give 
a constant MI v throughout. 

Now apply a pressure difference between the inside 
and outside and permit vacancy flow. It is readily shown 
that in spite of the pressure difference the value of IVllv at 
the inner surface equals that at the outer surface. In the 
presence of the higher pressure at the inside there is a 
change in elastic free energy density, a reduction at the 
inner surface and an increase at the outer surface, and 
vice versa if the sign of the pressure difference is 
changed. The elastic energy is quadratic in the stress, 
but the change in stress due to the imposed pressure 
difference is linear in liP. The result is that the linear 
terms in P in Mh cancel identically the changes in the 
quadratic terms in the tangential stresses. The linear and 
quadratic terms balance identically to give the same M I , 

at the two surfaces. Again an equilibrium is reached in 
which MI. is constant throughout and vacancy concen­
tration gradients compensate for stress gradients. 

This surprising result that the 21T wedge disclination 
will not creep by vacancy flow even when there is a 
pressure difference can also be understood by consid­
ering the consequence of the transfer of an entire plane 
of atoms from the inside to the outside. If we start with 
either of the flat single crystal plates and create the 
disclination we see that the tube is the same whether the 
atom layer is transferred or not (fig. 3). 

9. Summary and Conclusions 

We have reviewed and applied the thermodynamics 
that has been developed for multicomponent mUltiphase 
stressed crystalline solids. We h;ive found equilibria in 
which the solids were neither homogeneous in stress nor 
in composition. We have considered equilibria for three 
types of multiphase contact: solid-fluid, incoherent, and 
coherent solid-solid. We have also examined simple non­
equilibrium cases where potential gradients determine 
diffusion. Diffusional creep in particular was used to 
illustrate the importance of a full thermodynamic treat­
ment. 

Crystalline solids differ fundamentally from liquids in 
that they posses long range three-dimensional trans­
lational order. This implies that we can define a lattice 
and site occupancy. The number density and type of 
sites is known, and a local change in composition can 
only be made by redistributing atoms and vacancies 
among these sites. This fundamental restriction in the 
interior of a crystalline solid introduces important dif­
ferences between the thermodynamics of solids and 
those of liquids. Because these restrictions apply at co­
herent boundaries but not at other boundaries, we find 
different equilibrium conditions at the various bound­
aries. 
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Figure 3 - Radial vacancy fluxe, 
that remove layers from the in­
ner surfaces and deposit them on 
the outer surface of a 2'1T wedge 
disclination do not enlarge the 
disclination and therefore no 
work is done by any pressure dif­
ference. To see this, consider the 
cross section (c) of 2'1T wedge 
disclination made by elastically 
bending the perfect crystal (a) 
into a circular cylindrical shell 
and joining the ends. The 2'1T 
wedge disclination after radial 
diffusion is unchanged because it 
can be made from (b) which is 
identical to (a) except for trans­
lation of bottom layers to top. It 
will therefore reach the same 
equilibrium geometry in the 
presence of the pressure differ­
ences. 

c 

The equations that result from the thermodynamics 
consists of a set of coupled partial differential equations, 
algebraic equations and boundary. conditions for stress 
and composition. For the kinetics, the diffusion equa­
tions are added. Although full nonlinear and large strain 
formulations exist, we have concentrated on examples 
where the essential features were displayed with small­
strain approximations and linearized thermodynamics. 

The thermodynamics has resulted in identifying and 
precisely defining the important phenomenological 
quantities needed for predictive calculation. The defini-

p=o 

tions in particular are important and much of the contro­
versy in the literature is judged to be the result of inad­
equate definitions of quantities. Furthermore the 
necessary data needed for evaluating the equations turn 
out to be computable from classically measured quan­
tities, such as free energies of hydrostatically stressed 
solid solutions, elastic coefficients, and lattice parame­
ters. 

One important method for solving the equilibrium 
equations uses the notion of open-system elasticity. This 
method eliminates the compositiol1' variable from the 
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system of equations, and leaves a purely elastic problem 
to be solved. Central to the method are the open-system 
elastic constants, and in this paper we show that the 
same technique applies to multiphase solid equilibria. 
With this technique a large number of elastochemical 
problems are now solved because they become identical 
to solved problems of chemically . homogeneous elastic 
solids. Once the stress field is known, only algebraic 
equations have to be solved to obtain the composition in 
the solid. As an example of the use of this concept, we 
have solved the dislocation atmosphere (stress field and 
composition field) in an isotropic and a cubic solid, auto­
matically taking into account in a self-consistent way the 
thermodynamics of the solid solutions. Another exam­
ple is the inclusion problem, although we have not 
found in the literature the shapes that satisfy the phase 
equilibrium boundary condition other than sphere, cir­
cular rod, and plate. 

The question of the need for defining separate chem­
ical potentials for each chemical species inside the solid 
has been a subject of controversy ever since Gibbs. We 
hope that wehave shown that problems of equilibria can 
be solved without defining or using them. Gibb's famous 
example of a homogeneously stressed solid which gave 
three different chemical potentials when equilibrated 
with three fluids each at a pressure equal to minus a 
principal stress should alert everyone to the danger of 
attempting a definition. Of course our MI. could be con­
strued to be a chemical potential of the Ith specie, but 
we prefer for clarity to retain the vacancy as the counter 
specie. 

Questions of species that occupy more than one site 
needed to be addressed. As our section 5.6 shows, the 
classical notion of chemical reactions among species on 
different sites very nicely resolves any confusion. Treat­
ing interstitials as atoms occupying sites that are mostly 
empty resulted in a unified treatment and clearly demon­
strated the principle. From this more general treatment 
we showed it is possible to develop a treatment in which 
interstitials require a different and more convenient for­
mulation. 

We have supplemented an earlier overview on the 
effect of self-stress on diffusion by adding boundary con­
ditions that permit phases to grow or shrink at the inter­
face. 

Diffusional creep is an important field in which the 
linearized and simplified treatment of Herring was an 
important first step. However Herring's definitions 
were not precise and this has led to much later con­
fusion. We have presented a detailed derivation of a 
fuller treatment in which each term is fully defined and 
related to the data base. To emphasize the importance of 
the nonlinear terms, which Herring alluded to, but dis-

carded, we gave two examples each of which seems 
counterintuitive but thermodynamically correct: a long 
rod which in compression is unstable to necking by 
diffusional creep, and a tube composed of a perfect 27T 
wedge disclination which does not bulge by radial va­
cancy flux even when there is a pressure difference be­
tween the interior and exterior. The former is a case 
where Herring's linear term is zero and we must resort 
to the quadratic terms, and the latter is a case where the 
linear term identically cancels changes in the quadratic 
terms. The fuller equation contains several other terms 
usually ignored in creep theories that also can become 
important. 

Capillary effects (surface strain and surface free en­
ergy) are not included. A formulation exists for some 
types of interfaces or specific geometries [36,37]. The­
ories of equilibrium of stressed solids with capillarity 
effects for the three types of interfaces considered here 
are being developed [38]. 

Although the elastic energy is usually small compared 
to the free energy change resulting from a composition 
change, there are domains where the interactions of 
composition and stresses are likely to be important. Self­
stresses resulting from the presence of defects or hetero­
geneity of the material can have sizable consequences. 
The depression of the consolute critical point and the 
spinodal is a well known example. In systems without 
critical points coherent equilibrium is also strongly af­
fected. Coherent phase diagram features have recently 
been found [39,40] that differ markedly from incoherent 
phase diagrams. The equations that could be used to 
calculate these phase diagrams have been obtained in 
sections 3 and 4. 

Interesting consequences originate from the long 
range nature of the elastic forces. For instance this intro­
duces non-local effects in the diffusion equation. Under 
hydrostatic pressure, a multi-phase incoherent dis­
persion at equilibrium is degenerate with respect to the 
shape of the phases, i.e., the equilibrium is independent 
of the shape of the precipitates. Under a more general 
state of stress (coherent precipitates, for instance), this 
simple result is no longer valid. The equilibrium equa­
tions have to be solved on an unknown boundary and 
the equilibrium shape is to be determined as part of the 
solution (a so-called free boundary problem). With the 
use of the open-system elastic constants such problems 
can be expressed as a purely elastic problem. The phase 
equilibrium boundary condition is the one that makes 
the problem different from classical elastic inclusion 
problems for which a shape is imposed. The solutions of 
the elastic equation of general shape will not be consis­
tent with the phase equilibrium boundary condition. 
The catalog of the shapes that produce an elastic field 
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that in turn satisfies this condition has not yet been 
found. The introduction of capillarity would modify this 
condition. Work has been done on the subject [41]. 

We are grateful to W. C. Johnson and R. F. Sekerka 
for helpful discussions and criticism. We are especially 
grateful to M. Hillert for questioning the need to treat 
interstitials differently from other species. Out of our 
discussion with him the ideas of section 5.6 evolved. J. 
Hirth kindly called our attention to misprints in [37] 
which have been corrected in this article. 
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Appendix 1. Solid-Liquid Equilibrium Under Hydrostatic Stress 

We consider the case of a substitutional binary solid. In equilibrium with a fluid under hydrostatic 
stress (for instance if it is entirely surrounded by the fluid), the mechanical equilibrium eqs (3.13) and 
(3.14) implies that the stress is equal to 

Tij=-Poij (AU) 

where P is the pressure in the fluid. The stress being uniform, the constancy of the diffusion potential 
implies that the composition is uniform. Therefore the solid is uniform. The boundary condition 

(Al.2) 

can be combined with the equation for the diffusion potential 

(A 1.3) 

495 



to give 

JLf=if +p +P2M 12)VO 

[.LI= if + P - PIM 12) Va 

(Al.4) 

(AU) 

Because the solid is uniform, these expressions are valid everywhere. The quantities on the right hand 
side of (A 1.4) and (Al.5) depend only on the value of the state variables. Let us call them p..f and p..i. 

Elimination of M12 between these two equations gives 

(A 1.6) 

(Al.7) 

and. because of the uniformity. we can multiply by Vo to get the total Helmholtz free energy 

where NI and N2 are the total number of moles of components 1 and 2 respectively. The differential 
off' is 

MI2 is replaced by its value obtained from (A 1. 6) and (A 1.7). Using the definition of p;. and after 
multiplication by Vo• one obtains 

Therefore 

, (aF) J.L2= --
- aN2 V.N[ 

We have recovered all the classical formula for fluid-fluid equilibrium. Despite network constraints. 
a solid under hydrostatic stress behaves as if it were a fluid. 

Appendix 2. The Boundary Conditions for Coherent Phase Change: 
Small Strain Approximation 

The full large strain boundary condition for coherent phase change is [15] 

(A2.1) 

where the same reference state is chosen for both phases. The superscript T stands for transpose and 
F is the deformation gradient. (al '/aF) is the first Piola-Kirchofftensor TR• It is related to the Cauchy 
stress tensor T by 

(A2.2) 
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where J is the determinant of F. In the small strain approximation, the displacement tensor is given, 
to first order in the derivatives Uti, by [11] 

(A2.3) 

where E is the small strain tensor, (eq (3.1)), n the small rotation tensor, and I the unit tensor. To the 
same approximation, its inverse is given by 

(A2.4) 

Using these equations we get 

(A2.5) 

Dropping terms of order U 7,J' and since, for an arbitrary 3 X 3 tensor 

n'-A-n' =n'-AT-n' 

we finally obtain 

(A2.6) 

Since the same reference state has been chosen for a and {3, the following equalities hold 

(A2.7) 

Using (A2.7), (A2.6), and (A2.1) we finally obtain 

(A2.8) 

V,'f'/3 "'M /3+ v,' [ T /3 '/3 '/3 21"\ /3T /3 '/3 '/3] = 0 -~ IKe I 0 - ij ni nj + Uij jk ni nk 

The various terms are seen to be energies per mole of lattice sites. It is then easy to make a change 
of reference volume (like the stress free state for each phase). To the level of approximation used in 
linear elasticity this won't affect the V~ f' terms. But it does affect the terms linear in Tij. 

Appendix 3. Derivation of the Open-System Elastic Stiffness and Compliance Tensor 

All the calculations are done at constant temperature, so that all the partial derivatives are 
understood to be at constant temperature. We first treat the case of a binary solid, then generalize to 
a multicomponent solid. 

A3.1 Binary Solid 

To simplify the notation we take p' to be pl. The differential of the stress can be written 

dTij=(oTij) dEkl+(~) dp' 
oEk[ p' op Ekl 

(A3.1) 

or 
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(aT.) ( aT.) dTij= ..::...::..JLE' dEkJ + M' dM12 a kJ .If 12 a 12 Ek/ 

(A3.2) 

The differential of the diffusion potential is 

dM =(aMI2) dP,+(iJM12 ) dE. 
12 ap' aE.. , I} 

Eij Ij P 

(A3.3) 

Replacing dp' from (A3.3) into (A3.I) yields 

dT.-[(ili) _(~) (oMI2) j(aM12) ]dE 
lj - aEkJ p' iJp' E,I aEy p' iJP/ EO' kJ 

[(~) j(iJM12) }dM + iJP/ Ekl ap' Ekl 12 
(A 3.4) 

and the coefficient of the term dEkl is the (ijkl) component of the open-system stiffness tensor. 
Using the stress-strain relationship (4.14) and the Maxwell relation 

(A3.5) 

one gets 

(iJMI2) C dCijkl(E Ee) 
aEy p' = - ykJ'1lkJ + dp' kl- kJ (A3.6) 

The value of MI2 as a function of Eij rather than Tij is obtained from (4.14) by using 

(A3.7) 

Neglecting strain dependent terms, we finally get 

(A3.8) 

Because of the linearity, we have 

(A3.9) 

where SijkJ are the open-system compliances. Combining (A3.8) and (A3.9) gives 

(A3.10) 

where '1lij are defined by (4.4). 

A3.2. Multicomponent Solids 

We follow the same derivation as above. The differential of the stress tensor is 

(A3.11) 

The differentials of the potentials are 

(A3.12) 
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dpJ can be obtained from this system of linear equation by Kramer's rule 

(A3.13) 

where D is the determinant 

and All is the minor of the (aM1K/apJK) term of D. Replacing dp; by its value in (A3.11) and using the 
Maxwell relation 

(A3.14) 

we get 

(A3.15) 

Using (A3.9), Hooke's law, and neglecting strain dependent terms we finally get 

(A3.16) 

where X is the determinant 

_ 'laMIKI X-po (le] 

and All the minor of the (IJ) term of Xlpb. 

Appendix 4. A Common Tangent Construction 

Let ~k be three unit vectors normal to each other, such that e is the normal to the interface, with 
components ~7. The vectors A k are defined by 

(A4.1) 

Since the determinant I gJ I has the value 1 the system of equations (A4.1) constitute a valid linear 
change of variable. Using the chain rule, we obtain, considering the ~k as fixed 

(A4.2) 

After multiplication by ~J and summation onj one gets 

(A4.3) 

Let us define the free energy r by 
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and it is easy to show that 

The conditions for equilibrium at an incoherent interface (eq (3.24)) can be written 

where quantities such as f are just f I Va, i.e., quantities per mole of lattice sites. 
If the normal pressure is zero, so that Tij nj = 0 it becomes equivalent to 

which together with 

which can then be written 

(A4.4) 

(A4.5) 

(A4.6) 

(A4.7) 

(A4.8) 

(A4.9) 

- -show that elK can be obtained by a tangent construction to ',which, in this case is just equal to f. 
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