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A procedure is described for the calculation of activity and osmotic coefficients which is based upon a 
knowledge of the equilibria in solutl.on and assumed si.ngle-ion activity coefficients. The procedure permits one 
to introduce chemical equilibria of various types (ion-pairing, complexation, hydration, and hydrolysis) into a 
model which can be used to calculate values of the excess Gibbs energy and the activity and osmotic 
coefficients. Both the Debye-Hiickel theory and Pitzer's expression are used to calculate the electrostatic 
contribution to the single-ion activity coefficients. Calculations have been perform~d on aqueous sulfuric acid, 
acetic acid, hydrofluoric acid, cadmium chloride, copper sulfate, and sodium carbonate. Properties which have 
been calculated are the excess Gibbs energy, the osmotic coefficient, the mean ionic activity coefficient, and 
Frank's single-ion activity coefficient function. Agreement between calculated and measured properties has 
been obtained up to molalities of::::: 1.0 mol kg- l 
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1. Introduction 

Equilibrium models have beeu used [1-15]' both for 
the prediction and for the correlation of activity and 
osmotic coefficient data in aqueous electrolyte solu­
tions. These equilibrium models are particularlY appro­
priate when one is dealing with solutions which exhibit 
association, complexation, hydration, or hydrolysis. 
When applied to such solutions, they are superior to the 
use of a model that assumes the electrolyte in solution to 
be a fully dissociated strong electrolyte. A variety of 
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I Figures in brackets indicate literature references at the end of this 
paper. 

approaches has been used in these equilibrium models 
for treating these various types of equilibria in solution 
and for the calculation of the activity and osmotic coef­
ficients. Several different types of functions for the cal­
culation of the electrostatic contribution to the activity 
coefficient of the ions in solution have also been used. 

The purposes of this paper are to 1) describe a pro­
cedure for (a) the calculation of activity and osmotic 
coefficients in aqueous solutions that uses a generalized 
approach for treating the equilibria in solution, and (b) 
the calculation of the Gibbs energy properties, 2) clarify 
the distinction between the stoichiometric and species 
quantities, frequeutly a source of confusion in the litera­
ture, and 3) explore the effects of parameter variations in 
the model on calculated values of the thermodynamic 
properties as applied to several representative types of 
electrolyte solutions. Using the equilibrium model, one 
can also calculate the values of the activity coefficients 
of individual ions. This permits one to then calculate 
values for Frank's [16] single-ion activity coefficient 
function. 
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2. The Model 

A fundamental idea used here is the distinction be­
tween the stoichiometric components of which a system 
is composed and the particle constituents, or species, 
which are introduced to account for the properties of a 
solntion. Stoichiometric quantities will be designated by 
"st" when not otherwise clearly indicated. Species or 
particle quantities will always be designated by a " • " 
placed Over the quantity. For example, for the solution 
formed from 0.1 moles of pure H,SO,(t) and I kg/M, 
mole. of H,O( t), the stoichiometric molality of H,SO, 
is m(H,SO,)=O.1 mol kg-', m(SOi-)=O.1 mol kg-', 

GLOSSARY 

Roman 

a activity 
b constant equal to 1.2 in Pitzer's 

equation 
" hydration number 
m molality/mol kg-' 
n amount or moles of substance 
p pressure 
lik number of moles of species Sik 

participating in a given reaction 
z charge 
A an anion 
Am,A~ Debye-Hilckel canstants; 

Am= 3Arfi= 1.17642 kgl12 mol-lIZ 
at 298.15 K 

B parameter in the Debye-Hiickel 
equation 

C a cation 
J ionic strength 
G Gibbs energy 
K equilibrium constant 
M molar masslkg mol-' 
NSI .lV~ N~, Nk number of species in so1ution, 

equilibria, components, and, re­
spectively, .pecies in the k" equi­
librium 

R gas constant 
S, the j'lr species in the k" 

equilibrium 
T temperature 
X mole fraction 

and m(H+)=0.2 mol kg-' if one views the electrolyte 
as being completely dissociated. However, if one con­
siders the equilibrium: SOl-(aq)+H-(aq)=HS01-(aq), 
adopts a K of 99' for it [17], and uses a Debye-Hiickel 
type expression (see eq (5)) for the activity coefficient. 
of the ions with a B parameter equal to zero, one calcu­
lates m(H+)=0.134 mol kg-I, m(SOJ-)=0.0342 mol 
kg-I, m(HSO:;)=0.0658 mol kg-I, and m(H,S04) =0.0 

! Throughout this paper the activity will always have units of mol 
kg-I, The equilibrium constants, formed. as products and quotients of 
activities, will have units afmol kg-I, or kg mol-I, or, for symmetrical 
reactions, will be dimensionless. For sake of brevity, the uni1s for 
equilibrium constants will be omitted. 

Greek 

Superscripts 

ex 
id 
st 
o 
• 

Subscripts 

a 
c 

e 
i, j, k 

m 
r 
s 
I 
± 
</> 

activity coefficient 
Kronecker delta; B'i = I if i = j, 

Bij=O ifi*j 
Frank's single-ion activity coem-

cient function 
pair~\Vise interaction parameter 
triplet interaction parameter 
ion number 
e"tent of reaction variable 
osmotic coefficient 
rational osmotic coefficient 

excess 
ideal 
stoichiometric 
.tanoord value quantity 
the property of the pure 

substance 
a species quantity 

an anion 
a cation except when used with 

capital Roman N as N, 
see RomanNe 

a species or used as indices; also 
See Nk under Roman 

a component 
see Am under Roman 
a reference cation or anion 
see :.v, under Roman 
water 
mean ionic 
see A. under Roman 
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mol kg-I. Physical quantities other than amounts of sub­
stance can also be viewed as particle quantities. In par­
ticular it is the distinction between G" and GO' which 
forms the basis of the model presented herein. 

The general system to be considered is formed from 1 
kg/MI moles of water and n,(t' =2 to No) moles of 
other components. In terms of a particle model, the 
system can be viewed as being formed from ;'1 moles of 
water and ;',(i=2 to N,) moles of particles or species. 
The amount of water (nl) will always be designated by a 
subscript "I." The components and the species other 
than water will be designated by sUbscripts U I'" and "i," 
respectively, with i and 1'>2. 

Each component I' in the solution is represented as 
CZt'c A Z/'a where C and A are the reference cations and 

V(c VIa 

anions, respectively. The charges of the cations and an-
ions are Zfc and Zta, respectively; the ion-numbers are 
v to and v (,. respectively. It is important to note that the 
choice of reference species is arbitrary; e.g., for a solu­
tion of aqueous sulfuric acid, the reference species could 
be selected as either two H+ ions and one SOl- ion or as 
one H+ ion and one HSO'4 ion. In the former case, 
sulfuric acid would be represented as (H+),(SOl-)1 and 
in the latter case as (H+MHSO')I. While the choice of 
reference species is arbitrary, it will not affect the 
amounts of the various species one calculates given the 
same set of equilibrium constants and allowed spe­
cies.However, as will be seen later, the choice does 
affect the values of several of the stoichiometric thermo­
dynamic properties. 

The Gibbs energy of the solution in the stoichiometric 
representation is given by 

(1) 

where m r is the molality of water in pure water and Gte 

and Gr. are, respectively, the chemical potentials of the 
reference cation and anion of the Eth component in the 
solution. In terms of an equilibrium or species model of 
the solution, the Gibbs energy is given by 

(2) 

If the equilibrium model is accurate, the Gibbs energy of 
the solution calculated using eqs (1) and (2) will be 
identical and the chemical potentials and the activities of 
the i" species will be the same in both the stoichiometric 
and species representations. The development to follow 
will start with a description of the solution in terms of 
the equilibria assumed to be present in solution, an as­
sumed expression(s) for the activity coefficients of the 
solute species in solution, and the calculation of the 
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activity of the water using the Gibbs-Duhem equation. 
It is important to note that there may be several equi­
librium models of a solution which yield agreement with 
calculated properties. Thus agreement between calcu­
lated and measured properties does not, in the absence 
of direct molecular information, prove the correctness 
of the model used. 

The equilibria in solution are described by a series of 
chemical equations: 

(3) 

where Sjk is the j" species in the k" equilibrium, Nk is the 
number of species in the k" equilibrium, N, is the total 
number of equilibria, and Ijk is the number of moles of 
species Sjk participating in a given equilibrium; tjk is pos­
itive if Sjk is a product and is negative if Sjk is a reactant. 
The equilibrium constants are: 

(4) 

where Gjk is the activity of species Sjk' Since OJ is equal to 
the product of the molality of the i" species (m,) and its 
activity coefficient (y,), the complete formulation of the 
equations which describe the equilibria in solution re­
quires that some assumptions(s) be made concerning the 
form of the y,'s (i>2) in solution. In this paper two 
different expressions for the y,'s will be used: 

(5) 

and 

Equation (5) is the Debye-Hiickel equation with an ex­
cluded volume or "ion-size" parameter B in the denom­
inator. Equation (6) is the leading term of Pitzer's ex­
pression for y, [18]; he has set b equal to 1.2. Am and A. 
are Debye-Hiickel constants, where A m =3A.= 1.17642 
kg1l2 mol- l12 at 298.15 K. Equations (5) and (6) can be 
extended by the addition of the expression: 

where Ajj and J.'-ijk are, respectively, the interaction pa­
rameters for pairs and triplets of particles. We shall later 
return to the subject of the extensions of eqs (5) and (6) 
and to several other aspects of the choice of an expres­
sion for y,. It should be noted that I is calculated as 



N, 
I =(1/2) ~ m, z; 

i=2 
(8) 

We have formulated the equilibrium equations using 
an extent of reaction variable g. Thus, the amount of the 
Fh species in solution is given by 

(9) 

where g, is the extent of reaction variable for the k" 
equilibrium and au is the Kronecker delta; r is an integer 
which serves to identify the reference cation and anion 
of each of the components in the solution. The first 
summation term on the right side of eq (9) specifies the 
amount of species i which is formed in the absence of 
any equilibria in solution; the second summation term 
specifies the contributions, which may be positive or 
negative, to the amount of species i in solution from the 
equilibria in solution. If the water is a participant in the 
equilibria in solution, '" must also be calculated using the 
above equation. Hydration numbers can be introduced 
directly using 

N, _ "'='" (eq (9»- ~ h,,,, 
i=2 

(10) 

where '" (eq(9» is the amount of water calculated using 
eq (9) and h, is the number of waters of hydration at­
tached to the i" species. If the water participates in the 
eqUilibria in solution or if hydration numbers are intro­
duced, '" kg-' will not be equal to m f. The m, are given 
by 

i>2 (11) 

The activities of the species are given by 

1>2 (12) 

Thus in a model where hydration is introduced, both m, 
and il, will be affected by changes in both '" and n, (i>2). 

To obtain a numerical solution of eq (4), it is neces­
sary to make some initial guess for the activity of water 
if it is a participant in the equilibria in solution; we have 
generally used a value of unity. Thus, having formulated 
the simultaneous nonlinear eq (4), which neces­
sarily include eqs (8) to (12) and eq (5) or (6), one is left 
with a numerical problem to obtain a self-consistent 
solution of these equations. It is assumed that, while 
such a solution may be difficult to obtain for large sys­
tems, a unique solution does exist and that one now has 

values for I, mj and nj for i>l and for Yi and Gj for i;>2. 
The activity of the water can now be calculated by 

application of the Gibbs-Duhem equation stated in 
terms of excess properties of the species 

(13) 

Use of eqs (J 1) and (13) leads to 

(14) 

It is also necessary to adopt SOme conventions concern­
ing the limits of il, and 7,. The conventions used herein 

N, 

are Gr--+1 and, for i>2, 'Yr--+l as.L mj---,l>O; also, 'Yiid (i;>2) 
1=2 

is defined to be equal to unity'. These conventions, to­
gether with the definitions of the activity il" the activity 
coefficient 7" and the definition of the excess Gibbs 
energy of the i" species given in the following equations 

il,=exp[(G,-G?)/RT] ,i>1 (15) 

,i>2 (16) 

and 

,i>1 (17) 

lead to· 

(18) 

The introduction of eqs (5) and (18) into eq (14) yields 

(19) 

Similarly, one obtains, using eq (6) instead of eq (5), the 
relationship 

We now consider an ideal reacting solution in which 
7, (i>2) is equal to unity at all temperatures, pressures, 

3 This is the convention most frequently used in the description of 
aqueous electrolyte solutions. It is based upon the molality scale. A 
dHTerent convention based upon the mole fraction scale is commonly 
used for the description of non~electrolyte solutions. 
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and compositions and which also allows for the pres- of component E is given by 
ence of both equilibria and hydration in solution. Appli-
cation of the Gibbs-Duhem equation to such a solution 
leads to 'Y t'± =(y tcVtc 

. 'Y tav
t'a)lIvt' (26) 

(21) 

and this in turn with eq (IS) leads to 

N 

Gi'=(;Y-(RTlmt).i ml 
1=2 

(22) 

Since an excess property is defined as the difference 
between the real and the ideal, it follows from eqs (IS) 
and (22) that 

N, 

Enal=Gl'IRT -( ~ m/m t) 
i=2 

(23) 

If the equilibrium model is an accurate representation of 
the solution, al is equal to al' We thus have a procedure 
for the computation of the activity of the water which 
starts with an equilibrium model of the solution and an 
assumed expression for the activity coefficients in the 
solution. Since it is necessary to make an initial guess as 
to the value of the activity of the water, the calculation 
should be repeated using the value of al from the pre­
vious iteration until convergence to within a given toler­
ance in its value is obtained. The (stoichiometric) os­
motic coefficient is calculated as 

(24) 

where mf is the stoichiometric molality of component 
e and Vf is equal to (vr,+v,,). Note that Vf is unity for 
a non-electrolytic component and that, as stated earlier, 
the value of the osmotic coefficient is dependent upon 
the choice of the reference species selected for each 
component in the solution. 

The stoichiometric activity coefficients can be calcu­
lated using the principle that the chemical potential is 
independent of any representation of it. Equating ab to 
aj, the stoichiometric single-ion activity coefficient is 
given by 

(25) 

where ml' is the total stoichiometric molality of the i" 
species in solution. The mean ionic activity coefficient 

As was the case for the osmotic coefficient, the value of 
the mean ionic activity coefficient is dependent upon the 
reference species selected for a given component. 

Other stoichiometric Gibbs energy properties can be 
calculated in addition to the activity of the water, the 
osmotic coefficient, and the mean ionic activity coeffi­
cient of the E" component. Additional properties of the 
water are calculated as follows: 

GI=G?+RT Enal (28) 

')II = a.!XI (29) 

and 

o/x = (E nal)/( e nXI) (30) 

Note that eqs (29) and (30) are definitions of the activity 
coefficient of the water (')II), and of the rational osmotic 
coefficient (o/x), respectively. These two quantities have 
not been frequently used in the literature. The properties 
of the solutes are: 

(31) 

')Ir=exp(G;'IRT) (32) 

(33) 

(34) 

and 

(35) 

where the mean ionic molality of component E is de­
fined as 

(36) 
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Finally, the total properties of the solution are 

(37) 

and 

(38) 

Equation (27) is the stoichiometric analogue of eq (23). 
Equations (29) and (30) are, respectively, the definitions 
of the activity coefficient of the water and of the rational 
osmotic coefficient. The steps used in the overall com­
putational procedure are summarized in figure 1. 

It is interesting to consider the consequences of the 
ideal behavior of all of the solute particles in the species 
representation, i.e., y,= 1 for i>2. Application of eqs 
(21), (23), and (24) to such a solution leads to 

(39) 

Application of eqs (25) and (26) leads to 

'Y t± = (fh,/m,)""(fh,/m,)"" (40) 

If the stoichiometric and species representations are 

the case when there are no chemical interactions (i.e., 
association, hydration, or hydrolysis) present in solution 
and the stoichiometric reference species chosen are the 
only ones present in solution. 

An additional interesting feature of this model is that 
properties of individual ions and species are calculated 
(eq (25». Unlike the stoichiometric properties given in 
eq (24) and eqs (26) to (35), there are presently no experi­
mental data available with which one can compare these 
calculated values. Frank [16] has defined a quantity o± 
characteristic of single-ion properties for a binary elec­
trolyte: 

(41) 

The definition is easily extended to multicomponent sys­
tems as was done for the case of the mean ionic activity 
coefficient (see eq (26» and values of Ot± can also be 
calculated if the equilibria in solution are known. 

An alternative way of viewing this model uses the 
definition of the excess Gibbs energy 

Gex=G_G id (42) 

identical, then 4> and 'Y t± will be equal to unity. This is and its analogue for the species representation 

Figure 1-Steps for the calculation of the amounts of species in solu­
tion and of the stoichiometric Gibbs energy properties of the solu­
tion. 

10. 

12. Calculate the other stoichiometric 
properties, eqs (27) to (35). 

11. Calculate 4> using eq (24) and 'Y ± 

using eqs (25) and (26). 

Make a choice of stoichiometric reference 
species. 

9. If a, is equal to the initial guess of a" go to step 10; 
if not, return to step 6. 

8. Calculate a,=a" eq (23). 

7. Calculate (;1'. using eq (19) or (20). 

6. Solve eqs (4) in a manner self-consistent with eqs (8) to (12) and with 
eq (5) or (6). 

5. Make an initial guess for a;. 
4. Choose an expression for 1" eq (5) or (6). 

3. Specify the values of KK, eq (4). 

2. Specify the stoichiometric amounts of each component in the solution. 

1. Set up the equilibrium eqs (1). 
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(43) of these or any other choices for 1" it does impose one 
important constraint on such a choice, namely that 

Since the Gibbs energy is independent of representation, 
(47) 

(44) or equivalently, 

Similar equations hold for G~', 1'>1. From the defini­
tion of ideality, 

Gjd=Ol+RT I'nm, (45) 

Equations analogous to the foregoing expression and to 
eq (39) exist for the stoichiometric components of a 
solution. Thus, introduction of eqs (22) and (45) and 
their stoichiometric analogues into eq (44) yields 

(46) 

Note that G1 = 01 in the above equation. 
The three terms in { } on the right side of eq (46) 

correspond, respectively. to oe"", ad, and G id
• Inspection 

of the terms for ad shows that the differences between 
these quantities involve two factors: 1) a difference in 
Gibbs energies~ i.e., Gf terms multiplied by llj and ni. and 
2) entropic terms, i.e., the (RTJ.n,l'nm,) terms for the 
solute particles and the (R TJ.m,) terms for the solvent. 
If one views f:?- as the electrostatic or ionic contribution 
to aex, the stoichiometric excess Gibbs energy is seen to 
also consist of energetic and entropic -contributions 
which are formally accounted for with this model. 
While eq (46) could be used to compute GO' directly, it 
is numerically preferable to use the computational 
scheme outlined earlier (see fig. 1). 

In this paper, two different expressions have been 
used for 1, (see eqs (5) and (6». While classical thermo­
dynamics has little to say about the correctness of either 

(48) 

Thus, while it is tempting to try to assign a different 
value of Bar b to each species in a solution in eqs (5) and 
(6), respectively, to do so would violate eqs (47) and 
(48). However, the extension of eqs (5) and (6) using eq 
(7) does not violate this thermodynamic constraint. 
Note that the use of eqs (5) or (6) for 1, does not allow 
for the introduction of specific-ion effects attributable to 
long-range electrostatic interactions. These effects can 
be introduced by the use of eq (7). Specific-ion effects 
attributable to chemical equilibria are accounted forin 
the eqUilibrium part of the model. Expressions other 
than those in eqs (5) and (6) could be used to represent 
the electrostatic part of 1,. 

The long range electrostatic contributions to the 
Gibbs energy properties are introduced via eq (5) or (6) 
and the use of an equilibrium model. Other interactions 
accounted for in this model include: I) chemical inter­
actions, 2) hydration, and 3) volume exclusion effects. 
The attractive chemical interactions are accounted for 
by the use of the equilibrium constants for the processes 
which describe the equilibria in solution. These pro­
cesses can involve ion~pairing, comp1exation, and hy~ 
drolysis. The effects of hydration are accounted for 
either by the introduction of equilibrium constants for 
specific reactions involving hydration or by the use of 
hydration numbers for each species in solution. The use 
of hydration numbers reduces the value of ii, in eq (10) 
which in turn has consequent effects on the mill. Yil aWl 

and other properties. Volume exclusion effects are rep­
resented by the B or b parameter in eqs (5) or (6). Short 
range repulsive forces between particles can also be ac­
counted for using the A,; andlor )l'jk parameters. It is 
worth noting that there are similarities in the effects that 
changes in certain parameters have on thermodynamic 
properties. Specifically, au increased value of B (or b) is 
similar to the introduction of a positive Ajj or P-ijk and also 
to the introduction of hydration effects. Physically this 
should be the case since the excluded volume for a hy­
drated ion is larger than for one that is not hydrated. 
Also, a negative /yj is similar to an association between 
particles i and j. The remainder of this paper will discuss 
the application of this model to several aqueous salt 
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solutions containing representative types of chemical 
interactions. 

3. Results and Discussion 

We now compare the results of calculations using this 
model with experimental data and examine the results of 
perturbing the various input parameters in the model, 
i.e., the single-ion activity coefficient expressions, the 
assumed equilibrium constants, and the assumed state of 

~.---------------------------------~ 

'" a 

<0 
a 

,... 
a 

'" o 

N 
o 

~-"------

ci4----r--~----r---.---~--_r--_,--~ 
0.000 0,085 0.050 0.075 Q.100 0.125 0.150 

molality/ (mol kg -1) 
0.175 0.200 

Figure 2-Clockwise from above, calculated activity coefficients. os­
motic coefficients, and excess Gibbs energies of aqueous H~S04 at 
298.15 K as a function of molality. KA is varied: 99 for the solid line, 
89 for the dashed line, an 109 for the dotted line. Equation (6), 
Pitzer's expression for 1;, was used in calculating each of the 
curves. The ions were considered to be unhydrated. 

hydration of the species in solution. To do this, calcu­
lations have been made on the following aqueous elec· 
trolyte solutions: sulfuric acid. acetic acid, hydrofluoric 
acid, cadmium chloride, copper sulfate, and sodium car­
bonate. 

The results of calculations on aqueous sulfuric acid 
are shown in figures 2 through 4, where the chemical 
equilibrium considered is 

(A) 
a o~ ________________________________ -, 

a 

'" a 

o 

'" o+---~----r----r--~----r----r---.--~ 
0.000 0.025 0.175 0.200 0.050 0.075 0.100 0.125 0.150 

o molality/ (mol kg -1) 
~~~-----------------------------------, 

i\l 
o 
I 

:il 
o 
I 

o 

" N 
I 

i\l 
~+----r---'----.----r--~----r---'---~ 

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200 

molality/ (mol kg -1) 
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o 
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o 
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o ---

0.000 0.025 0.050 0.075 0.100 0.125 0,150 0.175 0.200 

molality / (mal kg -1) 

Figure 3 - Comparison of calculated osmotic coefficients for aqueous 
H2S04 at 298.15 K. The squares are the correlated values of Pitzer, 
Roy, and Silvester [10]. The solid line was calculated using a value 
of KA =99 and Pitzer's expression for'}';. The dashed and dotted 
lines were calculated using the same value of KA and values of B 
equal to zero and 2.5 respectively, in a Debye-Huckel expression 
for y; (eq (5». The ions were considered to be unhydrated. 

The value of KA is 99 at 298.15 K [17]. It is seen that the 
calculated values of l' ±, C/>, and G" are relatively insen­
sitive to moderate variations in KA up to molalities of 0.2 
mol kg-I, However, as seen in figure 3, significant 
changes in the osmotic coefficient are produced by per­
turbing the value of the B parameter. Use of a value of 
B equal to 2.5 in a Oebye-Hiickel expression for "y, (see 
eq (5)) produces good agreement with the experimental 
osmotic coefficients (the squares in fig. 2d) up to a mo­
lality of ",,0.2 mol kg-I. The effects of variations in 
hydration numbers is shown in figure 4. The minimum in 
the osmotic coefficient curve cannot be produced by 
variation in the B parameter, but, as seen in figure 4, a 
minimum is observed when hydration is introduced. 

The equilibrium considered in the description of 
aqueous acetic acid (HAc) is 

H+(aq) +Ac-(aq)= HAcO(aq) ,K = 5.96 X 10' (B) 

For aqueous hydrofluoric acid, the equilibria are 

o o~ ________________________________ -, 

o 

'" o 

o 
s.'" o 

o 

" o 

o 
m 

~~~~~­
~~~~~-

\ ------------~------- ------
\, -----____ v~_v_v ________ -------- ~ 

0+------,------,------.------,------4 
0.0 0.2 0.4 0.6 0.8 

molality / (mol kg -1) 
1.0 

Figure 4-Calculated osmotic coe'fficients of aqueous H2S04 at 298.15 
K in which the extent of hydration of the ions is varied. All three 
curves were calculated using a value of 99 for KA and a Debye­
Huckel expression for Yi with B equal to 2.0. The dotted line was 
calculated assuming that all of the ions were not hydrated. The 
solid and dashed line were calculated, respectively, by assuming all 
three ions (H+, SOl-, and HSO:n to be hydrated with three and 
four waters each. The squares are from the correlation of Pitzer, 
Roy, and Silvester [10]. 

H+(aq)+ F-(aq) =HFO(aq) ,K = 1.44 X 10' (C) 

and 

HFO(aq) + F-(aq) = HF,(aq) ,K=2.71 (0) 

For aqueous cadmium chloride the stepwise equilibria 
considered are: 

,K=85 (E) 

CdCI+(aq) + Cl-(aq) = CdCW(aq) ,K=2.71 (F) 

CdCI~(aq)+CI-(aq)=CdCI3(aq) ,K=0.53 (G) 

and 
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The equilibria considered for aqueous copper sulfate and 
are: 

eu'+(aq)+SOhaq)=euSO~(aq) .K=250 (1) 

euSO~(aq)+SOl-(aq)=eu(SO,X-(aq) ,K =5 (K) 

For aqueous sodium carbonate the equilibria considered 
are: 

,K=2.16X 10-4 (L) 

HeO,(aq)=eO!(aq)+OH-(aq) .K =2.34X 10-8 (M) 
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Figure S-The osmotic coefftcients of aqueous acetic acid at 273. 15 K. 
The squares are the experimental osototic coefficients reported by 
Harris, Thompson. and Wood (21]. The solid curve was calculated 
using a value of KB=5.96X 10-4 which was obtained from the val­
ues of AG"'. Mlo, and Il.e; for process (B) given by Larson and 
Hepler [19]. The soHd curve was also calculated using either Pit­
zer's 'Yj or a Debye-Hiickel Yi where B varied from zero to 2.0. In 
this figure and in all subsequent ones, the ions were considered to 
be unhydrated. 

H,O( t')=H+(aq)+OH-(aq) ,K = I.Ox 10-1' eN) 

All of the above equilibrium constants refer to a tem­
perature of298.15 K with the exception of the value for 
process (B) which refers to 273.15 K. The Gibbs ener­
gies of formation given in the NBS Tables of Chemical 
Thermodynamic Properties [17] were used to calculate 
the above values for eqnilibria (e), (D), (K), (L), and 
(M). The value for process (B) was calculated from the 
data for acetic acid tabulated by Larson and Hepler [19]; 
the values for processes (E), (F), (G), and (H) are those 
given by Reilly and Stokes [12]; and the values for pro­
cesses (I), (J), and (K) are those given by Pitzer [9]. The 
Oebye-Hiickel constants recommended by Clarke and 
G1ew [20] were used in all calculations. 

The results of the calculations are shown in figures 5 
through 9. For acetic acid, since the species ionic 
strength (I) is very low (it has a value of 0.044 mol kg- 1 

at I" = 1.0 mol kg-I), the choice of the expression for 1; 
makes very little difference. Near agreement with the 
experimental osmotic coefficients is obtained to a 
molality of ",0.2 mol kg-I. The difference between the 
measured osmotic coefficients and the calculated ones 
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Figure 6 - The osmotic coefficients of aqueous HF at 298.1 5 K. Values 
of Kc = 1442 and KD=2.63 were used to calculate the solid curve 
together with Pitzer's expression for ri' The squares are from the 
correlation of Hamer and Wu [22]. 
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can be attributed to the formation of dimers and trimers 
of acetic acid [21] and cannot be explained either by the 
introduction of hydration or by the use of different B 
parameters in eq (5) or by the choice of a different 
expression for 'h 

For aqueous HF, CdC!" CuSO" and Na2CO" agree­
ment of calculated with measured properties can be ob­
tained to molalities between 0.6 and 1.0 mol kg-I by the 
variation of the B parameter in eq (5) and, for the case of 
CdCI" using only eq (6) for -ri' Neither the use of eq (5) 
nor eq (6) is able to produce the minima in the calculated 
values of </> or l' ± which is observed for many electro­
lyte solutions. These minima can be produced, however, 
either by the introduction of hydration or by the use of 
eq (7) to extend the equations for -rio It should be noted 
that for Na2CO, solutions the osmotic coefficient does 
not approach the usual limit of unity as m" approaches 
zero mol kg-I; instead it approaches a value of 1.395 
[14]. This is a consequence of eq (39) and the presence of 
equilibria (L), (M), and (N). 

Calculated values of 8± are shown in figure 10. The 
fact that values of 8± for acetic acid and for copper 
sulfate are essentially unity is attributable to a very near 
cancellation of terms in eqs (25) and (36). It should be 
noted that the value of 8± for Na,CO" unlike the other 
0,-__________________________________ -, 
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ci 
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ci 
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systems shown in figure 10, does not approach a value of 
unity as the molality approaches zero mol kg-I; the 
minimum value of 8± for Na,CO, occurs at a molality of 
0.0040 mol kg-I. While there are presently no experi­
mental values of 8± available with which to compare 
our calculated values, this property is potentially mea­
sureable [24]. 

In summary, an equilibrium model for aqueous solu­
tions has several important applications: I) the Gibbs 
energy properties can be reliably estimated at low 
molalities if the appropriate equilibrium constants are 
known, 2) an equation of state can be generated which 
is appropriate for a particular type of solution, 3) 
amounts of species in a given solution can be calculated, 
4) single-ion activities can be calculated, and 5) as was 
done here, effects of variations in the equilibria, state of 
hydration, and electrostatic contributions to the Gibbs 
energy properties can be investigated. A natural exten­
sion of this model is the calculation of enthalplies, heat 
capacities, and volumes of aqueous solutions. 

The author thanks Drs. Graham Morrison, Ralph L. 
Nuttall, and, in particular, Robert H. Wood, for useful 
and stimulating discussions on the topics of this paper. 
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Figure 7 - The activity coefficients of aqueous CdCh at 298.15 K. The 
successive formation constants given by Reilly and Stokes {12] 
were used in doing the calculations. The solid line was calculated 
using Pitzer's expression for yi and the dashed line was calculated 
using the Debye-HiickelYi with B set equal to 2.0. The squares are 
based on the measurements of Reilly and Stoke [12]. 

Figure 8-The osmotic coefficients of aqueous CUS04 at 298.15 K. 
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The squares are the experimental data of Miller et al [231. The three 
curves were obtained using values of K E =250 and Kp =KG =5. 
The solid line was calculated using Pitzer's expression for '5';, the 
dashed and dotted lines were obtained using the Debye-Hiickel 'Yi 
with B set equal to 2.0 and 5.0, respectively. 
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Figure 9-The osmotic coefficients of aqueous Na2C03 at 289.15 K. 
The squares are from the correlation of Vanderzee [14]. The solid 
)ine was calculated using Pitzer's expression for 'Yi and values of 
K L • KM • and KN from reference [17]. The dashed line was calcu­
lated using these same values of K and a Dehye-Huckel y; with B 
equal to 1.0. 
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