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A forced torsional vibration system has been developed to measure the shear storage and loss moduli on 
right circular cylindrical specimens whose diameter can vary from 2 to 9 cm and whose length can vary from 
2 to 15 cm. The method and apparatus arc usable over a frequency range of 80 to 550 Hz and a temperature range 
of-2U°Cto80°C, 
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Introduction 

Many methods exist for the experimental deter- 
mination of the viscoelastic properties of materials. 
Some of these methods have been summarized [1,2]' and 
those that have been used more recently appear in a 
collection of abstracts [3]. The method described herein, 
which uses forced torsional vibrations, is an updated 
version of previous works [4,5]. It was selected because 
it most easily met the requirements placed on the geom- 
etry and dimensions of the sample, a circular cylinder 
whose diameter ranged from 2 to 9 cm and whose length 
ranged to 15 cm. This wide range of sizes is a con- 
sequence of the desire to use the same sample that was 
previously subjected to a different kind of material prop- 
erties' test over a different (higher) frequency range. 
The method and apparatus described subsequently is 
usable over a frequency range from 80 to 550 Hz and a 
temperature range from -20 °C to 80 °C. 

About the Author, Paper: Edward B. Magrab is a 
mechanical engineer in the NBS Automated Pro- 
duction Technology Division. The work on which he 
reports was sponsored by the U.S. Naval Ship Re- 
search and Development Center. 

'Figures in brackets indicate literature references at the end of this 
paper. 

Theory 

Consider the forced harmonic torsional vibrations of 
a right circular cylinder having a frequency-dependent, 
complex viscoelastic shear modulus G*{f)- 
G'{f) +jG"if), where G'(f) is the shear storage modu- 
lus, G"{f) the loss modulus, and/the frequency. If a 
mass with mass moment of inertia / and a torsional 
spring of constant k are attached to one end of the 
cylinder as shown in figure 1, and the other end of the 
cylinder is subjected to a harmonically varying torque, 
then the expression for the angular acceleration re- 
sponse ratio of the top plane of the cylinder to the bot- 
tom plane is given by [4,5] 

^    Mrgp^/^ [C,a*sin(ft*)+cos(ft*)]-'    (1) 
(ACC)BOT   ^ 

where 

^^   In     J 

(2) 
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and 

^ =[CiJcsin(;ic)+cos(x)]cosh()')-C|>'cos(x)sinhO') 

B =:[CiA:cos(.v)-sin(jt)]sinhO')+Cij'sin(A:)cosh(v). (7) 

Thus, if R and 4> are the measured ampHtude ratio and 
phase angle, respectively, and all the physical and geo- 
metric parameters of the specimen are determined by 
other means, then G' and G" can be found using eqs (6) 
and (7). However, because of the complexity of these 
equations, G' and G" cannot be solved for explicity. 
The numerical procedure used to obtain these quantities 
is described in Appendix I. 

As the excitation frequency approaches zero and/</"m 
eq (1) becomes 

APPLIED FORCE 

Figure 1-Geometric description of torsion specimen and attached 
spring and mass. 

x=2Trcos{e/2) ^^ 
p 

2L1 

y =2w sm{6/2) ^BL'tL 

^=tan-'(G"/G') 

(3) 

(4) 

A= 
''b, 

1+- (8) 

where 

j/: (9) 

and G is a nominal value (orp. The range of values for 
Co, in N/m^ for the experimental setup is approximately 
2.5xlO'<Co<2xlO*. Thus for materials with a shear 
modulus of 3x10' N/m^ Ao will vary from a value 
slightly less than r/r^, to a value of approximately 
('■A)/8. 

and p is the density of the cylinder, h its length, b its 
outer radius, a its inner radius, and G"/G' the loss tan- 
gent. The quantity f,„ is the natural frequency of the 
attached spring-mass system with the cylindrical speci- 
men removed. The quantity r, is the distance from the 
center of the axis of the cylinder to the center of the top 
accelerometer, and /-,, is the distance from the axis to the 
point of application of the applied force, which coin- 
cides with the location of the bottom accelerometer. 

Substituting eq (3) into eq (1) yields 

where 

Ao=Re^'^ 

R=\A'+B') "'■ 

i^=Xm-\B/A) 

(5) 

(6) 

Design Considerations 

1. General Requirements 

The general requirements are that 1.) the specimens 
can range in size to approximately 15 cm in length and 
9 cm in diameter; 2.) the shear moduli can be as low as 
SxlO' N/m^; and 3.) the method provides the shear 
modulus over a broad frequency range from 80 to 550 
Hz and temperature range from -20° to 80 °C. 

2. Temperature Considerations 

The temperature requirements place a limit on the 
overall size of the test fixture, for it has to fit into a 
temperature chamber of reasonable size. It also has to 
weigh a modest amount so that one could place it into a 
chamber without the chamber requiring additional 
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structural support. Lastly, in order to operate the vi- 
bration exciters over the temperature range, the exciters 
have to be air cooled/heated with room temperature air 
(20 °C) so that the springs that sustain the exciter's mov- 
ing element retain their desired properties. 

The temperature of the specimen is determined from 
the placement of a thermocouple on the specimen's sur- 
face and is read by a digital output device with an accu- 
racy of ±1 °C. 

3.   Fixture 

According to the theory used to determine the shear 
modulus from the experimentally determined data, the 
specimen should be subjected to torsional motion only, 
with no bending of the specimen. In addition, the fixture 
itself must be free from structural resonances over a 
broad frequency range and for test samples of varying 
length and diameter. The design chosen was a combina- 
tion of certain features of previous works [4,5] and is 
shown in figure 2. 

through a moment arm about the center of the spring of 
radius r^. The displacement due to bending, SB, is 

Sfj - 

and that due to rotation 

''I El 

ST = 
FrlL 
KG 

where G and E are the shear and tensile moduli of the 
spring, respectively, L is its length and / and K are the 
moment of inertia and the torsion constant of the cross- 
section, respectively. The accelerations of the spring are 
proportional to these displacements. Thus a good mea- 
sure of their relative resistance to this unbalanced torque 
is their ratio. Hence, 

SB_     1     (LYK 
sr   (>i\+v)[rj I 

where v is Poisson's ratio. For the "x" cross-section 
shown in figure 1, 

Figure 2-Forced torsional vibration apparatus. 

To minimize bending the top and bottom torsional 
springs have an "x" cross-section, which is very stiff in 
bending compared to its twisting resistance. To show 
this consider a single force F acting on the spring 

Ks^Dt' 

/s- 
12' 

(10) 

Therefore, 

ST   [rj \D (11) 

The bottom spring has the following dimensions: 
L =8.26 cm, /'b=7.46 cm, / =0.32 cm, mdD = 10.16 cm. 
Using these values in eq (11) yields that Sg/sr^OWl. 
Thus, the bending displacements can be expected to be 
on the order of a thousand times less than the desired 
torsionally induced displacements. In the actual system 
two dynamic exciters are used, which eliminates most of 
the unbalanced force. The output force of the shakers, 
however, is not controlled, and it is assumed that the 
same input voltage to both exciters yields approximately 
the same output force. However, because of this great 
difference in stiffnesses, any small imbalance does not 
strongly couple to the system. For the top spring the 
parameters in eq (10) are: La5.08 cm, f =0.0794 cm, 
and Z) = 6.99 cm. Equation (10) now yields 
SB/ST^O.OOOI. 
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The experimental confirmation of the excitation por- 
tion of the fixture's resistance to bending is shown in 
figure 3. The input signal to the shakers was broadband 
random noise. A commercial digital frequency analyzer 
was used to obtain the time-averaged transfer function 
of the input voltage to the shakers to the voltage from 
the bottom accelerometer. The result is shown in figure 
3, The absence of any resonance peaks until approxi- 
mately 680 Hz, except the one directly related to the 
first torsional resonance of spring-mass system, can be 
seen. This indicates that the useful frequency range of 
the fixture is as high as approximately 550 Hz. The 
torsional natural frequency of the bottom spring mass 
system is of no consequence in the experiment because 
the magnitude of the input acceleration is kept relatively 
constant over the entire test frequency range. 

*--s. 
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Figure 3-Transfer function of bottom torsional spring and attached 

4.   Determination of / and f„ 

The top end of the top torsion spring is bolted to a 
movable solid steel cylinder as shown in figure 2. Ac- 
cording to the theory developed previously, this con- 
nection must be rigid compared to the torsion spring 
itself The ratio of the torsional rigidity of the solid 
cylinder, A'^, to that of the torsion spring, K (given by eq 
(10)), is 

Substituting in the appropriate dimensional values for 
the fixture shown in figure 2 yields KJKsW. Thus, the 
assumption of rigidity is a good one. 

Another important consideration is the range of val- 
ues for J, the mass moment of inertia of the attached 
mass. For a given natural frequency of this system the 
specimen, when connected to /, must be able to influ- 
ence both the value of/,, and, more importantly, its 
damping. An indication of the magnitude of the parame- 
ters that influence these properties can be approximately 
determined by assuming that the vibrating system con- 
sists of the inertia / connected to two springs; one is the 
"x" cross-section torsion spring already discussed and 
the other is the spring formed by the torsional resistance 
of the specimen, assuming that its internal damping can 
be ignored in this portion of the analysis, The natural 
frequency of this new system, /„, is then given by 

/;=/„[i+c,]' 

where/„ is given by eq (3) and 

(12) 

C,= Tr(G\{b^)(\ 
l\h) (277/;)' \J (13) 

It is seen that in order for Q to be greater than one, the 
combination of A,/„„ and /must be chosen carefully for 
a given material. Unfortunately the class of materials 
that is to be tested is very weak in torsion; typically these 
materials have a shear modulus of 4 to 15x 10' N/ml 
Consequently the design requires that /, h, and/m be as 
small as possible. There are, of course, some physical 
limitations in just how small / can be made. In the appa- 
ratus shown in figure 2, / = 1,8972 kg-cm^ The com- 
putational procedure to obtain / is given in Appendix II. 

Whereas / was computed, the natural frequency of 
the attached spring/mass system, /„, without the test 
specimen attached was determined experimentally by 
using a digital frequency analyzer in its transfer function 
mode. The excitation was applied with a hammer to one 
of the "ears" (see figs. 2 and A-2) of the top mass. The 
noncontacting end of the hammer had an accelerometer 
mounted to it. The resulting motion of the spring/mass 
was recorded by the accelerometer mounted on one of 
the "ears." Using the zoom capability of the analyzer,/„ 
was determined to within ±0.25 Hz, which, for natural 
frequencies/„> 100 Hz results in an uncertainty of 
0.25% or less. The results for two torsion springs, one 
with t =0.7938 mm and the other ? = 1.588 mm (see fig. 
1) and for two thickness of the accelerometer mounting 
disk (see fig. A-2) are summarized in table 1. From the 
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Table 1.   Values of/„ for four combinations of springs and inertias 

U). 

fjm 

Spring flange 
thickness (mm) 

./ = 18972 kg^cm' 
(hA=6.ii mm) 

i = 2.3652 kg—cm' 
(/i.( = 12.75 mm) 

0.7938 
1.588 

100.75 
283.00 

89.00 
255.00 

discussion in the preceding paragraph it is seen 
that for the weaker class of materials the spring/mass 
combinations resulting in the lower set of/„ should be 
used. 

5.   Specimen Mounting 

In order to mount the specimen concentrically with 
respect to the top and bottom springs and to eliminate 
any pre-twist of the specimen, the technique employed 
used two discs, one 12.3 cm in diameter and attached to 
the bottom "ears" and the other 6.9 cm in diameter and 
attached to the top "ears" (and included in the calcu- 
lation of J), each having on one of its faces a concentric 
raised disk 1.5 mm high and 12.7 mm in diameter. The 
disks are mounted on their respective bell cranks with 
the raised disks facing each other. Prior to mounting the 
cylindrical specimen, the specimen is placed in a lathe to 
have each of its end planes turned smooth and perpen- 
dicular to its axis. In addition, a concentric cylindrical 
depression is turned on each of the end planes that is 1.59 
mm deep and 12.7 mm in diameter. Epoxy is applied to 
each end plane of the cylindrical specimen and the speci- 
men is placed onto the bottom disk. The top spring mass 
assembly is then lowered onto the top of the specimen 
and the epoxy is allowed to cure. 

Instrumentation 

The computer controlled instrumentation system 
used to measure the accelerometers' amplitude ratio and 
phase angle is shown in figure 4. The electrodynamic 
vibration exciters are connected in parallel and receive 
their input voltage from an amplifier with the capacity 
to provide 15A rms into 1 ohm. The input to the ampli- 
fier is connected to an oscillator. The exciters them- 
selves have an impedance of approximately 2 ohms and 
require 5A rms to obtain their rated output force. The 
oscillator's output voltage amplitude and frequency are 
under computer control. 

The accelerometers have a sensitivity of nominally 10 
mV/g and have a unity gain preamplifier built into 

them. The output signals from the accelerometers are 
then amplified 30 dB and passed through two 2 Hz 
bandwidth tracking filters. The tracking frequency is 
provided by a second output signal from the oscillator 
which remains constant at 1 V. This 1 V signal is ampli- 
fied to meet the tracking filter's requirement of 3.5 V, 
The 30 dB gain given to each accelerometer signal pro- 
vides better use of the dynamic range of the tracking 
filters and uses the digital phasemeter in a voltage range 
in which its accuracy is better, namely, at levels above 
50 mV rms. To maintain control over the voltage levels 
throughout the electronic measuring system, the output 
voltage of the oscillator is continuously adjusted so that 
the output voltage of the bottom accelerometer remains 
approximately constant at 2.5 mV rms over the entire 
test frequency range. 

The signals from the output of the tracking filters are 
sent directly to the digital phasemeter and the digital 
voltmeter, both of which are under computer control. 
However, the signals to the voltmeter are read se- 
quentially with the aid of a computer controlled switch- 
ing setup. The phasemeter has an autocalibration feature 
which is employed every sixth measurement to ensure 
that the phase measurements are as precise as possible. 
The digital voltmeter is used in its autoranging mode, 
since the output voltage for the upper accelerometer 
differs widely over the frequency range. 

The purpose for the attenuator (labeled ATTN) is 
discussed in detail subsequently. 

To accurately measure the acceleration ratio of the 
top accelerometer to the bottom one and the phase angle 
between them, one must remove from the measured data 
the infiuences of any electronics inserted between the 
electrical signal at the output of the accelerometers and 
the recording instruments; the digital voltmeter and the 
digital phasemeter. The ultimate accuracy of the mea- 
surement depends, of course, on the accuracy of the 
voltmeter and the phasemeter. In this experiment the 
voltmeter has an accuracy of approximately ±0.2 dB 
for rms voltage above 100 mV and ±0.3 dB for voltages 
less than 100 mV and greater than 100 |j,V over the 
frequency range 1 to 2000 Hz. The phasemeter has an 
accuracy of ±0.1° for rms voltages greater than 50 mV 
and ±0.2° for rms voltages as low as 1 mV from 50 Hz 
to 50 KHz. 

The effects of the intervening electronics are re- 
moved in the following manner. Consider the simplified 
equipment diagram given in figure 5. Let Hj(f) be the 
transfer function of the accelerometer's built-in imped- 
ance converters, Hq the transfer function of the 30 dB 
fixed gain amplifiers, and Hpj the transfer function of the 
tracking filter, where; = 1 refers to the bottom acceler- 
ometer channel and;=2 to the top channel. The true 
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Figure 4—Schematic of complete 
instrumentation system. 
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Figure 5-Simplified version of a portion of the instrumentation sys- 
tem. 

output signals from the accelerometers, Vj, are related to 
the signals appearing at the inputs to the digital volt- 
meter and phasemeter, VRJ, as follows: 

VRJ — Vj Hj fiGj Hftj ,j — \,2. (14) 

Solving eq (14) for the acceleration ratio A^=Vi/V\ 
yields 

Vi   [VR 

where C is a complex quantity given by 

(15) 

(17) 

where | F«2/FRI | is the ratio of the values read from the 
digital voltmeter and <f>R2i is the value read from the 
digital phasemeter. The quantity | C '' | is the correction 
that must be isolated and measured in order to remove 
the influence of the electronic components on the amph- 
tude measurement and <f>f is the quantity that must be 
isolated and measured to remove the influence on the 
phase angle measurement. 

To remove the effects of C at a given temperature, we 
proceed by first removing HGJ and Hfj from the mea- 
surement chain and then performing a back-to-back cal- 
ibration of the two accelerometers. Thus, Fi^Fie'" 
(since one accelerometer is upside down with respect to 
the other) and 

VR2 

C 'Pil-^BB+'T (18) 

Thus, the amplitude ratio and phase angle are, re-    where |FR2/KR,| IS determined directly from the read- 
spectively, ing of the digital voltmeter and ^na directly from the 
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digital phasemeter. A picture of the back-lo-back cali- 
bration fixture is shown in figure 6. 

11 (72-* ^ /' 

HCAHF, 
=A, 

Figure 6 —Back-to-back calibration fisturc- 

We now disconnect the accelerorneters from the mea- 
surement chain and replace them by two signals at the 
same frequency that differ only in amphtude and not 
phase. Thus VxH\=V, and ViHi=Ayi where V, is the 
amplitude of the input voltage to both channels and 
0</l,<l. The attenuation A^ is introduced because of 
the high degree of amphtude and phase nonlinearity of 
the tracking filters, The introduction of the attenuator 
allows the input signals to each channel to be approxi- 
mately equal (to within ±2.5 dB) to each acceler- 
ometer's output signal. In the actual test procedure the 
attenuation A, can be introduced to either channel de- 
pending on whether or not the accelerometer's output 
signal ratio is greater than or less than 1. If the A, is 
switched, then A, is simply replaced by l/A, in the sub- 
sequent results. Equation (17) then yields 

i)2\ = <i>i (19) 

v^ 
K, 

- A, 
BB 

VK2 

K«t 

4> ,=(j) Rl\ — <)>ra — 77 -cf), 

where | F^i/f^'Ki |/ is determined directly from the read- 
ings of the digital voltmeter and i>i directly from the 
digital phasemeter. Using eqs (18) and (19) yields the 
desired result 

(20) 

The test procedures used to determine the quantities in 
eq (20) are done under computer control using a set of 16 
relays. 

In the actual testing of the accelerometer's back-to- 
back response it was found that at a given temperature 
it could be assumed that the accelerometers' relative 
amplitudes are constant over the frequency range of 
interest and that the phase difference was essentially 
zero. In other words ] K/ji/r/jil^B^Cj, a constant and 
(\>„i, =0 in eq (18). The constant C, is determined at each 
temperature at a nominal frequency of 200 Hz. 

The errors associated with the measurement of the 
amplitude ratio and phase angle cannot be easily related 
to the resuhing errors in the determination of the shear 
modulus because of the highly nonlinear nature of eqs 
(5) to (7). Consequently, to get an estimate of the accu- 
racy of the numerically evaluated G' and G", the fol- 
lowing procedure is used. Equation (1) is evaluated over 
a frequency range for an assumed value of G' and G". 
This results in a set of amplitude ratios {A^) and phase 
angles ((|)) as a function of frequency. The set of ^o and 
(|) is then altered by the accuracy of the digital voltmeter 
and phasemeter, and the inverse problem is considered. 
Thus, at a given frequency we change the amplitude 
ratios by up to ±0.2 dB and the phase angle by up to 
±0.3° and solve eq (11) for C and G". This procedure 
was used for/= 1.9 kg-cmV„,= 100 Hz, p= 1000 kg/ 
m', G' = 20xl0* N/m', G'7G' = 0.4, /i 10 cm, b=i 
cm, and a =0. It was found that the percentage errors in 
G' and G"/G' are small (<5%) and asymmetrical with 
respect to the errors in the amplitude and phase at fre- 
quencies away from /„ and large and unequal at fre- 
quencies at or near/m, with the largest errors occurring 
in the loss tangent (±15%). 

Another inaccuracy in the determination of the values 
for G' and G" are errors due to the calculation of / and 
the determination of/,„ in eq (2). Using a procedure 
similar to that done previously showed that the effects 
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of/ and/„ was less than ±3% except at/=l(X) Hz 
where it was ±6%. There are no effects of the errors in 
/ and/m on the ratio G"/G'. 

Results 
The apparatus and computer controlled test pro- 

cedure were used to determine the complex shear mod- 
ulus of an inhomogeneous polyurethane material with 
4% of its volume containing air bubbles. The sample 
was 5.08 cm in diameter and its original height was 10.16 
cm. Several different combinations of measurements 
were made to get an estimate of the variability of the 
complex shear modulus values as a function of slight 
changes in specimen temperature, choice offm, and the 
height of the specimen. To determine the latter effect 
the original 10.16-cm-high specimen was cut into two 
pieces, one 4.8 cm high and the other 4.9 cm high. The 
results are tabulated in tables 2 and 3. 

Using both tables and comparing the results of the 
data in column 1 with those in column 2, those of col- 
umn 3 with those of 4,5 with 6, and those of column 7 
with those of 8, it is seen that the repeatability of the data 
is excellent—typically better than 1 % for both the stor- 
age modulus and the loss tangent, Comparison of col- 

umns 3- 6 of both tables indicates that the effect of a 
choice of/„ also yields a repeatibility of better than 1% 
for the storage modulus and 8% for the loss tangent. 
The large variation in the loss tangent is consistent with 
the results found from the error analysis described in the 
previous section. 

In comparing columns 1 and 2 with columns 3 and 4 
and with columns 7 and 8, it is seen that the change in 
length of the specimen yields results that are within 4% 
of each other. This small deviation is probably due to the 
unequal distribution of the air bubbles within the mate- 
rial. 

Comparing columns 7 and 8 with column 9 shows the 
change in values of the moduli due to the change in the 
test site. Although the loss tangent seemed to remain 
unchanged, the shear storage modulus inexplicably de- 
creased by about 7%. 

The apparatus and test method produce data that are 
self-consistent. In addition, when the results are com- 
pared to values obtained previously from other tests at 
much higher frequencies, but on the same sample, these 
values are what are expected. 

The 4,8-cm-high specimen was tested over a range of 
temperatures from -10 °C to 40 °C with/„, = 100.8 Hz. 
The results are shown in figures 7 and 8 where they 

Table 2,   Variability of the storage modulus (C) as a function of several test parameters. 

1 2 3 4 5 6 7 8 9 

Length (cm) 10T6 10.16 4.8 4.8 4.8 4.8 4.9 4.9 4.9 

/. (Hz) 100.8 100.8 100.8 100.8 89.0 89.0 100.8 100.8 100.8 

Temperature (°C) 24.0 24.2 21.2 21.9 23.2 23.2 21.1 22.3 22.6 

Date 1 Sept 82 1 Sept 82 7 Sept 82 7 Sept 82 7 Sept 82 7 Sept 82 3 Sept 82 3 Sept 82 15 Sept 82 

Time 11:39 12:18 9:36 10:27 14:52 15:49 9:29 11:09 15:11 

Frequency (Hz) G ■ (N/m') 

100 14.28 13.57 15.66 15,52 12.87 

110 14.51 14.45 14.13 14.06 15.33 15,27 18.46 18.32 12.97 

120 14.58 14.53 15.18 15.43 14.84 14,84 16.47 16.48 13.88 

130 14.36 1433 14.51 14.43 14.92 14,91 15.45 15.39 13.38 

140 14.38 1456 14.82 14,66 15.13 15,14 15.49 15.33 13.55 

150 14.65 14.70 15.11 14,97 15.12 15.13 15.70 15.48 14.42 

160 14.93 14.86 15.09 14,91 15.12 15,12 15,62 15.41 1454 

170 15.32 15.25 14.93 14.75 15,22 15.22 15.48 15.30 14.55 

180 15.27 15.11 14.94 14,72 15.34 15,35 15,52 15.30 14..36 

190 15.63 15.57 15.09 14.88 15,46 15.46 15.66 15.49 1447 

200 15.66 15.53 15.11 15.01 15.55 15.57 15,74 15.61 14.54 

210 15.30 15.20 15,82 15.82 15,92 15.84 14.64 

220 15.61 15.52 15.94 15.94 16,05 15.96 14.92 

230 16.26 1618 16,43 16.45 16,30 16.17 15.27 

240 16.54 16.47 16,72 16.70 16,43 16.31 15.18 

250 16.54 16.42 16.96 16.99 16.39 16.27 15.33 

260 16,77 16.64 17,39 17.40 16.63 16.51 15.47 

Test Site: NBS NSRDC 
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Table 3.   Variability of the loss tangent {G"/G') as function of several test parametets. 

1 2 3 4 5 6 7 8 9 

Length (cm) 10.16 10,16 4.8 48 4.8 48 4.9 4.9 49 
/.(H7) 100.8 100,8 100.8 100.8 89.0 89.0 100.8 100.8 100.8 
Temperature (°C) 24.0 24,2 21.2 21.9 23.2 23.2 21.1 22.3 22.6 
Date 1 Sept 82 1 Sept 82 7 Sept 82 7 Sept 82 7 Sept 82 7 Sept 82 3 Sept 82 3 Sept 82 15 Sept 82 
Time 11.-.39 12:18 9:36 10:27 14:52 15:49 9:29 11:09 15:11 

Frequency (Hz) G'/C 

100 .269 ,173 .125 ,140 ,703 

110 ,224 .222 .360 ,310 .184 180 .238 .203 ,406 

120 .229 .227 .302 ,249 .200 .204 .275 .269 ,352 

130 .230 ,226 .250 .249 ,210 ,211 .231 ,237 .320 

140 ,260 ,287 .252 .250 .220 ,220 .240 ,238 .259 

150 ,255 ,263 .254 ,252 .218 ,218 .247 .246 .226 

150 .255 ,256 .256 ,253 ,220 ,220 .254 .252 .217 

170 .241 .244 .253 .252 ,210 ,210 .246 .243 .222 

180 ,253 ,223 .247 ,249 .211 ,211 .235 .230 .237 

190 ,224 .228 .260 ,256 .215 ,215 .237 .232 .240 

200 ,245 .248 .275 .271 .220 ,218 .243 .241 .245 

210 .287 .287 .232 .231 .241 ,241 .249 

220 .303 .302 .245 ,245 .243 .240 ,246 

230 .291 .287 .245 ,244 .242 ,243 ,249 

240 .278 ,275 .241 243 .247 ,248 ,254 

250 .280 .281 .238 .236 .251 .249 ,253 

260 .279 .278 .228 .226 .250 ,250 ,255 

Test Site: NBS NSRDC 
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Figure 7-Shear storage modulus 

of polyurethane with 4% air as a 

function of frequency and tem- 

perature. 

00                  ?00 300 400 

FREQLEN:Y (hz) 

201 



U 

■K- * * * * 
r -If- +  * ^^ •^ Q 

+= 0 °C 

#= 10 °c 

*= 20 °C 

x= 30 °C 

0- 40 °C 

Figure 8-Loss tangent of poly- 
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exhibit the desired properties of high loss tangent at 
decreasing temperatures and of being relatively fre- 
quency independent. Unfortunately, from a rheological 
point of view this material does not exhibit the property 
of time-temperature equivalence and therefore cannot 
be reduced to a composite master curve that would 
effectively produce shear moduli data at a given tem- 
perature over a much greater frequency range than 
shown. 

The assistance of William Penzes, for his design 
and construction of the switching network, 30 dB ampli- 
fiers, and various power supplies and connectors, is 
greatfully acknowledged. 

R. Reitz of the U.S. Naval Research and Devel- 
opment Center obtained the data presented in figures 7 
and 8. 
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Appendix I 

Marquardt's Minimization Procedure 

The values of C and G" are obtained from eqs (6) and (7) using Marquardt's method [6, 7], The 
method will be outlined below and the specific functions for our particular case will be given. 

The Marquardt procedure is an efficient means of minimizing 

S{x)=l[Ux)f^ff (I-l) 

where 

/(x)-f,(x)^g; (1-2) 

and g,(x) are the m (nonlinear) functions of the parameters x(x„ Xj, .. x„) and g,' are the measured 
values. Equation (1-2) states that we are minimizing the sum of the squares of the deviation of the data 
from the functions used to fit these data. In our case, m =2 and « =2. The Marquardt procedure says 
that a good next guess for the value of the parameter x, denoted x+q, can be determined from an 
iterative solution to 

(J^J+?vDia[J^J])q=-J^f (1-3) 

where J is the Jacobian matrix whose elements are defined as 

^=^/(x). (1-4) 

The superscript ^denotes the transpose of the matrix and Dia [...] denotes that the matrix has all zero 
elements except along its diagonal. The left hand side of eq (1-4) must be positive definite and, 
therefore, X must always be chosen so that this side keeps its positive definiteness. The positive- 
definiteness is determined in the solution to eq (1-3) by using the Choleski decomposition of the matrix 
on the left hand side and checking to see that each diagonal term of the decomposed matrix is greater 
than zero, which indicates positive-definiteness. If they are not all greater than zero, the value of K 
is increased by a factor of ten. 

The iterative solution itself is straightforward. Starting with a value of X.=0.1, X is reduced by 
a factor of 2.5 before each step in the solution if the preceding solution for q has given 

S(x + q)<S(x). 

If 

5(x-f-q)>S(x) 
/ 

then \ is increased by a factor of 10. The process is repeated until certain convergence criteria have 
been satisfied. 

For our particular case we have from eq (6) that Xi — G',X2=G",g]=D', and^2=(f>, where, for 
convenience, we defined D'={ri,/ri)R. Since D' and <|) are functions of ;^ and j), which in turn are 
functions of G" and G', it is easiest to use the chain rule for partial differentiation to obtain the four 
elements of the Jacobian matrix. Thus 

/     g.P'   aD' dx    dP' dy 
""aC" dx  dG'^ dy  dG' 

I     aP'    aP'   ax     ag'   iy 
''^dG"" ax  dG"^ dy  dG" 
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d<p      d(^   dx       d<p   dy 
^'^dG'^ dx d'G'^ dy iC 

d<^     i^   dx     a4>   dy 
^^"dG"^ dx dG"    dy dG" 

where 

dP' 
dx 

^^[A'+B'y 

dy L      -r      j 

dX       dx 

. dA      _ dB 
A—+B— 

dy        dy 

d^ 

dx 

dy 

= [A'+B']-' 

= [A'+BY' 

.dB    ^dA 
A— —B— 

dx        dx 

j dB     _, dA 
A— -^B— 

dy       dy 

A and B are given by eq (7) and their derivatives are 

dA 

dx 
= [(Ci — l)sin(x ) + C\X cos(x )]cosh(>' ) + C\y sin(x )sinh(v) 

dA 
— =[CiJcsin(x) + (l — Ci)cos(;t)]sinh_v —Ci y cos(x) cosh {y) 
dy 

dB 
dx' 

dA 
dy 

dB 
dy 

= [CfX cos(;c) + (C| ^ 1 )sin(x )]cosh(v ) + C^y sin(x )sinh(y). 

The remaining partial derivatives are obtained from eq (4). Thus, 

dx 1 
dC 

dx 

'Ip 
2 [xG'-yG"] 

1 
^^=^j^\xG"+yG'] 

dy dx 
dC dG" 

jy__  dx 
dG" dG' 

Returning to eq (1-3) we can now write the solution for q^ and ^2 in terms of the elements of the 
Choleski decomposed matrix Ly as 

q2 = Vi/L22 

where 
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Vi=by/Lu 

LU=VAU 

and 

b\ =J\if\ +Ji\fi 

bi=J\if] +Jiifi 

^„ = (1+X)(/+/) 

A n=^ J \\J n-\~ JuJii 

^22 = (1+X)(/+/) 

When L22>0 the matrix is positive definite. 

Appendix II 

Computation of the Mass Moment of Inertia / 

The total mass moment of inertia, /, is comprised of the following parts: (1) the base of the 
torsion spring; (2) the accelerometer mounting arm, including the accelerometer and the counter 
balance; (3) the specimen mounting plate; and (4) the Allen screw heads. Referring to figures A-1 to 
A-4, the following formulas and numerical values are obtained: 

Torsion Spring Base 

The mass moment of inertia, J^, using figure A-1, is 

where WQ is the weight of the base and is given by 

where p is the density of the base material. For steel, tf'o =0.09548 kg and //, =0.5825 kg —cm'. 

Accelerometer Mounting Arm and Accelerometer 

The mass moment of inertia, /s, using figure A-2 is 
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To = 34.93 mm 

hp = 3.18mm 

TQ  = 34.93mm 

r,   = 22.22mm 

rh  =   2.54mm 

di = 47.63mm 

d2 = 41.28mm 

D   = 19.05mm 

L   = 12.7mm 

HA =   6.35 or 12.70mm 

Figure A-1 Dimensions of torsion spring base. 

© © 

z'h -A - 

Figure A-2-Dimensions of attached mass and top accelerometer's 
mounting position. 

where 

Wo=phALD-7rrl)+W^cc 

and W^Acc is the weight of the accelerometer (2.5 gm). For aluminum, W^c=(6.190X ^0^^)h^ ^g and 
W=(6.0Ux 10^% +0.0025 kg. Then for A., =6.35 mm, Js =0.4680 kg-cm' and for h^ = 12.7 mm, 
/5=0.9360 kg-cm'. 

Specimen Mounting Plate 

The mass moment of inertia, /«, using figure A-3, is 

where 

W,=ph,TTr, 

and 

fVi,=phi,TTTl. 

For aluminum, ^,=0.03307 kg and >F»=0.05355 kg. Then/«=0.7308 kg-cml 

Allen Screw Heads 

The mass moment of inertia, ///, using figure A-4, is, 

JH=4 W,(^Y' +d'^+ W.(^^(rl +r])+di^ 
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Tb = 44.45 mm 

ri = 34.93mm 

ht = 3.18mm 

he =  3.18mm 

L_|.^ 

LARGE SMALL 

h   =   3.18mm 1.98mm 

rd =   2.38 mm 2.38 mm 

fc =   4.37 mm 3.57mm 

d3 = 28.58mm 

Figure A-3-Dimensions of specimen mounting plate. Figure A-4-Dimensions of Allen screw heads. 

where 

and 

Wh=ph7Tr, 

W,=phTr{rl~~r]). 

For the large screws, r, =0.00149 kg and ff, =0.00105 kg. For the small screw, W'j =0.000621 kg 
and fF, =0.000345 kg. Then, for the large screws /« =0.08408 kg-cm^ and for the small screws 
/;,=0.03185 kg-cml The total is 1^=0.1159 kg-cml 

Total Mass Moment of Inertia 

The mass moment of inertia is equal to 

J —JD '\'JS ''TJM +•'W 

For the two accelerometer mounting plates of thickness HA we have: 

/?^=6.35 mm: 
/i^ = 12.7 mm: 

y = 1.8972 kg-cm' 
/ = 2.3652 kg-cml 
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