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Two ultrasonic techniques for reconstructing the internal temperature distribution in metal bodies-time­
of-flight tomography and dimensional resonance profiling-are described. An analysis of the tomographic 
reconstruction of temperature (including ray refraction effects) in a cylindrical body is presented together 
with initial experimental results. Dimensional resonance profiling is a new technique that allows the 
reconstruction of a one-dimensional distribution of temperature in a structure from measurements of its 
resonant frequencies. While time-of-flight tomography is well suited for measuring temperature in a 
cylindrical geometry, a combination of dimensional resonance and (a restricted form of) tomography is the 
best method for measuring temperature profiles in the more practically important rectangular slab geometry. 
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1. Introduction 

The development of a temperature distribution 
sensor would be an important step in improving the 
productivity and quality of metals processing and 
reducing its energy needs. This has been recognized 
by the American Iron and Steel Institute [1]1, and a 
collaborative program of research with the National 
Bureau of Standards has been initiated to develop a 
sensor capable of providing internal temperature maps 
(to within 20 DC) with 20 mm spatial resolution or less 
for a variety of metals processing situations. 
Anticipated applications include measuring the 
internal temperature distribution in steel ingots during 
reheating and monitoring the temperature profile of 
steel strands as they are withdrawn from a continuous 
caster. Because of the limited time available for 
making the measurements, an ideal sensor should be 
capable of reconstructing temperature reliably with a 
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I Figures in brackets indicate references at the end of this paper. 

mmlmum of measurements to avoid interfering with 
production processes. 

We report here on two distinct but complementary 
ultrasonic techniques for reconstructing internal 
temperature in metals and other materials: time-of­
flight tomography and a new method which we call 
dimensional resonance profiling [2,3]. We identify the 
experimental and theoretical advantages and limita­
tions of the two techniques for various geometries 
likely to be encountered in practice, and we propose a 
combination of the two exploiting their particular 
strengths for the most important practical geometry, 
the slab of rectangular cross-section. 
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The measurement of internal temperature by 
tomographic or dimensional resonance methods is 
based on the experimental observation that the 
velocity of sound in metals varies in a predictable way 
with temperature [4]. From room temperature to the 
melting point, the velocity of sound in austenitic steel 
and aluminum alloys decreases approximately linearly 
with temperature with a slope on the order of -1 m 
s-ljDC. A similar behavior is observed for ferritic 
steels, although it is somewhat complicated by the bcc 
to fcc phase change. In the temperature reconstruc­
tions reported below, we have assumed for simplicity 
a linear relation between temperature and velocity 



over the temperature range of interest. However, the 
use of a piece-wise linear relationship, with a change 
in slope over a higher range in temperature to 
approximate the bcc to fcc phase change, was found 
to introduce no serious complications during 
reconstruction. 

2. Time-of-Flight Tomography 

The measurement of the time-of-flight (TOF) of an 
ultrasonic pulse along a path penetrating a steel 
sample, for example, gives the line integral of the 
reciprocal sound velocity along that path. The path 
length divided by the TOF is also the average velocity 
along the path, and in fact could be used simply to 
compute the average temperature along that path. 
However, many TOF measurements over multiple 
intersecting paths, when employed as input to a 
tomographic algorithm, can be used to reconstruct a 
cross-sectional image of the sound velocity within the 
sample. Using the predetermined velocity-temperature 
relationship for the metal, the velocity map may then 
be converted into an image of internal temperature. In 
this section, we consider the application of tomogra­
phy to two simple object geometries-cylindrical 
billets and rectangular slabs-representative of those 
found in metals processing. 

2.1 Cylindrical Billet 

We have, for simplicity, examined the TOF 
tomography problem for a cylindrical steel billet 
under the assumption that the temperature distribution 
is also cylindrically symmetrica1.2 A crucial advantage 
of the assumption of circular symmetry is that the 
number of TOF measurements required for satisfacto­
ry spatial resolution is reduced perhaps two orders of 
magnitude below that of the general case (i.e., under 
no symmetry assumptions). For the symmetrical case, 
the unknown temperature reduces to a one­
dimensional function of radius. This simplification is 
important because a hostile measurement environment 
and time. constraints impose severe limits on the 

2 When the shape of the billet is cylindrical and the boundary 
condition on the surface is symmetrical, this assumption is probably 
quite reasonable if the billet ·has been cooling for a short time. This 
is because heat· flow theory predicts that any initial asymmetrical 
spatial frequency components of the temperature damp out faster 
than the low·order symmetrical components [6]. As a result, the 
temperature tends rapidly toward a symmetrical distribution as the 
asymmetrical temperature gradients attenuate. (We assume 
throughout this paper that the thermal conductivity of the body is 
uniform.) 

number of TOF 
be conveniently and 
processing. 

measurements that 
reliably performed 

2.1.1 Theory 

can 
during 

To measure temperature, our main task is to 
reconstruct the radial velocity profile v(r) of the 
cylindrical billet. The velocity is then converted to a 
temperature profile T(r) using, for example, a linear 
relationship between velocity and temperature of the 
form 

T(r) = To + b[v(r)-vo]' (1) 

where To, Vo and b are experimentally-determined 
constants. 

To recover the radial velocity distribution, a single 
"fan beam" measurement (i.e., paths radiating outward 
from one source and ending at an array of receivers) is 
sufficient. Let T m denote the measured TOF over a 
path L m, as illustrated in figure 1. Suppose TOP 
measurements are obtained over M distinct paths 
penetrating the cylinder. Then 

Tm= r 
JLm 

dl 
v(r) , m=I,2, ... ,M. (2) 

The number M will be small because of time 
constraints and the difficulty in making each 
measurement during processing. Since the angular 
range over which the TOF data are measured may be 
limited and sparsely sampled, an important factor in 
selecting a reconstruction algorithm is how well it 
performs with only limited data. 

With a complete set of path-integral measurements 
T m' a variety of tomographic algorithms could be used 
for recovering v(r). Among these are the convolution­
backprojection, Fourier inversion, and algebraic 
reconstruction techniques (ART) [5]. Convolution­
backprojection, while computationally fast and well 
suited for commercial x-ray tomography, was not used 
here. This algorithm does not generally perform well 
when the data are limited in angle and/or are sparsely 
sampled; severe aliasing artifacts often result under 
these conditions. Fourier inversion is the Fourier­
domain equivalent of convolution-backprojection and 
offers no advantages. 
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A second disadvantage of these "direct" approaches 
is that a priori constraints are not easily incorporated. 
This is undesirable because much a priori information 
is potentially available in the tomographic temperature 
problem, such as surface temperature, or a priori 
bounds on the range of the internal temperature 
distribution or the smoothness (gradient) of the 
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temperature distribution. Another constraint is 
imposed by the thermal conductivity equation, which 
the temperature distribution must obey. Thus, 
reconstructions obtained at different times are not 
independent but are coupled by the heat flow 
equation. If one has a priori information on a 
temperature distribution at some initial time (e.g., that 
the temperature was initially uniform), then it might 
be possible to exploit this information to place bounds 
on the temperature or its gradient at subsequent times. 
We mention other beneficial effects of a priori 
constraints in a later section. 

In contrast, the iterative ART algorithms are 
generally less susceptible to limited-data effects and 
allow incorporation of a priori information. We have 
found, however, that for the cylindrically-symmetric 
problem, for which the number of unknowns is 
relatively small, the complexity of an iterative 
technique is unnecessary. 

For these reasons, none of the above algorithms is 
particularly well-suited for the simple cylindrical 
reconstruction problem. Instead, a "series expansion" 
algorithm was used and found to be both a natural 
approach in terms of imposing constraints (such as 
surface temperature, if known) and an effective way of 
reducing the number of unknown image pixels (or 
basis functions; see below) to an absolute minimum. 
The latter advantage is of fundamental importance 
because it implies a corresponding reduction in the 
number of measurements. 

The series expansion technique consists of 
expanding the unknown profile (i.e., the reciprocal 
velocity) in a suitable set of basis functions, where 
"suitable" means that a truncated expansion (to, say, N 
terms, where N is small) provides a satisfactory 
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Figure I-Cylinder cross·section 
with ray paths diverging from a 
single ultrasonic source. The 
temperature distribution is as· 
sumed to have cylindrical 
symmetry. 

approximation to the unknown profile. That is, we 
expand the reciprocal velocity using N basis functions 
c1>ir): 

(3) 

where {c1>n(r)} is a basis set orthogonal on the interior 
of a circle of radius R (the radius of the cylinder). We 
consider two choices of basis functions below, 
although, for an infinite basis set, any choice would 
suffice to expand l/v(r). However, as noted, the 
choice of {c1>n} will be dictated (in part) by how well a 
truncated series can be made to approximate l/v(r) for 
O<,r<,R. 

Inserting eq (3) into eq (2) and interchanging orders 
of summation and integration gives 

N 

T m= I, an<l>mn' m= 1, 2, ... ,M , (4) 
n=l 

where 

<l>mn= r c1>ir)dl. JLm 
(5) 

Once the basis functions c1>ir) are chosen, the matrix 
elements <I> mn can be numerically computed and stored. 
Our problem then reduces to solving the linear system 
eq (4) for the unknown coefficients an' where the T m 

are measured. Upon solving eq (4) for an' eq (3) gives 
the reconstruction of the reciprocal velocity l/v(r), 
which in turn can be substituted into eq (1) to obtain 



the temperature profile T(r). Generally, to mitigate the 
effect of measurement errors, many more TOF 
measurements (M) than unknowns (N) are desirable. 
In this case, eq (4) will be over-determined, and it is 
natural to compute the pseudoinverse (the minimum­
norm least-mean-square-error solution) of eq (4). To 
illustrate this, write eq (4) in matrix form: 

T=<I>a , (6) 

where <I> is an M by N matrix (M>N), a is the 
N-component coefficient vector and T is the 
M-component measurement vector. Minimizing the 
mean-square-error E=eTe, where e=<I>a-T, results in 
the pseudoinverse of eq (6), given by 

(7) 

where T denotes transpose. 
In our work, two candidate basis sets {cf>J, Bessel 

functions and "ring functions," were studied. Both are 
orthogonal in the sense that 

where N n is a normalization constant. They are 
defined as follows: 

1) Bessel function basis: 

(8a) 

where Jo(') is the zero-order Bessel function and 
kn is the n-th root of Jo(kR) =0. 

2) Ring function basis: 

where 

ringir)= 

cf>n(r)=ringn(r) , 

{
I for rn_1 <r<.rn 
o otherwise, 

and r,,=RnIN, n=O, 1, ... ,N. 

(8b) 

The Bessel basis is a particularly interesting choice 
because Bessel functions are smooth over the circular 
domain, and we recall that the solution to the thermal 
conductivity equation in a cylindrical geometry is also 
given by a Bessel function series [6]. This suggests that 
the Bessel basis is a natural choice for the temperature 
reconstruction problem with circular symmetry and 
that the approximation (3) may even provide a good 
fit when truncated after the first few terms. This is 
because the higher-order terms in the series solution to 
the conductivity equation are exponentially damped 
with time. As a result, after a relatively short cooling 
time, the temperature profile increasingly resembles a 
single Bessel function, in which case only one term in 
eq (3) may be sufficient to approximate the profile. 

The ring basis on the other hand provides a discrete 
or "staircase" approximation to the temperature 
profile, and thus does not provide the characteristic 
smooth temperature profile expected. 

2.1.2 Simulations and Experiments 

In our initial examination of the tomography 
problem, we performed computer simulations of 
temperature reconstructions. The following procedure 
was used: As a first step, we compute a hypothetical 
temperature profile by solving the thermal conductiv­
ity equation for a cooling cylinder. We assume in the 
simulation a thermal conductivity of 304 stainless steel, 
a 6-in-diameter cylinder, and an initially uniform 
temperature of 400°C. Using the velocity-temperature 
relation, eq (1), we convert the radial temperature 
distribution into its corresponding velocity 
distribution. Given this hypothetical velocity profile, 
simulated TOF measurements are generated by 
numerically integrating the reciprocal velocity along 
M propagation paths. These simulated TOF values are 
then used to compute M values of an by direct 
inversion of eq (6), i.e., 

(9) 

In this case, the number of measurements T m equals the 
number of unknowns an' and since <I> is full rank, 
direct inversion is possible. The resulting a is inserted 
into eq (3) to obtain the reconstructed velocity profile. 
The temperature reconstruction is then obtained by 
substituting the velocity into eq (1). When the Bessel 
function basis was used, the computed temperature 
profile was found to be almost indistinguishable from 
the original temperature distribution for cooling times 
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longer than several hundred seconds.3 The values of 
M used usually needed to be no larger than 2 or 3 for 
a good fit, thus confirming our earlier expectation that 
the Bessel basis is excellent for fitting temperature 
profiles, at least for an idealized cooling cylinder and 
after moderate cooling times. 

Unfortunately, the matrix inverse <1>-1 is ill­
conditioned, and on introducing random errors into T m 

on the order of a few tenths of a microsecond 
(corresponding to a 1 :200 relative error), significant 
fluctuations in the calculated temperature profile 
(±50 °C) resulted. The ill-conditioning problem 
became more dramatically apparent when real TOF 
measurements were obtained from a 6-in-diameter 
stainless steel cylinder. This cylinder was initially 
heated to 400°C and TOF measurements were 
generated by exciting 25 ns duration elastic wave 
pulses with a focused 30 mJ pulsed Nd:YAG laser. 
The received pulses were recorded with a PZT 
transducer coupled to the cylinder with a fused quartz 
buffer rod [7]. 

Eleven TOF measurements were made at increasing 
angles away from the cylinder diameter (fig. 1). 
Because of the limits on the accuracy of the 
measurements in this initial experiment, an attempt at a 
direct inversion using eq (9) failed for M> 2. When 
more measurements were used, thereby increasing the 
order of the matrix <1>, the problem becomes 
increasingly ill-conditioned.4 To verify that the 
reconstructed velocity distribution was consistent with 
the measured TOF values, we computed numerically 
the TOF values over each ray path using the 
reconstructed velocity distribution. The computed 
TOF values agreed with the measured TOF values to 
within 0.001 J.Ls or better, thereby confirming that the 
errors are not of a numerical origin, but arise due to 
uncertainty in the measurements themselves. Sources 
of uncertainty include the finite precision in measuring 
the TOF (about ±0.05 J.Ls), as well as other sources of 
error, such as variable grain anisotropy which affects 
wave propagation in the steel. 

3 The ratio between the coefficients multiplying the second and 
first Bessel functions in the series expansion of the heat-flow solution 
is exp(-14.7at/R2

), where a is the thermal diffusivity of the metal 
and R is the cylinder radius. This number gives us an indication of 
how fast the second- and higher-order terms attenuate with time 
relative to the first term, and thus how soon the first term will 
dominate. In our case, a/R2=6.4X 10-4 S-I; letting, for example, 
t=200 s, the above ratio is 0.15. 

4 A singular value decomposition of <I> shows condition numbers 
ranging from 3 to 105 as the number of unknowns varies from 2 to 
11 and depending on the choice of basis functions. The condition 
number provides an upper bound on the amplification of errors in 
the inversion process. 
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Another possible source of error is ray bending due 
to refraction. We show in the Appendix one method 
of estimating the error in a TOF measurement 
contributed by ray refraction. For the small 
temperature gradients encountered in our initial 
experiment (:::50°C/cm), we found that the TOF 
errors due to refraction were quite negligible. Longer 
propagation paths and higher temperature gradients 
could, however, make ray bending effects significant, 
in which case some compensation for refraction would 
be needed for accurate reconstructions. Refraction 
effects in ultrasonic tomography have been discussed 
in the literature, and a first-order correction to the 
TOF due to refraction has been reported [8]. Iterative 
correction approaches have also been proposed [9]. 

It was also found that the ring basis set generates a 
better conditioned matrix <I> than the Bessel basis set. 
Thus, in some sense, the ring functions constitute a 
more "linearly-independent" set than the Bessel 
functions, and as a consequence, the measurement 
errors are generally amplified by a greater factor for 
the Bessel set than for the ring set. Although the 
Bessel basis provides a smoother fit, the ring basis 
evidently has the advantage of improving the 
numerical conditioning of the inversion problem. 

As a next step, the pseudoinverse eq (7) was used to 
compute a smaller number of unknowns (N) than 
measurements (M). Using all 11 measurements and 
solving for far fewer coefficients reduced the ill­
conditioning to some extent, but error amplification 
still precluded solving for more than three coefficients. 

Figures 2a and 2b show reconstructed temperature 
profiles using the pseudoinverse, eq (7), and all 11 
measurements. The squares indicate measured values 
of the internal temperature (±2 °C accuracy) obtained 
with a thermocouple probe.5 In figure 2a, a Bessel 
function basis set was used in which the series 
expansion [eq (3)] was truncated at two terms. In 
figure 2b, the ring basis set was used, again with only 
two terms retained. An attempt to use more than two 
or three terms resulted in a poorer approximation to 
the true temperature profile. 

We suggest two fundamental approaches to 
reducing the degree of error amplification in the 
inversion problem. Increasing the precision of the 
TOF measurement is the first requirement. Faster 
digitization rates, reduced noise and greater receiver 
bandwidth should all contribute to an improvement in 

5 The noticeable difference between the temperature at the surface 
and at the four interior points is probably a consequence of the short 
cooling time of the cylinder (a few minutes), as well as the failure to 
heat the cylinder uniformly prior to the measurements. 
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the temporal resolution in the TOF measurement. We 
estimate that a minimum relative accuracy in the TOF 
measurement of approximately one part in 103 is 
needed for acceptable accuracy (+20 °C) and 
resolution «20 mm) in the tomographic reconstruc­
tion. For the 6-in cylinder used in the initial 
experiment, this represents an error of about 30 ns in 
the TOF. This TOF error corresponds to a path­
length error of 0.15 mm, and so path lengths must also 
be measured to this sensitivity. Since the relative TOF 
error decreases in proportion to the length of the path, 
the longer path lengths expected in larger structures 
will help ease this exacting path-length precision. 

The second approach to reducing error amplifica­
tion is to use regularization or other numerically-stabi­
lizing methods to reduce ill-conditioning. One such 
strategy is to impose a priori constraints on the 
solution. An important example of this is to constrain 
the boundary value to match the surface temperature, 
provided the surface temperature can be measured. 
Simulations demonstrate that such a surface constraint 
is effective in improving numerical stability. Another 
approach is to minimize the mean square error subject 
to a smoothing constraint on the velocity profile, 
which can be regarded as a form of regularization. A 
singular value decomposition of the matrix <1>, 
combined with a judicious elimination of the smallest 
singular values, is also a potentially effective way of 
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Figure 2-(a) Two·term Bessel 
function reconstruction of 
the temperature profile. The 
squares indicate the measured 
temperature. (b) Two·term ring 
function reconstruction of the 
temperature profile. 

improving the numerical conditioning of the inversion 
problem [10]. 

Ill-conditioning of this kind is not peculiar to the 
series-expansion approach to tomography; in fact, 
error amplification is characteristic of all inverse 
problems. In general, when more terms in the series 
expansion (Le., more unknowns) are retained, the more 
ill-conditioned the problem becomes, and the factor by 
which errors are magnified rapidly increases. This 
illustrates a fundamental trade-off between spatial 
resolution and the attainable accuracy in the 
reconstructed temperature. For a given uncertainty in 
the TOF measurements, only a finite number of 
unknowns (Le., terms in the series) can be reliably 
computed. An attempt to compute more than this 
results in an error amplification so large as to seriously 
degrade the accuracy of the reconstructed tempera­
ture. 

2.2 Rectangular Slab 

In this section, we examine the possibility of using 
TOP tomography to reconstruct the internal 
temperature of a slab with rectangular cross-section 
(fig. 3). If the slab thickness is small relative to its 
height and breadth, the temperature gradient will be 
predominantly normal to its larger surface (i.e., the 
isotherms in fig. 3 will run parallel to the x-y plane 
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with the gradient pointing in the z-direction). To a first 
approximation, it is reasonable in this case to regard 
the temperature as a function of z only, with negligible 
variation in the x and y directions. This approximation 
again represents a major simplification in the 
reconstruction problem, because the unknown tempera­
ture profile is now only one-dimensional. 

Unfortunately, if the isotherms run truly parallel to 
the edges, as assumed, a tomographic scheme will be 
ineffective if the sources and receivers are constrained6 

to lie on either side (fig. 3). Line integrals over 
different paths intersecting the parallel layers sample 
the various layers in precisely the same proportion; 
the resulting system of equations is consequently 
linearly dependent, and any attempted inversion to 
recover the different velocities in the parallel layers 
will fail. 

This problem is fundamental, and no tomographic 
algorithm, whether analytical or iterative, will succeed 
here. An equivalent interpretation of the "non­
invertibility" of the measurements is this: With the 
sources and receivers on opposite sides, no 
propagation path lies parallel to the slab surface. In 
reconstruction-from-projections theory, this condition 
defines a so-called "limited-angle problem," and the 
well-known central slice theorem [5] predicts that the 
spatial frequency component corresponding to 
variations in the slab in the z-direction cannot be 
recovered from the limited-angle measurements. In 
particular, propagation along paths parallel to the slab 
surface are required to retrieve this component. 

On the other hand, a limited form of tomography 
may be used if we restrict the possible temperature 
profiles to a particular form or shape. If this shape has 

6 This statement also applies if the sources and receivers lie on one 
side of the slab and the paths are defined by reflecting the pulses 
from the opposite surface. 
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Figure 3-Slab cross-section with sources and 
receivers on opposite surfaces. The isotherms 
are assumed parallel to the surface. 

one undetermined parameter, one TOF measurement 
will suffice to compute it. As an example, suppose we 
assume a symmetrical profile with the shape of a half 
sine wave. That is, if the slab thickness is L, we 
assume a temperature profile of the form 

T(z) = T(O)[l +a·sin(7Tz/L)] , O<,z<,L , 

where T(O) = T(L) is the surface temperature, which, 
for simplicity, we assume can be measured. The 
undetermined parameter, a, can then be recovered 
with a single TOF measurement; we see that the 
center temperature (z=L/2) is T(O)(l +a). 

Finally, an alternative, or complement, to this 
approach is the method of dimensional resonance 
profiling which is capable of recovering the spatial 
variations in temperature in the z-direction. This is 
described next. 

3. Dimensional Resonance Profiling 

This technique represents a novel approach to 
reconstructing a one-dimensional inhomogeneity in the 
elastic modulus and density of a body from 
measurements of its resonant frequencies [2,3]. An 
analysis reveals a simple relation between the 
coefficients of a Fourier expansion of the modulus and 
density and the measured values of the fundamental 
and overtone frequencies. The theory as developed 
thus far treats only the one-dimensional problem, and 
experiments successfully demonstrating the technique 
have been performed to date on a thin brass rod. For 
the case of a slab, the dimensional resonance approach 
should in principle allow one to reconstruct (from 
thickness resonance frequencies) the thickness varia­
tions of the modulus and density, from which the 



velocity of sound may then be computed. The 
thickness velocity profile can then be converted to 
temperature in the usual way. The theory of 
dimensional resonance is outlined below; a more 
complete treatment may be found in [2,3]. 

3.1 Theory 

Consider a one-dimensional object of length L along 
the z-axis, where O<.z<.L. Assume stress-free boundary 
conditions, and that the variations in the modulus and 
density are small relative to their dc components. 
Then the n-th order normal mode (dimensional 
resonance) is approximately 

u(z,t)=Y2/L cos(n7Tz/L)cos(wl) , (10) 

where u(z,t) denotes displacement and Wn is the 
(perturbed) resonance frequency. Represent the spatial 
variations of the linear elastic modulus by the Fourier 
s.:!ries 

co 

ML(Z)=M~+I M:cos(m7Tz/L) , o <.z<.L , (11) 
m=1 

and the linear density pL(Z) by a similar series (the 
superscript L stands for "linear," meaning ML and pL 
have units of modulus and density per unit length). If 
the acoustic damping is small, we can equate the time­
averaged kinetic energy (KE) and potential energy 
(PE) of the structure: 

where €= au/az is the strain and the over-bar denotes 
time average. Substituting eqs (10) and (11) into eq 
(12) gives to first order in small quantities 

i(Mfn+ et..) = 
M~ p~ 

(13) 

where wn=(n7T/L)(M~/p~)1/2 are the resonant 
frequencies associated with the dc values of the 
modulus and density, M~ and p~. 

Equation (13) equates the 2n-th Fourier coefficient 
of the modulus and density to the shift in the resonant 
frequency of the n-th mode. We see from eq (13) that 
by measuring the shifts in the resonant frequencies, we 
obtain the even-order coefficients of the Fourier 
expansion of the inhomogeneity in modulus and 

density. 
One limitation of the dimensional resonance 

technique is that only the even-order Fourier 
coefficients are recoverable; i.e., the anti-symmetric 
part of the variation is not measurable from the 
resonant frequencies alone. A second limitation is that 
the de values of the modulus, M~, and density, p~, are 
not directly measurable from eq (13). However, the dc 
modulus under certain conditions may be obtained 
from a single TOF measurement along the z-direction 
(provided dispersion is properly accounted for), and 
the dc density can be estimated from the mass of the 
object [2,3]. 

The first limitation is potentially the more serious of 
the two. However, when it is reasonable to assume 
that the temperature distribution is symmetrical about 
the center, the dimensional resonance approach is 
potentially effective in recovering the internal 
temperature profile through the short dimension of a 
slab. Dimensional resonance also has the advantage of 
employing relatively low-frequency standing waves, 
and is thus less susceptible to signal-to-noise loss 
arising from high ultrasonic attenuation in hot steel 
with large grain size. This technique is also 
exceedingly well-behaved numerically compared to 
the inherent ill-conditioning of two-dimensional 
tomography. 

3.2 Experimental Result 

Figure 4 shows the reconstructed temperature 
distribution along a brass rod (36 in long with a 
diameter of 0.25 in) heated near its center. In this 
experiment, extensional waves were excited and 
detected in the rod using a noncontact, electromagnet­
ic (eddy-current) transducer at one end; a phased­
locked loop was used to measure the resonant 
frequencies to a precision of several parts in 105

• A 
more detailed description of this experiment can be 
found in [3]. 

The reconstruction in figure 4 was performed using 
the five lowest dimensional resonances. Because the 
actual temperature distribution was relatively smooth, 
the calculated profile from only five terms in the 
Fourier series agreed with the true temperature profile 
to within 5% at all points along the rod. 
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4. Discussion 

We have seen that time-of-flight tomography 
represents one approach to reconstructing the radial 
temperature profile in a cylindrical body. Dimensional 
resonance, as thus far studied, is a one-dimensional 
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technique, but its generalization to two dimensions is 
now under study. The successful extension of 
dimensional resonance to the symmetrical cylinder 
could provide an alternative to tomography in that 
geometry. This success will depend particularly on 
how well the symmetrical resonances can be resolved 
and the difficulty in separating them from the 
asymmetrical modes. 

Although dimensional resonance has been tested on 
thin rods, it has not yet been demonstrated on a slab. 
Owing to diffraction effects within the slab, we expect 
a reduction in the signal-to-nois~ ratio and the 
resolvability of the resonances, but the simple one­
dimensional theory should still apply. If these 
problems are not too serious, dimensional resonance 
may be the method of choice in this geometry since a 
conventional tomographic approach to reconstructing 
the "stratified" slab will fail, as noted earlier. 

On the other hand, the limited tomographic 
approach may be used if we restrict the temperature 
profile to a simple shape with one undetermined 
parameter. This approach fails of course to recover 
the "fine structure" of the temperature profile, if it 
exists. Often, however, it may be reasonable to assume 
that the temperature profile is smooth and 
symmetrical, in which case the limited tomographic 
approach may be sufficient, particularly if an accurate 
estimate of the center temperature is all that is needed. 

Appendix 

To estimate the error in a TOF measurement due to 
ray refraction, consider the ~imple example of a linear 
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velocity gradient in the y-direction: 

(At) 

where vy= av/ay is the velocity gradient and Vo is the 
(constant) velocity along the x-axis. Let the source and 
receiver lie on the x-axis separated by the distance I 
(fi.g. S). In the absence of refraction (vy=O), the pulse 
WIll propagate along the x-axis with TOFo=l!vo. 

For the linear velocity gradient, given by eq (At), 
the refracted path can be shown to be the arc of a 
circle intersecting the source and receive points. 
Defining D as the radius of the circle and 00 as the 
angle between the x-axis and the tangent to the circle 
at the source point (fig. S), the ray path is given by 

y(O) = DcosO--DcosOo (A2) 

x(O)=DsinO+DsinOo , (A3) 

for -00<,0<,00, Snell's law, for the linear gradient eq 
(At), may be written 

(A4) 

Substituting eq (At) into eq (A4) and the resulting 
expression for cosO into eq (A2), gives the relation 

(AS) 
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From figure 5, we also have 

1=2Dsin(}o 

The TOF over the refracted path is 

Dd(} 
v«(}) 

(A6) 

From eqs (A4) and (AS), we have v«(})=DvyCos(}, so 
that 

TOFR 

LIn [1+1!2D] 
Vy l-112D 

(A7) 

Squaring and adding eqs (AS) and (A6) results in 

(AS) 

Assuming D> > I, we can insert eqs (AS) into (A 7) 
and expand the result to first order in liD, giving 

(A9) 
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Figure 5-Refracted ray produced 
by a linear velocity gradient 
increasing in the y-direction_ 

The second term on the. right is the relative TOF 
error due to refraction (to first order in liD). 
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