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A theoretical framework is developed within which it is possible to predict the dynamic elastic
displacement field (acoustic emission) for a phase transformation in which there is a change of both crystal
structure (elastic constants) and shape (density). An integral equation is presented for the acoustic emission
displacement field due to formation of inhomogeneous inclusions. This integral equation is solved by -
expressing the source in multipolar form and using the Eshelby equivalent inclusion method to estimate the
dynamic multipolar coefficients. Expressions for the source of elastic radiation are explicitly calculated for
small isotropic spherical and ellipsoidal inclusions embedded in an isotropic matrix. These expressions are
used for qualitative interpretation of recent experiments on martensitic transformations in steels and for
identifying the information that may be deduced about transformation dynamics from quantitative
measurements of acoustic emission.
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1. Introduction

Acoustic emission (AE) is the term used for the elastic waves generated by abrupt localized
changes of stress in a solid [1]'. The waves propagate from the source of stress change to cause
transient (nano-millisecond) surface displacements of a sample. These transient displacements may
be detected with ultasonic transducers and are known as acoustic emission. Acoustic emission is
then a method for observing rapid dynamic material processes with elastic waves. The slower,
quasi-static changes of stress are not usually considered sources of acoustic emission even though
their surface displacements are incorporated (as a limiting case) in theoretical formulations of
acoustic emission [2]. These static displacements, normally measured with extensometers, are the
basis of routine mechanical property measurements.

Acoustic emission has begun to be extensively explored as a tool for the investigation of the
micromechanisms of deformation and fracture during mechanical testing [3]. It has also found
increasing application as a nondestructive evaluation (NDE) technique for detecting and locating
flaws in mechanical structures that are subjected to stress and the premature failure of which
would have catastrophic consequences [4]. More recently, it is being considered a candidate
technique for in-situ monitoring of materials processing because acoustic emission signals are
emitted through some of the mechanisms by which a material responds to process variables [5].
These mechanisms may include both benign processes (e.g., phase transformations) and malevolent
processes (e.g., cracking).
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It has been speculated that the measurement of acoustic emission from benign mechanisms
during materials processing could provide much needed in situ information about materials
processing. There is current interest in using this information in tandem with recently developed
process models to develop improved feedback-controlled systems for materials processing. (The
malevolent mechanisms of acoustic emission, e.g., cracking, have already received and continue to
attract attention as potential quality control indicators [6]).

As an example of the possible use of AE for phase transformation monitoring, consider some
system where above a temperature 7T phase A is the stable phase and below T, phase B is stable.
Then, for T<T, material composed of the A-phase may lower its free energy by undergoing a
phase change to B. Usually, the new phase has a different crystal structure so that there are
changes of elastic modulus and density as well as a shape change associated with the
rearrangement of atoms in the transforming volume. These changes may generate acoustic
emission or internal stresses which give rise to local plastic flow and subsequent acoustic emission.
If a transducer is used to detect the acoustic emission from such phase transformations, useful
information may be obtained about the temperature, pressure, etc. at which the phase change
occurred [7]. Furthermore, the dynamics and crystallography of the phase change are also
contained—: convolved with the sample and instrumentation impulse response —in the signal. The
use of appropriate analysis methods may enable the measurement of hitherto unobserved aspects
of phase changes. Such measurements would, because of the passive nature of this monitoring
technique, emanate from phase changes unmodified by our attempts to observe them.

The majority of phase transformations occurs at a rate controlled by diffusion. This,
unfortunately, is sufficiently slow (compared with the time for elastic waves emitted by the
transformation to communicate with the sample boundaries) that no detectable
acoustic emission is observed. Thus, diffusion-controlled phase changes, while often
resulting in significant stress changes, cause mainly quasi-static surface displacement and no direct
acoustic emission (as is usually the case with bainite and pearlite formation during cooling of low
alloy steels [8]). In these cases acoustic emission is not a viable candidate for microstructure
control during processing.

There is, however, an important class of phase transformations for which atomic diffusion is
not rate controlling. These include the martensitic transformations in which the change of crystal
structure is accommodated by a so-called “diffusionless” shear transformation. Diffusion, if it
occurs, is over a very short range; of the order of the lattice parameter. The velocity at which the
transformation may propagate varies enormously from one alloy to the next, but in some systems
velocities of ~1000 ms™ have been reported [9]. This implies that the formation of a typical 30 um
length of martensite in some alloys is formed in as little as 30 ns. In this time, elastic waves only
propagate ~0.1 mm and transient sample displacements are observed [8,10] as the sample returns
to mechanical equilibrium.

Despite the reporting by several workers [8,10] of intense acoustic emission during some
martensitic transformations, effects of micromechanism (transformation velocity, volume, etc.)
upon acoustic emission have not been studied. Even during the simpler processes of deformation
twinning, there have only been a few tentative correlations made between micromechanism and
acoustic emission signal [11,12]. A part of the problem has been the absence of a rigorous theory
relating the properties of the dynamic elastic wavefield (acoustic emission radiation) to the
dynamics and crystallography of atomic motions during phase transformation or twin growth. It is
our purpose here to begin to apply recently developed elastodynamic techniques to the prediction
of acoustic emission signals from phase changes and twinning.

2. Theoretical Framework

Consider an idealized transformation to consist of a small region of phase A (with density p
and elastic moduli C) undergoing a change of crystal structure to form a region of phase B with a
density p+Ap and elastic moduli C+AC. We assume that if the region B could be cut out of the
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matrix, its shape would be determined by a linear transformation 8* applied to the original region
of phase A. In elastodynamics, a transformation involving both a change of moduli and shape is
referred to as an inhomogeneous inclusion. The calculation of the dynamic elastic wavefield for
the inhomogeneity problem is complicated by:

¢ Coupling of the wavefields from density and modulus changes.
¢ Internal reflection and mode conversion of elastic waves at the inhomogeneity boundary.
* Doppler effects for high transformation velocity (Z20% speed of sound).

We find the acoustic emission from inhomogeneous inclusions by recourse to certain simplifying
assumptions. We make the assumption that the inhomogeneity is small in comparison with the
wavelengths of interest.” Thus, reverberations within the inhomogeneity are at frequencies above
those of interest. It is also assumed that the linear velocity at which the transformation progresses
through the austenite is 520% of the shear wave speed sothat a sub-sonic approach may be used.
Complications, such as transformation stress induced plastic deformation, twinning of martensite,
autocatalytic phenomena, and polycrystalline anisotropy of the matrix are, for the present, put
aside.

The theoretical framework we use is based upon the equivalent inclusion problem studied by
Eshelby [13] and applied first to acoustic emission by Simmons and Clough [14]. As our starting
point we use eq (A32) from ref. [14] to express the farfield elastic displacement field for an
ellipsoidal inhomogeneity undergoing a self-similar (constant aspect ratio) change of shape. The
ellipsoid volume is V,(f) where Q(r) denotes the region transformed () has the value one inside
the inhomogeneity and zero elsewhere), as shown in figure 1.

Matrix o, ¢

Vo Surface Q

Boundary att, < t <t,

r'e

~— -

Q+AQ,c+Ac

Boundary at t > t,

Figure 1-An ellipsoidal inhomogeneity undergoing a self-similar change of shape.

An elegant and simple way to consider the phase transformation problem is to generalize the
stress and strain tensors to contain both space and time coordinates. We thus have four
dimensional stress and strain tensors:

Oy O O3 =Py Uy Uy Uy Yy
0y Oy Oy =PV u u u v,
[o]] = u On O —Ph and [u;] = 2,1 22 23 2
031 Oxn O3 —PY Uy U3y U3z V3

2 We believe this to be reasonable. For example, if a region 10 um in dimension transforms, its fundamental resonance
frequency will be ~300 MHz. The upper frequency of acoustic emission measurement is normally <10 MHz.
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where v, is the velocity in direction x; and pv; is dynamic momentum. A hat (") above a
subscript indicates the subscript runs from 1 to 4 where 4 represents the time dimension.
The four dimensional stiffness is denoted in the matrix by:

oy = Cyyuy, fori,j,k,/=1,2,and 3
and
Cim = Cisy= —p 847 0.

For the inhomogeneity it is denoted by:

O‘y = (C+AC')IJ/€I uk,l for i,j, k, l = 1, 2, and 3
and

(C+AC); 5 = (CH+AC),4; = -(p+Ap) Oy B

We use the fact that the difference in moduli (AC) between the inhomogeneity and
surrounding matrix is constant over Q(¢) to write eq (A32) in the form:

UnF)=" = [ [ Gy @F t=T)AC i, (', 1)QE,7) dE'dr Term 1
+[ [ G, G t-T)Apu, (& ,7) d dr Term 2
+J Gy @F=T)C+AC) 0 Bl @QF, ) d Fdr Term 3
-IJ G,;@¥ -1)ACy,, B @ 1)dEdr Term 4 6

where:

u,,(t,7) is the displacement at ¥ as a function of time in direction x,, (valid both inside and outside
the inhomogeneity). G,,; (&,¥,?) is the dynamic elastic Green’s tensor representing the displacement
at T in direction x,, as a function of time (¢) due to the application of a force impulse in direction x;
a}’t (',0). The subscript, j, denotes partial differentiation with respect to the x; coordinate.

B° is the preexisting elastic distortion and B*  the stress-free strain for the
transformation; in the phase change problem, the term B (the “plastic velocity” component
which contributes to shape change emission but not that due to momentum) is taken to be zero.

The new elastic distortion is 3°+B7-8* where BT is the total distortion (elastic and plastic).

In eq (1), the acoustic emission is given by the change of stress:

Ao@h) = (C+AC)B +B™-B¥)-C B
C+AC)(B™-B*)+ACB° for Q@ H=1
C3"- B%) for Q(t,)=0 )

It can be seen in eq (1) that the acoustic emission arises from changes associated with the stress-
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It can be seen in eq (1) that the acoustic emission arises from changes associated with the stress-
free strain (term 3), and the interaction of the change in modulus with the pre-existing strain (term
4). These sources act upon the modulus changes (static and dynamic) to create further changes
(terms 1 and 2). It should be clear that eq (1) is very general and describes both the acoustic
emission of the phase transformation and the scattering of elastic waves (8° now time varying)
from inhomogeneities.

A difficulty with eq (1) is that the Green’s tensor depends upon -¥'. Thus, a different Green’s
tensor must be used between each source point and the receiver. To overcome this problem we
approximate the solution to eq (1)—for inhomogeneous transformations of fixed magnitude in the
presence of a relatively constant applied stress—by the use of multipolar expansions. These
simplify the dependence of the Green’s tensor on -1'. If the source is small in size (Z20% of the
shortest wavelength of interest) there is only a small error associated with using a multipolar
expansion obtained by representing the Green’s tensor in a Taylor’s series about 7 the centroid
position. In this exposition we retain only the first term in the expansion, but higher order terms
can easily be incorporated. Equation (1) then becomes:

]
um(?!t)= _AcijkIJ;Gmi,j'(i?(l)xt_T)[f uk,l' (?,,T)dfl]d’r
0 Q

t,
\ +Ap f G, j.(f,?{,,t—r)” g 1) f’]dr
f )

41
4 L Gmi,;.e,?a,r—r)[(c+AC)ﬁk, j B, @ md T-ACu f B @r)d ?’]dr 3
0 (V)

In terms of the Heaviside Green’s tensor G” (displacement at %,¢ due to a stepfunction in force
at ¥,0) we can express eq (3) as:

t
t d )
+ ["anen g ap [ e
)

4 ’
N f Gy totr) 2 [(c+ AC)yu f B @) -ACyq f B;,(f',r)df]dr @
t Q

Equations (3) and (4) have the physical interpretation that the acoustic emission at T, is
obtained from a dynamic multipolar source (in our truncated expansion considered dipolar) at the
inhomogeneous inclusion. When an inhomogeneity is present, the magnitude of the source has a
“feedback” component on the right hand side of the equation. It is this feedback component that
complicates the inhomogeneity problem.

The solution to this integral equation is still not possible unless recourse is made to a final
simplifying approximation. The one commonly used in scattering problems, the Born
approximation, consists of replacing 4 on the right hand side of eq (1) or eq (4) with the values of
U obtained from eq (1) without terms 1 and 2 (the homogeneous problem). We feel this weak
scattering approximation is less appropriate here because of the large differences in modulus that
may occur between the inhomogeneity and matrix.
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Once it is recognized that the source appears to be a force multipole located at the centroid of
the inclusion, we can use information about the static case and the assumption of ellipsoidal shape,
which has not yet been needed to approximate the value of the source strength. To understand
how we apply such a quasi-static approximation, consider a point outside but near the ellipsoid (2.
Suppose we were to stop the growth of the inhomogeneity at some time ¢*. Then, after a short
time, the longitudinal and transverse wavefronts generated by the dipole before #* would pass
through the point and from then on the point would only experience the static displacement
agsociated with the presence of a static multipolar force combination.’ Thus, the multipolar density
M(t t*) describing the dynamic motion must be consistent with that of the static case, M°°(t*) ie.:

Lim M%) = M*(t%)
t—)tl

where it is assumed that ¢, is sufficiently greater than ¢* that the process “comes to rest.” The
physical distinction between M(t t*) and M*®(¢t*) arises from the feedback effects of the growth
dynamics and multiple reflections within the ellipsoid. We shall ignore these dynamic feedback
effecﬁs and correct only for those feedback effects produced by the static component of the dipole
field.

To obtain the static correction, i.e. the value of M""(t*), we know that B* has a fixed value
throughout Q@). We assume B to be fixed and constant in the region of {(7) and recall that
Gk ) = le G”(f To,?). Then, we replace G* by G* in eq (4) and integrate the source terms
with respect to tlme to give:

U@ =G, (F, )[(C+AC),,M/3 a(t¥) ~AC,(BoV o)+ f ﬁ’,t*))] a¥ ®)

The solution to this problem is well known from the equivalent inclusion method of Eshelby
[13]. In fact, for an ellipsoidal region, u;; is constant over the ellipsoidal region if B* and B are
also constant (it is also true that it is a polynomial in ¥, if the strains are polynomials in #'). The
effective dipole density associated with the inclusion can then be easily derived.

Using a six-dimensional vector terminology (such as the Voight convention) where vectors
are symmetric 3 X 3 matrices, one can easily show that (now replacing #* by ?):

Ao ())=[1+AC DI'[(C+AC)B*-AC B°1Va(0) (62)

and

Ao, =0 ° (6b)

3 If the body in which this occurs has external boundaries (either free surfaces or regions of different p) then wavefronts
are reflected from the boundaries and will pass through both our chosen point and the surface of the ellipsoid. We ignore
the effect of these reflected wavefronts on the acoustic emission from the inhomogeneity.

*In ref. [14] a slight extension of this assumption, called the retarded density approximation was developed. In that
assumption, the expanding ellipsoid was broken into two regions, an inner region, in which the full static feedback
correction is applied, and the outer “shell” region of the ellipsoid, in which no feedback correction is applied.

> We have already assumed B8;,=0. The only term that might then contribute to Ao would arise from the
term Ap [ qu(F'7)d¥ which occurs in eq (3). Here, we have ignored this term, which arises from momentum effects
associated to density changes in the inclusion. An alternate approach, analogous to the Born approximation, would be to
modify the value of § as calculated from eq (6) by including its own “homogeneous” dynamic density contribution.
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where

u, (&)= Ltém,.,,(f,f;,,t-r)lTr,,(f)dr = E G ',:,.J(?,f{,,t—f)xg',-j(f)dr (72)
0 %
Dy = $Dyu+Dy) (7b)
Dp= 248 [ (G0 r+G O EleETds (70
1€l =1
Gu(®) = [Cpifl” (7d)
For an elastically isotropic spherical inclusion [15]:
D= %’—1 [aika,.,+s,.,s,.k- S(llj (8,54 B ,.,+5,.,ajk>] (Te)

and for the disc shaped anisotropic inhomogeneity with disc unit normal ¥ [16]:

Dy, = 3vy, ij(‘_;) +vy, G )

i

For an isotropic matrix, eq (7f) becomes:

~ 4\ vy, . + ViV + ViV ] ( a)
Dyy = 1 [ ot (8 +p«)vjvj by A+ vy pdy+A+wvy,  pd Ay,

so that, for instance, if v, =8;

= 0i38,30,58,
ikl —

A2p

and [I+AC D] arises from the inverse of the Voight matrix:

A+2p O 8C133 0 0 0
1 0 A+2n  8Cyy 0 0 0
0 0 A+2p+ACy,; O 0 0
A2p 0 0 8C a3 A+2u O 0 |
0 0 8C a5 0 A+2n 0O o
0 0 8Cys 0 0  A2u (8b)
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3. Discussion

The theoretical framework outlined above has several consequences for those interested in
studying the dynamics of twinning and martensitic phase changes. The above model shows that
the acoustic emission signal contains information about six properties of a martensitic
transformation (or twin):

Volume of region transformed (of martensitic lath)
Dilatational strain

Shear/rotational strain

Habit plane

Internal stress magnitude (through its interaction with AC)
Duration of the reaction

SR e

In fact, from eq (6)

Ac()=[I+AC DI [(C+AC)B*-AC BNV,

Ignoring directionality and concentrating upon the magnitude of the stress components of a
dipolar source, we see that acoustic emission is proportional to the volume of material that
transforms and is linearly related to the transformation strain and pre-existing (residual) stress. If
AC is sufficiently small we can ignore the terms in AC leaving the simple relation for acoustic
emission in a homogeneous medium:

Ao()=C B*V (). ©)

Returning to the example in the introduction, we can now enumerate some potential
applications for acoustic emission during the phase transformation: 1) If the transformation is
accompanied by cracking one should find it possible to distinguish Ao- signatures of cracking from
those of the transformation itself. 2) It should also be possible for one to distinguish between
different morphologies of martensitic (lath, plate or needle) based upon their different V,
distributions. 3) If one monitors a local area in the material one could observe the evolution of
residual stress. 4) Under “ideal measurement conditions” one can directly deduce the shape
change tensor and habit plane dynamically and perhaps gain a deeper understanding of
autocatalytic phenomena in which secondary martenstic transformations (with possibly different
habit planes) are stimulated by the first transformation.

Equation (9) can be used to deduce the smallest volume of martensitically transformed
material detectable by acoustic emission. It is known that the smallest displacements detectable by
an acoustic emission transducer is ~10™* m. This corresponds to a dipole of 3X 10 Nm strength
with 30 ns risetime buried 25 mm below the receiver [2]. Using values of 200 GNm™ and 0.2 for C
and B* gives a minimum detectable volume of 1 um’.

We can use the above results to comment on the work of Speich and Schwoeble [8] who
monitored the acoustic emission of SAE 4300 series steels with systematically varied carbon
content during transformation to martensite, as shown in figure 2. They demonstrated that
acoustic emission was able to accurately determine the martensitic start (Ms) temperature of the
steel. In addition, their data shows a distinct correlation between carbon concentration and
acoustic emission per unit volume of sample for which they did not account.

From eq (6) we can speculate that the cause of the correlation could be due either to the
increase of transformation strain (8*) or an increase of individual martensitic nucleations
associated with a change of martensite morphology with increasing carbon content. This may be
further compounded by a consistent change of bulk residual stress with increasing carbon content
or a change in reaction time whose accompanying frequency shift could affect instrument
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Figure 2-Acoustic emission per unit volume as a function of temperature measured during the cooling of low alloy steels of

variable carbon content [8].

sensitivity. Change in lath morphology producing more (but smaller) emissions with increasing

carbon content seems the most likely, but detailed metallographic studies are required.

4. Summary

An elastodynamic formulism has been used to obtain a solution for the acoustic emission from
dynamic phase transformations where there is a change in the new phase (inclusion) of both shape
and elastic constants. Explicit solutions for small ellipsoidal inclusions with anisotropic elastic
constants are given for an isotropic matrix. This framework is used to explain how acoustic

emission could be used for monitoring martensitic phase changes.

We thank J. W. Cahn and J. W. Christian for valuable discussions.
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