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Calculations are presented for the impedance of a coil as it is moved in the vicinity of a v-groove crack 
in the surface of a metallic slab. The coil is modeled as a pair of parallel wires, oriented parallel to the crack, 
carrying equal and opposite currents. The inhomogeneous electromagnetic fields in the air above the slab and 
in the metal are determined by the boundary integral equation (BIE) method. This approach leads to a pair of 
coupled integral equations for the tangential components of the electric and magnetic field vectors on the 
surface of the slab containing the crack. The solutions, which are obtained by standard methods of 
discretization, are valid for arbitrary ratio of crack or coil dimensions to skin depth. Illustrations are 
presented of the Poynting vector distribution over the surface of the metal, including the crack faces. A plot 
of the complex impedance is given in the form of a coil scan across the crack. 
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1. Introduction 

In the design of electromagnetic NDE systems for 
the detection and examination of cracks or other 
defects in conducting materials, it is necessary to have 
a quantitative description of the electric and magnetic 
fields in the vicinity of the defect. In practice, the 
fields are produced by an exciting coil, the impedance 
of which is used to provide the detection signal. (The 
voltage induced in a secondary pickup coil may also 
be used.) In previous work by the author [1,2]1, the 
fields in the vicinity of a crack were calculated for 
models based on excitation by a spatially uniform 
applied ac magnetic field such as would be found in 
the interior of a solenoid. The present work offers an 
improved description of the fields through the 
introduction of non uniformity of the applied field due 
to finite coil size and the inclusion of coil position 
relative to the crack. 

About the Author, Paper: Arnold H. Kahn, a 
physicist, is part of the Nondestructive 
Characterization Group in the NBS Metallurgy 
Division. The work on which he reports was 
supported in part by the NBS Office of 
Nondestructive Evaluation. 

1 Figures in brackets indicate literature references at the end of 
this paper. 

Recently there has been significant activity in the 
development of theoretical modeling in electromagnet­
ic NDE. The finite element method has been applied 
by Ida and Lord [3] to the cylindrical geometry of 
reactor tubing. Studies have been presented by Auld et 
al., Kincaid et al., Bahr, and others [4] on experimental 
and theoretical considerations of crack detection and 
coil design. A principal difficulty is the calculation of 
signals when the electromagnetic skin depth and crack 
size are of comparable magnitude, which is the domain 
of greatest sensitivity. The two-dimensional model of 
this paper represents a contribution toward the 
solution of this problem. A full three-dimensional 
treatment may be possible as new computing 
capabilities are developed [3]. 

2. Description of the Model and 
Theoretical Formulation 

The calculations described in this paper are based 
on the following model: We consider a flat surface 
with an infinitely long, symmetrical v-groove 
representing a surface crack in a slab of metal. Below 
the surface, the material is homogeneous and uniform 
in conductivity. A pair of wires carrying equal and 
opposite currents is located above the slab and is 
oriented parallel to the crack. The wires are 
infinitesimal in thickness and infinite in extent. This 
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simplified model of an eddy-current testing configura­
tion allows a two-dimensional calculation of the 
impedance signals due to the crack. The calculation 
will allow for the effect of crack dimensions; coil 
dimensions, elevation, and displacement; and the 
material parameters of the metal. This is an improve­
ment over calculations in which the exciting field is 
spatially uniform. 

By solving for the electromagnetic fields first on the 
surface of the metal and then at the exciting wires, we 
obtain the impedance due to the presence of the 
metallic region. If the problem is solved for a plane 
surface without the crack, then the additional 
impedance due to the crack may be obtained by 
subtraction. Also, by solving for different positions of 
the wires representing the detection coils, we may 
obtain the impedance signal on traversing the crack 
and also the signal due to liftoff effects. 

The model is illustrated in figure 1. The circles 
above the surface represent the wires, with + and -
indicating the direction of the impressed current loe-iwt

, 

where l1> is the angular frequency and t the time. The 
current is held at fixed amplitude 10, according to the 
usual procedure for eddy-current NDE. In the figure 
additional parameters are shown: A is the separation 
between the wires, H is the height of the coil above 
the plane, P is the center position of the coil relative to 
the crack, D is the depth of the crack, and F is the 
half-width of the crack opening. 

Because of the symmetry of this two-dimensional 
model, the electric and magnetic fields may be derived 
from a vector potential, A, which has only one 
component, A z [5], where the z-direction is parallel to 
the wires and the crack. If the wires were not parallel 
to the crack, a full three-dimensional analysis would be 

Figure l-Configuration of model 
and parameters for the calcula­
tion of the impedance signal 
due to a crack. 

necessary. The vector potential is thus of the form 
A (x,y)e-iwt

, where A is complex to represent phase 
relations with respect to the exciting current. 

In the region above the conductor the vector 
potential satisfies a Helmholtz equation. However, at 
the frequencies of eddy current testing the transit time 
for wave propagation across the region of the crack is 
negligibly small and a quasi-static approximation is 
satisfactory. Thus, in the region above the metal slab 
the vector potential satisfies the Laplace equation, 

(1) 

except for the singularities at the wires. Below the 
surface, in the metallic region, the Helmholtz equation 
is obeyed, 

(''12 + IC)A = 0, (2) 

where 

(3) 

is the square of the propagation constant, (j is the 
electrical conductivity, and p- is the magnetic 
permeability. Here too, displacement currents are 
neglected, in this case because the ohmic currents 
represented by the IC term are so much larger. At the 
boundary surface, including the faces of the crack, the 

T 

D Crack Depth A Wire Separation 

2F Crack Opening H Wire Elevation 

P Wire Position Relative 
to Crack 
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usual conditions of continuity of tangential E and H, 
and normal Band D must hold. In terms of the vector 
potential, these conditions are equivalent to the 
continuity of A and II,." aAlan, where aAlan is the 
normal derivative of A at the interface. To summarize, 
the vector potential must satisfy the Laplace equation 
in the upper region, the Helmholtz in the lower 
region, and conditions of continuity at the interface, 
and it must approach the known form of the impressed 
field in the vicinity of the source wires. 

The method of solution selected in this paper is an 
extension of the boundary integral equation (BIE) 
approach [6,7]. This method, usually applied to a 
single region, has been used by the author [2] in eddy­
current problems involving excitation by a uniform ac 
field. In the present application the method leads to a 
pair of coupled Fredholm integral equations of the 
first kind, as follows: 

By application of Green's theorem we express the 
vector potential in the upper region in terms of the 
source fields and the values of A and its normal 
derivative aAlan on the bounding curve: 

A(r)=Y(r)+ f~~(r,s') A (S')dS' 

-I G(r,S') aA,(S') dS'. 
on (4) 

in which dS' is an element of arc in a planar cross­
section normal to the surface of the metal. In the 
above, Y is the vector potential due to the source 
wires as if the metallic region were absent. The two 
integrals give the change due to the induced currents 
below the boundary. They are taken over the 
boundary fi is the unit normal vector pointing out of 
the upper region. The remaining boundary closure at 
infinity makes no contribution since the fields decay 
with sufficient rapidity. Green's function for the 
Laplace operator is given by 

G(r,r')=-1/27T log I r-r' I; (5) 

it satisfies 

V 2G(r,r') = -8(r-r'), (6) 

where 8 is the two-dimensional Dirac delta function. 
For the two-wire case treated in this paper, the source 
field S has the form 

S(r) =lo[ G(r,r +)-G(r,rJ], 

where r + and r_ are the positions of the wires which 

carry the exciting current, 10, parallel and anti-parallel 
to the z-direction, respectively. In the metallic region 

A(r)=- I ~;, (r,S') A (S')dS' 

+ I f§ (r,S') ~~,(S') dS', (7) 

where f§ is now the two-dimensional Helmholtz 
Green's function, 

f§ (r,r') = (iI4)Ho (l)(k I r-r' I), (8) 

where Ho(1) is the Hankel function of the first kind, 
order zero. It, too, has a logarithmic singularity and 
satisfies the Helmholtz equation with a source, 

('12 + k) f§ (r,r') = -8(r-r'). (9) 

This latter Green's function contains the complex k 
and represents a damped outgoing cylindrical wave at 
large values of r-r'. In eq (7) we have retained the 
same direction of the normal vector fi; hence the 
unusual sign convention on the right hand side. 

The BIE method prescribes letting r approach the 
surface to obtain the fields on the bounding surface. 
When we let r=S, a well-defined expression is 
obtained if we use the Cauchy principal values for the 
singular integrals and replace A on the boundary by 
A12. For nonmagnetic materials A and aAlan are both 
continuous across the boundary, and we shall so 
restrict the present calculations. The resulting BIE's 
are 

iA(S) - I :~(S,S') A(S')dS' 

+ I G(S,S') ~~,(S') dS' = Y (S) (10) 

iA(S) + I ~;,(S,S') A (S')dS' 

-J f§{S S') aA(S') dS'=O 
\:' on' (11) 

This is a coupled pair of equations for unknowns A(S) 
and aA(S)/an on the interface. We may look on the 
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inhomogeneous term Y(S) as the driving force for the 
system. When A and aAlan are found on the 
boundary, then the field A may be constructed at any 
point above the interface by application of eq (4), or 
below the interface by application of eq (7). 

The ultimate objective is the determination of the 
impedance per unit length induced in the wires by the 
presence of the metallic region. The time-average of 
the power per unit length delivered by the exciting 
wires is given by the complex expression 

p=! f E' ·J*da, 

where J is the (constant) current density in the wires, 
E' is the electric field at the wires produced by the 
induced currents, and da is an element of cross­
sectional area normal to the wires. E' is derived from 
the vector potential A ' of the induced currents, 

A'=A-Y, 

by the usual relation 

E'=iwA'. 

Hence, for a set of idealized line-wires, denumerated 
by the index i, we have 

p= ~~ItiwA;. 

Connection with conventional circuit parameters can 
be made by expressing P in terms of the currents, 
voltages per unit length, and impedance per unit 
length of the wires. Under the constant current 
assumption of eddy current testing, we have 

where V; is the voltage per unit length induced in the 
ith wire and Zj is the extra impedance in the ith wire 
due to induced currents in the metallic region. Finally 
we obtain 

for the impedance per unit length in the ith wire, 
caused by the induction. Now Ai is evaluated at the ith 
wire and can be computed by use of Green's theorem 
after A and aAlan have been found on the interface. 
Thus we have a method of computing the extra 
impedance seen by each wire due to the presence of 
the metal below. These impedances may now be 
calculated with and without a crack being present. 

3. Numerical Treatment 

The coupled integral equations are solved by an 
application of the method of moments [8]. The 
solution is expressed as a linear combination of a finite 
set of basis functions with unknown coefficients. The 
coefficients are determined by requiring that the 
integral equations be satisfied at a number of points 
equal to the number of unknown coefficients; i.e., 
point-matching is used. 

For the basis functions, the elements F shown in 
figure 2 were used, after the method of Harrington [8]. 

Figure 2-Triple-pulse hat function F used in the numerical calcula­
tions. The illustration shows the function F(S-SJ. The dashed 
line is the common triangular hat-function. 

We approximate the solution for the vector potential 
and its normal derivative on the interface by the finite 
sums: 

A(S)=~AjF(S-S) (12) 

and 

aA(S) =~N.F(S-S.) 
an I \: I (13) 

These expansions are introduced into the integral 
equations, eqs (10) and (11). The integration over each 
element is carried out by use of the midpoint rule for 
the entire integrand of each flat section of the 
fundamental element, except when the Green's 
function is singular, i.e., when Sj=Sj. 

When a singular integrand occurs in the evaluation 
of eq (10), the integration of the logarithmic Green's 
function is performed exactly. When a singular 
integrand occurs in eq (11), the dominant logarithmic 
part of the Hankel function is used for the evaluation. 

The width of the elements is not restricted. It was 
found practical to use a fine grid where the solution 
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was large or varying rapidly, and a coarse grid 
elsewhere. With these approximations and the point­
matching, the coupled integral equations are reduced 
to a linear algebraic system of the form: 

(14) 

(15) 

In these equations, each doubly-subscripted term 
corresponds to that part of the integrations of eqs (10) 
and (11) connecting elementj and matching-point i. 

The calculations were first attempted with square 
pulse functions as the basis set. It was found that the 
solutions were unstable in the vicinity of the crack 
corners and near the location of a grid-size change. 
The use of the triple pulse element is equivalent to 
doubling the number of points in a pulse function 
calculation, but applying the constraint that the 
solution at each point be averaged with its two nearest 
neighbors. In addition to reducing the dimensions of 
the needed matrices, this has a smoothing effect and 
leads to solutions which are stable as the grid size is 
decreased. The triple pulse basis function may be 
looked upon as an approximation to the common 
triangular hat-function, shown in figure 2 by the 
dashed line. The hat-function yields a piecewise 
trapezoidal approximation to the solution which 
would be superior to the present form, but its 
application is precluded because of nonintegrability 
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when multiplied by the Hankel functions of the 
integrand. The solution of the linear equations was 
obtained by Gaussian elimination without pivoting. 
The logarithmic singularities of the Green's functions 
associated with the diagonal elements of the matrices 
allow this economical simplification. The solutions 
were considered to have converged when further 
refinement produced an insignificant change in the 
physical results, usually about 1 percent. Typically the 
dimension of the square matrices ranged from 200 to 
300. 

4. Coil Impedance in the Absence 
of a Crack 

The radiation field of an oscillating dipole above a 
conducting earth was a problem first attacked 
successfully by Sommerfeld [9]. Analytical solutions 
have been given for finite coils by Dodd et af. [10,11]. 
These solutions are in the form of integrals over 
various Bessel function arguments. Numerical 
evaluation is possible; analytic evaluation is in terms of 
asymptotic series. The same methods can be applied to 
this problem of a pair of parallel wires over a plane. 
However, the approach of this publication is readily 
applicable in the absence of a crack. Solving an 
integral equation requires a greater computing effort 
than evaluating an integral solution for the lesser 
problem. However, it is quite useful to have the 
programs available as a byproduct of the crack case. 
In this section we examine the results of calculations 
for the parallel wire coil above a flat conducting half­
space, calculated by the boundary integral equation 
method. 

In figure 3 we show the results of a typical 
calculation. For this case, and all others reported here, 

FLAT SURFACE 
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Figure 3-Poynting vector on the 
surface of a metallic slab in the 
absence of a crack. The 
coordinate x is along the flat 
surface of the metal. Distances 
are in units of the skin-depth 
and the Poynting vector is in' 
units of JLow 10-3

• The exciting 
wires are located at ±0.5 8 and 
are at an elevation of 0.5 8. 

n L/ ~ 1 iL_~ , ~ o 
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lengths are in units of the skin depth 8, where 

8 = v' 2/ o"w }-to' (16) 

and the symbols under the radical are the same as 
before. The complex Poynting vector S, represents the 
time average of the complex energy flux, in our 
application, across the surface of the conductor. In the 
units we are using, we have 

= _ ~ MoW 11 12 A aA * 
2 8 0 an' , (17) 

where A and aA/an' are calculated by solving the 
coupled boundary integral equations. While our 
principal interest is in the impedance change of the 
exciting wires, the Poynting vector plots show a 
detailed picture of the radiation field. The plots are 
useful for assessing the convergence of the 
calculations as well as for showing the regions of the 
test material where the significant absorption and field 
penetration take place. 

5. Coil Impedance With a Crack 

The presence of the crack adds two more 
parameters to the required inputs to the calculation. 
We treat only a symmetric v-groove crack which we 
specify by its depth and the half-width at its mouth. 
The calculations are performed in the same way as 
without the crack, with the only difference being that 
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the needed matrices are larger in dimension and 
somewhat more complex in preparation. The 
algorithms for the solution are identical to those of the 
previous case. The output of the program is the 
impedance per unit length of the wires, with the crack 
present. In addition we may inspect the complex 
Poynting vector on the surface of the crack as well as 
on the flat surface of the test material. 

For the initial investigations we selected a crack 
depth of 2.0 8 and an opening of half-width 0.25 8. 
The coil wires were taken as having a separation of 
1.0 8 and at an elevation of 1.0 8 above the plane. 
These dimensions correspond to the physical situation 
of a No. 30 AWG wire insulated pair in close contact, 
elevated one radius above the contact with the plane, 
and driven at a frequency of 110 kHz. The relevant 
parameters for this model applied to aluminum are 
given in table 1. 

Table 1. Parameters for model calculation based on aluminum 
at 110 kHz. 

Resistivity 
Conductivity 
Skin depth 
Crack depth (= 28) 
Crack half· opening (8/4) 
Wire radius (8/2) 

P 
0'(= lip) 
8 

2.82X 10-8 n.m(20 0c) 
3.54 X 107 n-1m-1 

0.255 mm 
0.51 mm 
0.064mm 
0.13 mm 

The calculations were performed for a range of values 
of the parameter P, the location of the coil center 
relative to the crack. Figures 4, 5, and 6 show the 
Poynting vector for the values P=2.5 8, 0.5 8, and 0.0 
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Figure 4-Poynting vector on the surface of a metallic slab with a crack. The coordinate S is along the faces of the crack, which is shown as 
folded open in the right· hand figure. The shaded band indicates the location of the v·groove crack. The lateral distance between the coil 
and the crack, P, is 2.0 8 and the half·opening, F, is 0.25 8. All other parameters are as in figure 3. 
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Figure 5-Poynting vector on the surface of a metallic slab with a crack. The lateral distance between the coil and the crack, P, has the value 
of 0.80 0; all other parameters are as in figure 4. 
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Figure 6-Poynting vector on the surface of a metallic slab with a crack. The lateral distance between the coil and the crack, P, has the value 
0.0 0; all other parameters are as in figure 4. 

8 respectively, illustrating the deformation of the 
fields as the coil is brought up to the crack. These 
figures correspond to the same wire separation and 
elevation as in figure 3, the case with no crack. 

Qualitative examination of the figures shows that in 
the presence of a crack, a portion of the integrated 
Poynting flux is "stolen" from the nearer of the peaks 
in the field distribution. The Poynting flux at the 
corners is somewhat increased over the value that 
would occur at that position if no crack were present. 
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Inside the crack, the Poynting flux decays to zero in 
approximately one skin-depth. This is quite the 
opposite behavior to that which occurs in the case of a 
uniform H-field parallel to the crack [2]. In that case, 
the Poynting vector is greatest at the tip and vanishes 
at the corners. 

From a series of calculations like these, the coil 
impedance per unit length was obtained for numerous 
positions of the coil. The phase and magnitude of the 
impedance are shown in the plots of figure 7, in the 



Phase of Coil Impedance 

65°r------,-------,-------,-------,-------, 

:: 

obtained from these curves by computing a differential 
scan corresponding to the coil pair separation. 

The author wishes to express his thanks to Dr. B. 

0.0 1.0 2.0 3.0 4.0 5.0 

Auld and Dr. C. Fortunko for most valuable 
discussions concerning crack detection. He is also 
grateful to Dr. S. Gershovits for interesting 
suggestions. 

Position of Coil Center (6-units) 
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Figure 7-Plots of the phase and magnitude of the crack impedance 
signal as a function of the lateral displacement of the coil center 
relative to the crack. Parameters are as in figure 4. 

form of a scan across the surface of the slab. These 
curves would be extended symmetrically for negative 
values of the coil displacement. The asymmetric signal 
obtained from an opposed pair of coils [12] can be 
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