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In this paper, we prove that every vertex-transitive graph can be expressed as the edge-disjoint union of
symmetric graphs. We define a multicycle graph and conjecture that every vertex-transitive graph cam be
expressed as the edge-disjoint union of multicycles. We verify this conjecture for several subclasses of vertex-
transitive graphs, including Cayley graphs, multidimensional circulants, and vertex-transitive graphs with a
prime or twice a prime number of nodes. We conclude with some open questions of interest.
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1. Introduction

Following the notation of [7,9],' we denote the set of nodes of a finite, simple graph X by
V(X), the set of edges by E(X), and the automorphism group of X by G(X). Throughout, we
regard G(X) as a permutation group on the nodes, and sometimes the edges, of X. In particular, a
subgroup J of G(X ) is said to be transitive if for every pair of nodes u,v E V(X), J contains an
automorphism mapping u to v. If, in addition to being transitive, o(J ) =o(V(X)), then J is a regular
subgroup of G(X). It is well known (see Lemma 16.3 of [4], for example) that G(X) contains a
regular subgroup if and only if X is a Cayley graph. A Cayley graph X0 ,, is the graph defined by
V(XG0 1 )={a~afEGI and E(XG 1 )={(a,I3)Ia,'el'EH} where G is an abstract group and H is a
subset of G-{ } closed under inverses.

We are interested primarily in those graphs with a transitive automorphism group. Sach
graphs are called vertex-transitive or, equivalently, point-symmetric. Similarly, a graph is called
edge-transitive or, equivalently, line-symmetric if G(X) is transitive on the edges of X. Graphs which
are both vertex-transitive and edge-transitive are called symmetric. As is pointed out in [4,6,8], not
every vertex-transitive graph is edge-transitive nor is every edge-transitive graph vertex-transitive.
An area of recent interest in the literature involves the relationship between the class of vertex-
transitive graphs and the class of edge-transitive graphs, and the nature of their intersection, the
class of symmetric graphs [3-6,8].
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Of particular interest is the class of circulants [1,2,7,8,10,11] and a generalization thereof, the
class of multidimensional circulants [7,8]. A circulant or, equivalently, a starred polygon is a graph
whose nodes can be labeled so that there exists a set SCZ, where Z is the set of integers, such that
V(X)={vO,,..., v-} and E(X)={(v,vi)IO<ij<n and mod(i-jn)ES}. (By mod(xy), we mean the

remainder of x upon division by y.) For such a graph, the pair (n,S) is called a symbol for X. In [7],
we generalize this concept and define a multidimensional circulant to be a graph X whose nodes
can be labeled so that there exist an integer k, a k-vector a, and a set SCZ& such that V(X)=
{v,1Iai<al and E(X)={(v1 ,v )[mod(i-j,a)ES}. The pair (a,S) is called a k-symbol of X. (We
employ the vector notation introduced in [7] whenever discussing multidimensional circulants. In
particular, i(,. i) j=(j1,...Jk), a=(a,,...,ak, 0=(0,...,0), niodfij,a)=(mod(i1-i1,
a,), ... , mod(i4-j ,aj), and O<i<a if and only if O<i,<a, for I lck.)

In this paper, we investigate the decomposition of vertex-transitive graphs into edge-disjoint
symmetric graphs. In particular, we prove in section 2 that every vertex-transitive graph can be
expressed as the edge-disjoint union of symmetric graphs.

In section 3, we define a grouplike set and a multicycle graph and use their properties to
extend the result of section 2. We conjecture that every vertex-transitive graph can be expressed as
the edge-disjoint union of multicycles. This conjecture is verified for several subclasses of vertex-
transitive graphs, including Cayley graphs, multidimensional circulants, and vertex-transitive
graphs with a prime or twice a prime number of nodes.

We conclude by mentioning some related problems of interest in section 4. In particular, we
show how to construct a multicycle decomposition from the symbol of any multidimensional
circulant.

2. Symmetric Graph Decomposition

Let X be any graph, e an edge of X, and G a subgroup of G(X). The orbit of e under G is
defined as the subgraph Xo, of X which has nodes V(X) and edges {rr(e) I tE} GI. The orbits of X
possess several well-known and useful properties. We cite three such properties in the following
lemmas. The proofs of these lemmas are not difficult and are deferred until section 3, where we
prove similar results for a more general subset of G(X).

LEMMA 1: Xoe is edge-transitive.
LEMMA 2: G C G(Xe,).
LEMMA 3: X can be expressed as the edge-disjoint union of the distinct X,,.
With the use of these lemmas, it is not difficult to prove:
THEOREM 1: Every vertex-transitive graph X can be expressed as the edge-disjoint union of one or

more symmetric graphs, each with vertex set V(X).
PROOF: Let X be any vertex-transitive graph and let G=G(X). Consider the graphs X(,. By

definition, they each have vertex set V(X). From Lemma 1, we know that each X,, is edge-
transitive. Since X is vertex-transitive, G must be transitive, and, by Lemma 2, we know that each
X0 , is vertex-transitive. Thus, each X0 E is symmetric. Finally, we know from Lemma 3 that X can
be expressed as the edge-disjoint union of the distinct X0 6.f

3. Multicycle Decomposition

Call a graph a multicycle if it can be written as the node-disjoint union of equal length cycles.
In particular, for any pair of positive integers b and d, define the multicycle Cbd to be the graph
consisting of b node-disjoint d-cycles. Several examples are provided in figure 1. (Note that we
have adopted the convention that every edge is a 2-cycle and that every node is a 1-cycle.)

It is not difficult to show that every multicycle is symmetric. We state a partial converse of
this fact in the following lemma.

LEMMA 4: If X is a vertex-transitive graph and o(E(X))<o(V(X)), then X is a multicycle.
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Figure I

PROOF: Since X is vertex-transitive, all the nodes of X must have the same degree. Since
o(E(X))<Co(V(X)), this common degree is 0, 1 or 2. In the first case, X~Cl where n=o(V(X)). In
the second case, X consists entirely of node-disjoint edges and X=C", 2 2 . In the final case, X is the
node-disjoint union of cycles and, since X is vertex-transitive, each cycle must have the same
length. Thus X~Cbd for some b and d such that bd=n.O

We now extend Theorem 1.
THEOREM 2: Every Cayley graph X can be expressed as the edge-disjoint union of multicycles,

each with vertex set V(X).
PROOF: The proof is identical to that of Theorem I with an additional observation. Let X be

any Cayley graph and let R be a regular subgroup of G(X). By definition, R is transitive and has
o( V(X)) elements. Thus each XRe is symmetric and has at most o( V(X)) edges. Since
o(E(XR))<co(V(X))=o(V(XR)) for every eEEE(X), we know by Lemma 4 that each XR, is a
multicycle.fl

COROLLARY 1: Every multidimensional circulant can be expressed as the edge-disjoint union of
multicycles. In particular, every vertex-transitive graph with a prime number of nodes can be expressed
as the edge-disjoint union of multicycles.

PROOF: We know from [7] that every vertex-transitive graph with a prime number of nodes is
a circulant and that the automorphism group of a multidimensional circulant contains a regular
abelian subgroup. Thus, such graphs are Cayley graphs.C

There are some vertex-transitive graphs, however, with automorphism groups which do not
contain a regular subgroup. The Petersen graph shown in figure 2 is one such graph.

The automorphism group of this graph does contain a 10-element, transitive subset, however,
which is very similar to a subgroup in structure. This subset is M={a''yI0<i<2 and O<j<51
where a=(l 6) (2 8 5 9) (3 10 4 7) and y=(l 2 3 4 5) (6 7 8 9 10). Note that M is not a
subgroup as a 2=(1) (6) (2 5) (3 4) (7 10) (8 9)*M. Define X., to be the subgraph of the
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Petersen graph with ten nodes and edge set {a(e) LEM} for any edge e. The subgraph XMe is
quite similar in structure to an orbit subgraph. In fact, it is not difficult to show that the XMe
satisfy the conditions stated in Lemmas 1-3. Since M has o(V(X))= 10 elements, we may then
apply the arguments of Theorem 2 to conclude that the Petersen graph may be expressed as the
edge-disjoint union of multicycles. We now generalize this result.

DEFINITION: Given a graph X, a subset M of G(X) is grouplike if for every edge eEE(X), the
following three conditions are met:

GLI) VcrEM,3ar 2 EM such that o2(e)=oq'(e),

GL2) Va-,crEM,3o- 3 EMsuch that a 3(e)=ocr7 2 (e), and

GL3) 3aEM such that o-(e)=e.

Note that the definition of grouplike is very similar to that of a subgroup. The only difference
is that we have reversed the order of the V e and 30- quantifiers in forming the definition of
grouplike. Thus any subgroup of G(X) is grouplike but not conversely. As an example, it is easily
checked that M={a'YIOc<i<2 and Oj<5} is a grouplike subset, but not subgroup, of the
automorphism group of the Petersen graph.

Let X be a graph, M a grouplike subset of G(X) and e an edge in X. Define XMe to be the
subgraph of X with nodes V(X) and edges {a(e) I o-EM}. The following are generalizations of
Lemmas 1-3.

LEMMA 5: XM, is edge-transitive.
PROOF: Given any e,,e2EE(XMe), we know from the definition that 3B-,,a 2 GM such that

a-,(e)=e, and a2(e)=e2. By GLl, we know that 3a-3EM such that rr3(e1)=o-,' (el)=e. By GL2,
we have that 3cr4 EM such that o-4(e) = o-2o-3(eI) = a2 (e) =e 2. Thus XM, is edge-transitive.l

LEMMA 6: MC G(XM,).
PROOF: Given any eEE(X), o-IEM, and e'EE(XMe), it suffices to show that a,(e')EE(XMj.

For then it will be clear that a, preserves the edge structure of XMe and thus that a1 E G(XM,) and
that MCG(XMe). By definition, 3 a 2 EM such that o-2 (e)=e'. By GL2, 3a 3 EM such that a 3(e)=
a'a 2(e)=o-,(e'). Thus aI(e')EE(XM.) as desired.l

LEMMA 7: X can be expressed as the edge-disjoint union of the distinct XMC.
PROOF: We first show that for any e,,e 2 EE(X), either E(XMe,)=E(XMe.) or

E(X,fQ)nE(XMC2)=0. In particular, choose eEE(XMeI)RE(XMe,). From the definition, we know
that 3vlEM such that v,(e,)=e. By the transitivity of XMe2, we know that given any e3 EE(XM,,),
3a 2 EM such that o-2(e)=e3 . Again applying GL2, this means that 3a 3 EM such that cr3(e1 )=
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o-2a-1(e,)=Ga2(e)=e3 . Thus E(XMQ2)CE(XM,I,). By, reversing e, and e2 in the above argument, it is
equally simple to show that E(XMC)CE(XM,E2). Thus either E(XM,e))nE(XM,,2)=0 or E(XMe0 )=
E(XM.,).

The argument is completed by observing that every edge of X is included in some XM., by
GL3.0

We now state the corresponding generalization of Theorem 2.
THEOREM 3: If the automorphism group of a vertex-transitive graph X contains an o(V(X))-

element transitive grouplike subset, then X can be expressed as the edge-disjoint union of multicycles.
PROOF: The proof is nearly identical to that of Theorem 2 and follows trivially from Lemmas

5-7.0

As we have been unable to find a vertex-transitive graph with an automorphism group which
does not contain an o(V(X))-element transitive grouplike subset, we make the following
conjecture.

CONJECTURE: Every vertex-transitive graph can be expressed as the edge-disjoint union of
multicycles.

In Theorem 2, we verified the conjecture for all Cayley graphs, multidimensional circulants,
and, in particular, for all vertex-transitive graphs with a prime number of nodes. Using a different
approach, we now verify the conjecture in another case, one which has received attention
recently [2,8,10].

THEOREM 4: Every vertex-transitive graph with twice a prime number of nodes can be expressed
as the edge-disjoint union of multicycles.

PROOF: Let X be a vertex-transitive graph with 2p nodes where p is a prime. Since X is
vertex-transitive, the subgroup of automorphisms of X which fix a given node has index 2p in
G(X). Thus 2p j o(G(X)) and, by Sylow's Theorem, G(X) contains an element y of order p. Since
o(y) =p, y is either the composition of two p-cycles or the composition of one p-cycle and p fixed
elements. Label the nodes of X so that V(X)={vj11 0<i<2 and Ocj<p} and =(v ... v,)
(vlo ... v,, ,) or y= (v00 ... vol ) (v1,0) ... (v,,,), depending on the structure of y. We consider the two
cases separately.

CASE 1: Y=(VO0 ... V 0, 1)(VI,0) ... (V11)

Without loss of generality, we can assume that (v0, 0,vl,0)EE(X). Otherwise, X is disconnected
and consists of two isomorphic, node-disjoint vertex-transitive graphs on p nodes each. Thus X is a
multidimensional circulant and, by Corollary 1, is the edge-disjoint union of multicycles.

Since yEG(X) and (v0 0 ,v10 )EE(X), we know that y'(v0,0 ,v1 ,0 )=(v0j,v1 ,0 )EE(X), for Oc<p and
thus deg(v,)O>p. Since X is vertex-transitive, it must be a regular graph and we know that
deg(v,)>p for OCj<p. Thus for any j such that OCJ<p, there exists an i such that (v0 1,vi) EE(X).
Again applying the knowledge that yE G(X), we find that (v01,v,)EE(X) for O~ij<p. Thus r,
the complement graph of X, is disconnected and, therefore, a multidimensional circulant. In [7], we
show that X is a multidimensional circulant if and only if G(X) contains a regular abelian
subgroup. Since G(X )= G(X), we conclude that X is also a multidimensional circulant.

CASE 2: y=(v 0,0 ... v,,- 1)(vi 0 ... v,,,,).

Define Vi={v,1Ocjq<p} for Osi<2. Let E' be the set of edges of X with one endpoint in V0
and one endpoint in V,. Partition E' according to the congruence relation e,-e 2 if e,=yj(e2) for
some j. Since y is cyclic over V0 and V,, each block of the partition corresponds top node-disjoint
edges (i.e., a C,,2 multicycle).

Now consider the edges E; with both endpoints in V, for O<'i<2. In a similar fashion, partition
E. and E,. Each block of this partition corresponds to a p-cycle. Since X is vertex-transitive, it is
regular. We already know that each vertex of X is incident to the same number of edges from E'.
Thus o(E.) = o(E,) and we can pair up p-cycles in E. with p-cycles in El to form C,, multicycles.

Summarizing, if 4 has at least one edge, then X is decomposable into CP,, multicycles, C,,
multicycles, or both. If E(X )=0, thenX-C2,.,.D
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4. Related Problems

We now consider the question of what multicycle decompositions a vertex-transitive graph
can have. The graph in figure 3, for example, has three different multicycle decompositions.

U
I

Xe
a

U

b

U U

t_

C

Figure 3

Define a decomposition vector d of a graph to be the vector (d-, ..., do) where d,, ... , d, are such
that X can be expressed as the edge-disjoint union of d, C,, multicycles, d, Cc,,
multicycles-,..., and da Ca,, multicycles. By convention, we set d,=0 unless X has no edges, in
which case d,=I. We further require that d1=o for any i which does not integrally divide
n=o(V(X)). As an example, we observe that the graph displayed in figure 3 has decomposition
vectors (0,1,1,0,0,0), (0,1,0,0,0,1), and (0,3,0,0,0,0).

In the new terminology, the problem is to determine in some general way which
decomposition vectors a given vertex-transitive graph can have. We now provide a partial solution
to this problem.

THEOREM 5: Let X be a multidimensional circulant with k-symbol (a,S). For each
s=(sI' s,)ES, define p(s)=lcm(gcd( 1su,..., gcdak(k)). Let di be the number of distinct unordered
pairs {s, mod(-s,a)} such that sES and p(s)=ifor 1c4kn. If X has no edges, then define d,=d. Then
d = (d,, ... , d) is a decomposition vector for X.
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PROOF: Let X be a multidimensional circulant with k-symbol (a,S). We know from the
definition of a multidimensional circulant that E(X)={(v1,v ) mod(ij,a)ES}. For each sES,
define the subgraph X, of X to be the graph with nodes V(X) and edges
{(v,,vj)Imod(i-j,a)E{s,mod(-s,a)}}. It is clear that X,=X, if and only if {s,mod(-s,a)}=
{t,mod(-t,a)}. If XS#X,, then it is also clear that E(XjfnE(Xt)=0.Thus X can be expressed as the
edge-disjoint union of the X,.

We now complete the proof by showing that XfCl/p(,)p(,) for all sES where n=o(V(X)). By
definition, X, is a vertex-transitive graph with k-symbol (aZ,{s,mod(-s,a)}). Since
o({s,mod(-s,a)})<2, every node of X. is adjacent to at most two other nodes. By Lemma 4, we
know that X, is a multicycle. From the definition of E(X,), we know that the length of each cycle
in X, is the smallest positive integer r such that mod(rs,a) = 0. Note that mod(rs,a) 0 if and only if

akaI rs, for I <ick and thus if and only if gcd(apj) r for 1 <i~k. Thus p(s) =1cm (gcd(a14 - ,gcd( kk)) is
the smallest positive integer r such that mod(rs,a) =0 and X_-C

Note, however, that some multidimensional circulants may have multicycle decompositions
not of the form specified in Theorem 5. For example, the decompositions in figures 3b and 3c do
not correspond in any obvious way to the grouplike subsets of the automorphism group of the
graph. Thus the complete determination of which decomposition vectors a vertex-transitive graph
can have may well be a difficult problem.

Also of interest is the problem of how multicycles can be composed to form a vertex-
transitive graph. Not every graph which can be expressed as the edge-disjoint union of multicycles
is vertex-transitive. For instance, consider the graph shown in figure 4. This graph can be
expressed as the edge-disjoint union of two 7-cycles, yet is not vertex-transitive. This fact is easily
seen by observing that the complement of the graph is the node disjoint union of a 4-cycle and a
3-cycle and thus is not vertex-transitive.

U 4

Figure 4

Thus the manner in which one can combine multicycles to form a vertex-transitive graph is not
clear. A solution to the problem might well prove useful in settling the conjecture and in the develop-
ment of a combinatorial characterization of the class of all vertex-transitive graphs.

In addition to Professor Maurer, the author would like to thank Professors Brian Alspach and
Alan Goldman for their helpful remarks.
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