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In this paper, we extend the notion of a circulant to a broader class of vertex.transitive graphs, which we
call multidimensional circulants. This new class of graphs is shown to consist precisely of those vertex-
transitive graphs with an automorphism group containing a regular abelian subgroup. The result is proved
using a theorem of Sabidussi which shows how to recover any vertex-transitive graph from any transitive
subgroup of its automorphism group. The approach also allows a short proof of Turner's theorem that every
vertex-transitive graph on a prime number of nodes is a circulant.
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1. Introduction

Following the graph-theoretic notation of [10]' and the group-theoretic notation of [14], we
denote the set of nodes of a finite simple graph X by V(X), the set of edges by E(X), and the
automorphism group of X by (AX). Throughout, we regard G(X) as a finite permutation group
on the nodes, and sometimes the edges, of X. In particular, a subgroup J of G(X) is said to be
transitive if for every pair of nodes u,vE V(X), J contains an automorphism mapping u to v. If, in
addition to being transitive, o(J)=o(V(X)), then J is a regular subgroup of G(X). We are
interested primarily in those graphs which have a transitive automorphism group. Such graphs are
called vertex-transitive or, equivalently, point-symmetric.

A topic of recent interest in the literature involves the characterization of vertex-transitive
graphs [2,3,5,6,8-11,13]. In section 2, we present two such characterizations. The first is
elementary and perhaps known to many but we have not found it in the literature. The second is
due to Sabidussi [10] and is more substantial. In fact, we present a very slight generalization of his
result, which he stated so as to apply only to connected vertex-transitive graphs.

Though Sabidussi's characterization is useful, it involves significant conditions on the
automorphism groups of the associated graphs. Indeed, the problem of characterizing vertex-
transitive graphs in a more graph-theoretical manner appears to be very difficult. In [13], Turner
provided a partial solution to the problem by showing that a graph with a prime number of nodes
is vertex-transitive if and only if it is a circulant (or, equivalently, a starred polygon).
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Unfortunately, if the number of nodes is not a prime, then a vertex-transitive graph need not be a
circulant. In section 3, we define a circulant graph and use the extension of Sabidussi's result to
show that a graph X is a circulant if and only if 0(X) contains a regular cyclic subgroup. As a
corollary, we prove Turner's result mentioned above.

In section 4, we extend the notion of a circulant to a broader class of vertex-transitive graphs,
which we call multidimensional circulants. In doing so, we broaden the class of vertex-transitive
graphs for which a nice graph-theoretical characterization is known. Moreover, we then give a
group-theoretical characterization of what is special about these graphs in relation to the class of
all vertex-transitive graphs. In particular, we prove that a graph X is a multidimensional circulant
if and only if G(X) contains a regular abelian subgroup. In addition, we derive a simple upper
bound on the dimension of a multidimensional circulant and, as an example, prove that the n-cube
is an Ln + 1)/2J-dimensional circulant for n> 1.

2. Characterizations

We now present the characterizations discussed in the introduction. Given any graph X
with nodes V(X)={v,, vI 1}, define the graph X2 for Oci<n to be the subgraph of X in-
duced by V(X)-{vl}.

THEOREM 12: A graph X with n nodes is vertex-transitive if and only if X0=X,= ... =X.-l
PROOF: Assume that X is an n-node graph such that X,=X,= ... --X.-,. From the definition, we

know that o(E(Xi))=o(E(X))-degx(vi) for 0•i< n, where o(E(X,)) is the number of edges in X,
and degx(vi) is the degree of node v, in X. Since XOX,= ... -X.-,, we know that o(E(Xo))=
o(E(X)) = ... =o(E(X ,-)) and thus that degx (v)-=deg, (v,)= ... =degx (v ,). Thus X is k-regular
where k= deg, (vo). This means that each node in X, has degree k or k- 1 depending on whether or
not the node is adjacent to v, in X. Let a-, be an isomorphism from X, onto Xj . Clearly, a-,j maps
the k nodes of degree k-l in X, (those adjacent to v, in X) onto the k nodes of degree k-l in X,
(those adjacent to v1 in X). Define the extension of r- to X by r,, (vm)= a-,1 (vy) for m=Ai and
orj(vj-)=vj. It is clear that for all 0•ij<n, or, is an automorphism of X mapping v, onto v,, and
thus X is vertex-transitive.

Conversely, if X is vertex-transitive, then for all i and j, there is a r 0 G(X) such that oa(v, ) =
vj and thus o-(X, )=X, which implies that Xi r Xj 1

In Theorem 2 of [10], Sabidussi characterizes connected vertex-transitive graphs. We now
state a slight generalization of this result to include all vertex-transitive graphs. Given any group
G, subgroup J of G and subset H of G-J, define XG,,/J to be the graph

V(X 0 1 1 /J)={aJJaEG} and

E(XGH/J)={(a J,/3J)ja jnaI3JH#0}, where

H=HUH-' and H- is the set of inverses of elements of H.

THEOREM 2: If X is a vertex-transitive graph and G is a transitive subgroup of G(X), then there is
a subgroup J of G and a subset H of G-J such that XnXG H/J. Conversely, if G is a group, J a
subgroup of G and H a subset of G-J, then XG H/J is a vertex-transitive graph with G homomorphic to
a transitive subgroup of its automorphism group.

The proof of Theorem 2 is lengthy but not difficult and is essentially that found in [10]. We
mention here one key step. Given X and G as in the first part of the theorem, choose J to be the
subgroup of all automorphisms which fix a given node v. and H to be the subset of all
automorphisms which move v. to an adjacent node.

' it has been recently discovered that a very similar result was proved by J. A. Bondy in "Reflections on the legitimate
deck problem," Combinatorial Mathematics, Lecture Notes in Mathematics, No. 686 (1977) 1-13.
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3. Circulants

A circulant (or equivalently, a starred polygon) is a graph whose nodes can be labeled so that
there exists a set SCZ, where Z is the set of integers, such that V(X)=I{v, ... , v.-l} and E(X)=
{(v,,v,)0Ii,j<n and mod(i-jn)eS}. (By mod(xy) we mean the remainder of x upon division by
y.) For such a graph, the pair (n,S) is called a symbol for X. Note that 0 5 since we are only
concerned with simple graphs. Since edges are unordered, we may restrict S so that dES if and
only if n-dES for all values of d. For example, consider the graph in figure 1. Contrary to the
claim of Turner [13], this graph is, in fact, a circulant with symbol (6,{2,3,41).

Figure 1

V4 V2

We now determine those vertex-transitive graphs which are circulants. In ([1], Proposition 2),
Alspach proves a similar result for tournaments. Henceforth, we assume all subscript arithmetic is
done modulo n=o(V(X)).

THEOREM 3: A graph X is a circulant if and only if G(X) contains a regular cyclic subgroup.
PROOF: Let X be a circulant with symbol (n,S). Define a to be the permutation (v~v, v.-,)

where V(X)={v0 , .- , v,-}. In other words, a(v,)=v1 ,, for Oi<n. Thus a(E(X))=E(X), which
means that aEG(X) and G(X) contains the regular cyclic subgroup { la-..., an-'}.

Now assume that X is an n-node graph and that G(X) contains a regular cyclic subgroup. Let
G={l,a,..., an-'} be this subgroup. By Theorem 2, we know that there exist disjoint H and J such
that XY 1XGH/J. Since o(G)=n=o(V(X))=o(V(X 0,1 /J))=o(G)/o(J), we must have o(J)= 1 and
thus J={l}. This means that we may relabel V(X)={a'IOi<n} and E(X)={(ai,aj)Iai=aJak
for some a&CD=HUH-'}. Note that a'=aiak if and only if mod(i-jn)=k. Define
S={kla kCf}. Relabeling the nodes of X once more, we have V(X)={v0 , . , v,-,} and E(X)=
{(vj,v1)Jmod(i-j,n) 8.}. Thus Xis a circulant with symbol (nS)yC

It is now easy to prove Theorem 1 of [13].
THEOREM 4: A graph with a prime number of nodes is vertex-transitive if and only if it is a

circulant.
PROOF: Let X be vertex-transitive with a prime number p of nodes. Since the subgroup of

automorphisms of X which fix a particular node has index p in G(X), p I o(G(X)). By Sylow's
theorem on groups, G(X) contains an element of order p. Without loss of generality, this element
must be a=(v, ... v,,) where V(X)={v 0,,..., v,,}, since no permutation on p elements with more
than one orbit has order p. Thus R={l,a, ... , a&`} is an order p transitive subgroup of G(X).
Equivalently, R is a regular cyclic subgroup of G(X) so by Theorem 3, X is a circulant. Since
every circulant is vertex-transitive, the converse follows trivially.l

Not every vertex-transitive graph has an automorphism group containing a regular cyclic
subgroup. For example, consider the graph in figure 2. This graph is vertex-transitive but has no
automorphism of order eight and thus cannot be a circulant.
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Figure 2

4. Multidimensional Circulants

Define a multidimensional circulant to be a graph X whose nodes can be labeled so that there
exist positive integers k, as, a 2 , ... , ak and a set SCZk such that

V(X)={v'," ikQOci,<a, for 11<k} and

E(X) = {(Vl,..,l,,vj, ,...-j)|(mod(i 1 -j,,a,), ... , mod(ik-jk,ak)ES}

In order to simplify the notation when dealing with multidimensional circulants, we will
henceforth employ vector notation. For example, we use the k-vector a to represent (a -, ... , a*), i

to represent (i,, ... , ik), j to represent (j1 *--- i.ke and so on. In particular, we represent the zero
vector (0, ... , 0) by 0 and the unit vector (0, ... , 0,1,0, ... , 0) with a one in the ith position and zeros
elsewhere by e1. In addition, it will be convenient to use mod(i-j,a) to represent the k-vector

(mod(i,-j1 ,a),-mod(ik-jk,ak)), a-' to represent the product Ho'il, and Oi<j to denote the

fact that O<i,< j, for i<lck. Thus a multidimensional circulant is a graph X whose nodes can be
labeled so that there exists an integer k, a k-vector a, and a set SC Zk such that

V(X)={vI0<i<a} and

E(X)={(v,,vj)jmod(i-j,a)ES}.

Generalizing the concept of a symbol, we define the pair (a,S) to be a k-symbol of X. As was
true in the definition of a circulant (where k= 1), it is clear that the symbol can be restricted so

k

that i a,=n=o(V(X)), OEfS, SC{iljOi<a}, and that iES if and only if mod(-ia)ES. For

example, consider the graph displayed in figure 2. Whereas this graph is not a circulant, it is a
multidimensional circulant. In figure 3a, we display the labeling of this graph which corresponds
to the 2-symbol ((2,4),{(0,1),(0,3),(l,0)}), and in figure 3b, we display the labeling which
corresponds to the 3-symbol ((2,2,2),{(O,0,1),(O,1,0),(1,0,0)}).
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Figure 3

As is evidenced by this example, multidimensional circulants may have k-symbols for several
differing values of k. We call the smallest value of k for which a k-symbol exists the dimension of
the graph. In particular, a graph is said to be a k-dimensional circulant if it is a multidimensional
circulant and k is the smallest integer for which the graph has a k-symbol. In this notation, the
class of circulants is precisely the class of 1-dimensional circulants.

We now generalize Theorem 3.
THEOREM 5: A graph X is a multidimensional circulant if and only if G(X) contains a regular

abelian subgroup.
PROOF: Assume that X is a multidimensional circulant with a k-symbol (a,S). Define the

permutation a-, on X for 1c1<k by ar (v)=vmodQie,,) for all v,(2V(X). Since mod(mod(i+eha)-

modUj+eja),a)=mod(i-j,a), we know that a,(E(X))=E(X). Thus, o-,EG(X) for 1<1<k. Further,
ora-1 ,=Q,,O Ifor 1<1,m~kand, thus, the subgroup of G(X) generated by {e,,, Ik} is abelian. It

is not difficult to show that this subgroup is also transitive and has Ila,= o(V(X)) elements.

Thus it is regular and we have shown that G(X) contains a regular abelian subgroup.
Now assume that we are given a graph X such that G(X) contains a regular abelian subgroup

R. By a well-known result concerning finitely generated abelian groups ([4], p. 101-3), we know

that we can express R as the direct product of cyclic groups. Thus we can write R = X R
i=1

where each R, is cyclic, has order a,, and is generated by aJ,. Replacing G with R in Theorem 2,
we know that there exist HCR-{1} and a subgroup J of R such that X-XR ,/J. Since R is regular,
we must have that J={ }. Thus we may label the nodes of X so that

V(X)={ar'I O<i<a} and
E(X ) = {(a ,ao) I dr = ed for some d E

Since R is abelian, r'=a-I or' if and only if o-'=Jrh and thus if and only if mod(i-j,a)=h.
Further simplifying, it is possible to relabel the nodes of X so that

V(X)={v,I0<i<a} and
E(X)={(v,,vj)jmod(i-j,a)ES}

where S= {h I aoEH}. Thus X is a multidimensional circulant with k-symbol (aS.O
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COROLLARY 1: Every multidimensional circulant is vertex-transitive.
The arguments in the preceding proof make it clear that, in principle, it is possible to

determine the dimension of a multidimensional circulant through examination of the structure of
its automorphism group. In practice, however, this may be quite difficult to accomplish. The
following theorem provides an upper bound on the dimension based solely on the number of
nodes in the graph. t

THEOREM 6: If X is a multidimensional circulant with n = f pibi nodes (primes A*=Ipj for i=Aj),
then X has dimension kfor some k<max1, 1(b,i).

PROOF: Given a multidimensional circulant X, we know from Theorem 5 that G(X) contains

a regular abelian subgroup R. Decomposing R into cyclic subgroups, we have R = X X R,
1=1 1=1

where R j is a cyclic subgroup of R with order p,'4 . Recomposing cyclic subgroups with differing

prime power orders, we can write R= X R; where R, is cyclic with order II p,6f (cq is

defined to be zero ifj>-d,) and is the product (with as many terms as exist) Rj 1X... XR, , Thus R
is the direct product of max (d,) cyclic subgroups. The result now follows from the arguments

I <i<1

in the proof of Theorem 5 and the fact that d,<b, for 1i~t.EJ
COROLLARY 2: The class of n-node multidimensional circulants is precisely the class of

n-node circulants whenever n is the product of disjoint primes.
We now demonstrate the existence of k-dimensional circulants for every k> 1. This is

accomplished by showing that the n-cube is an j5n+1)/2j-dimensional circulant for every n>l.
The n-cube is the graph X with nodes V(X)={vI0<i<2"} and edges E(X)={(v,,v)I the n-bit
binary representation of i differs from the n-bit binary representation of j in exactly one bit}. The
3-cube, for example, is displayed in figures 2 and 3. Our result requires the following lemma, the
proof of which was suggested by Lawrence [7].

LEMMA 1: If a is an element of a regular abelian subgroup of automorphisms of the n-cube, then
a has order 1, 2, or 4.

PROOF: Let R be any regular abelian subgroup of automorphisms of the n-cube X. View R as
an automorphism subgroup of the facets of X. The facets of X are the (n-l)-cubes contained in X.
There are 2n such (n-l)-cubes, one corresponding to each set of 2n-' nodes whose labels have
identical ith bits for some fixed i, 1<i<n, in the n-bit binary representation of the labels. It is not
difficult to show that the action of an automorphism on the facets of X completely determines its
action on the nodes, and vice-versa.

Let F.,..., Fk be the facet orbits of R and define R, for 1 <ick to be the restriction of R to F,

with duplicates eliminated. Then, each R, is a group of automorphisms of F, and R C X R.
k 1=1

Thus o(R) < I o(R,) and, since o(R)=2',
1=1

k

nI o(R,)>2'. (1)

In addition, each R, is regular on F,. If not, then we could find s,tEF, and af3 ER, such that a(s)=
s, a(t)#At and ,3(s)=t. By the commutativity of R, this implies t=/3(s) =a1a 1 '(s) = a(t)5 At which is

k

a contradiction. Thus o(R,)=o(F,) for 16ick. By definition, we must have yo(F,)=2n and
thus

k

Eo(R,)=2n. (2)
,=,
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It is well known that the order of an orbit is a divisor of the order of the permutation group
[14]. Thus o(R,)Io(R) for lcick. Since o(R)=2", we can define nonnegative integers r, such that
o(R,)=2'' for 1 ick. Rewriting (1) and (2), we have

k k

Er,>n and 22'=2n.
1=1 ,=,

k k

Thus X2r,>2n = ) 2". Since 2r,<2i for r,=O and r,>2 and 2r,=2" for lcr,<2, it is clear that
1=1 =

1cr,4 2 for W<ick. Thus o(R,)=2 or 4 for 1<ick. Thus for each aER, a4 leaves each facet of X
fixed and a4 = 1. Thus o(a)= 1, 2, or 4.0

We are now ready to prove:
THEOREM 7: The n-cube is an Ikn+ 1)/2j-dimensional circulant.
PROOF: We first show that the n-cube X is a k-dimensional circulant for some kckn+ 1)/2j. It

follows from the definition of X that we may label the nodes so that X has symbol (a,S) where
a=(2,2, ... , 2) and S={e,l lcicn}. By relabeling node v, with index j so that

0 if (i2 1 1 ,i2 1 )=(OO)

I if (i21 1,i,=(0,1)

il= 2 if (i2 1_j2j)=( 11) for 11cckn+1)/2j,

3 if (i 2 1_,i 2 )=(lO)

in if 24'n and 1= kn + 1)/22

it is easy to show that X has En + 1)/2j[symbol (aS) where

f (44.,44)if2ln an

a= and-4 .. 4,2) if 2tn

S={+e,l lcican+ 1)/2j}.

Thus X is a k-dimensional circulant for some kcgn + 1)/2J. k

Assume now that X has dimension k<an + 1)/2j. Then X has a k-symbol (a,S) such that fla,

k

=2 . But this means that a,>8 for at least one value of i. Otherwise, H a,

<4k4(n+l)/2-1c2n4-<2n. By the arguments in the proof of Theorem 5, G(X) must contain a
regular abelian subgroup with an element of order a,>8. But this contradicts the result of Lemma
1. Thus X has dimension En + 1)/2J.D

Not every vertex-transitive graph is a multidimensional circulant. Indeed, there are examples
of vertex-transitive graphs which do not have a regular subgroup of automorphisms. For instance,
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the smallest transitive subgroup of automorphisms of the 10-node Petersen graph, shown in figure
4, has 20 elements.

Figure 4

5. Concluding Remarks

With the introduction of multidimensional circulants, we have moderately broadened the
class of vertex-transitive graphs for which a nice graph-theoretical characterization is known. The
notational complexity, however, has increased substantially. Indeed, the problem of characterizing
graph-theoretically the entire class of vertex-transitive graphs has been unsolved for quite some
time. Maybe some of the following subclasses are easier to characterize: those with an
automorphism group containing a regular subgroup (the Cayley graphs), those with an
automorphism group containing an order o(V(X)) transitive subset, or those with twice a prime
number of nodes. The last subclass has received much attention in the literature of late [3,8,9,11],
but even so, a complete characterization has yet to be found.

In addition to Professor Maurer and Dr. Lawrence, the author would like to thank Professors
Brian Alspach, Charles Johnson, and Alan Goldman for their helpful remarks.
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