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An analysis is presented for the liquid flow-induced motion of a solid in partially filled pipes. A general
equation of the flow-induced motion of a solid is developed. Two alternate force models, one (F,) based on
free stream velocity and another (Fm) based on free stream momentum flux, are formulated to simplify the
general equation.

The equation of motion is solved for the motion of a cylindrical solid with steady-uniform liquid flows
and the effects of relevant variables on the motion of a solid are predicted. The variables considered include:
volume rate of liquid flow, Q; pipe diameter, D; Manning coefficient, n; and slope, 5; solid diameter, d;
length, L; specific gravity, or; coefficient of friction between a solid and the pipe wall, 71; and the two force
functions, F, and Fm,

The flow rate, Q, required to initiate the motion of a solid increases with an increase in D, !, d, L, o,
and 71,, and decreases with an increase in S. The force function F. predicts a lower value of Q, than does the
force function F,

The velocities of a solid increase with an increase in Q and S and decrease with an increase in D, n, d, L,
a-, and 7l- The force function F, predicts higher values of the velocity of a solid than does the force function
F,

The effects of the variables Q., D, 5, d, L, and ', on the velocities of a solid are qualitatively consistent
with the available experimental data. The qualitative agreement between the predicted results and
experimental data demonstrate the validity of the analysis presented.

Key words: analysis; flow; force; liquid; model; momentum; partially-filled; pipe; solid; solid-liquid channel
flow; steady; uniform; velocity.

1. Introduction

The transport of solids by flowing liquids falls into three different categories: (1) the sediment
transport in rivers and canals-the sediment particles usually move on the river bed and do not
block the passage of the flow or alter the cross-sectional area of the flow; (2) the pipeline
transport of finite solids and particle suspensions by full-bore liquid flows-the flow parameters
(velocity, volume flow rate, and pressure) of the carrier liquid are relatively easy to obtain since
the pipe is completely filled with the liquid; (3) the pipeline transport of solids by following
liquids only partially filling the pipe (open channel flows)-the flow parameters (velocity, volume
rate of flow, and flow depth) of carrier liquid are relatively difficult to obtain. (The difficulty is
encountered even for a constant volume flow rate because the flow velocity and depth may vary
along the length of the pipe; furthermore, the transported solid may substantially alter the flow
area and the solid may or may not be fully submerged.)

261

|About the Author: Bal M. Mahajan is a mechanical engineer in the NBS Center for Building
Technology. 



Nomenclature

A = flow cross-sectional area
A, = cross-sectional area of solid
A5, = wetted portion of the cross-sectional area

of the solid
A,, = portion of the pipe's cross-sectional area

occupied by the water, or the flow
cross- sectional area

C, = lift coefficient
C, = coefficient of flow-induced force
d = diameter of the solid
D = diameter of the pipe
E = flow specific energy
F6 = buoyant force
FF = friction force
Fe = lift force
Fm = force function based on free stream

momentum flux
F, = pressure force
Fr = Froude number
F, = shear force
F, = force function based on free stream velocity
F~, = flow-induced thrust force acting on the

solid
g = acceleration due to gravity
h = depth of water stream
L = length of the solid
m = mass of the solid
n = the Manning coefficient
Pw = wetted perimeter
P,, =wetted perimeter of the solid
p = pressure
Q = volume flow rate
R = AlP, = hydraulic radius
Rn = normal reaction, force due to pipe wall

acting on the solid in a direction
perpendicular to the pipe axis

S = pipe slope = sinO
S, = energy gradient or slope of the energy line
T =time
U = solid velocity

V = water velocity
Vwd = volume of water displaced by the solid
Wb = buoyed weight of the solid
Ws = weight of the solid
Xs = axial distance traversed by a solid
x = x-axis or the axial distance along the length

of the pipe
y = y-axis or the distance perpendicular

to the pipe axis

Greek Symbols

a = acceleration
y = specific weight
77 = friction coefficient
E = y/d and/or hid
0 = pipe slope angle
X = y/D and/or hiD
V = VO. U.

p = density
a- = specific gravity
'raw = average value of shear stress due to

water flow on the solid

Subscripts

m refers to maximum value

o refers to free stream condition

p, p refers to pipe or pressure

s refers to solid

t refers to instantaneous values

v refers to free stream quantity

I refers to nose or upstream end of the solid

2 refers to tail or downstream end of the solid
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The first two categories of solid transport by flowing liquids have been investigated
extensively [1,2]', while the third category has received relatively little attention. Situations
involving the transport of solids with partially filled pipe flows are common occurrences in
gravity drainage systems and in some aspects of the chemical industry.

Recently, transport of discrete solids in partially filled pipes was experimentally investigated
at the National Bureau of Standards (NBS) [3,4]. In these experiments, single cylindrical solids
were tra: ,ported by unsteady (surge type) water flows in slightly pitched horizontal pipes and the
effects of selected variables on the velocity (U.) of the solid were examined. The variables
congidered in the experiments were: the volume of water (1-) used in an experiment, diameter (D)
and slope (S) .: the pipe, diameter (d) and length (4) of the solid, and the coefficient of static
friction (in) between the solid and the pipe wall. The data of these experiments indicated that:
(1) at any given cross-section of the pipe, Us increases with an increase in V,, and S. and a
decrease in D, d, L. 8j,5 (2) UJ5 first increases, apparently reaches a maximum value, and then starts
to decrease as the solid :ravels downstream. and (3) the difference between the local maximum
velocity (f',j of water and the U, appears to be a function of the axial distance from the solid's
starting location and all of the selected variables.

Recent experimental studies at NBS and in several foreign countries [3-8] have enhanced the
understanding of the water flow-induced motion of discrete solids in partially filled pipes. These
studies have also revealed the complexities of the mechanism of momentum exchange between the
liquid and solid and the dissipation of flow energy. Formulation and selection of rational
momentum exchange or force models are essential steps for developing techniques for predicting
the motion or transport of discrete solids in partially filled pipes under all flow conditions.

This paper presents an analysis of the liquid flow-induced motion of a discrete solid in a
partially filled pipe. Various forces acting on the solid are discussed and a general equation for the
axial motion of the solid is developed.

This general equation is also showr to be applicable to the liquid flow-induced motion of a
discrete solid in a pipe flowing full. Two simplifled force models are formulated. The simplified
equation is used to study the motion of a finite cylindrical solid for steady-uniform flows. The
effects of utilizing different force models and of relevant variables on the various states of the
motion of the solid are examined. The variables considered for this parametric study include the
following: volume rate of steady uniform flow; coefficient of friction between the solid and the
pipe wall; variables of the pipe (i.e., pipe diameter, slope, and the Manning coeffcient); and the
variables of the solid (i.e., diameter, length, and specific gravity).

The three states of the motion of the solid investigated are: (1) the threshold conditions, i.e.,
the effects of the variables on the threshold flow rate or the minimum value of flow rate required
to initiate the motion of a solid are examined; (2) the acceleration of a solid from rest to the
equilibrium velocity, Le., the effects of the variables on the velocity of a solid along the length of
the pipe are examined; and (3) the equilibrium conditions, i.e., the effect of the variables on the
equilibrium velocity of the solid are examined.

2. Analysis

2.1 Types of Partially Filled Pipe Flows

Before considering the transport of a solid by liquid in partially filed pipes (or open channel
flows in pipes), it is instructive to briefly describe the types of open channel flows that may occur
in nominally horizontal or slightly pitched horizontal pipes. Partially filled pipe flows are classified
as: steady or unsteady according to the changes in flow parameters with respect to time, T. and
uniform or varied according to the changes in flow parameters with respect to distance, x, along
the length of the pipe [9,101. In general, there are three basic types of partially filled pipe flows:
(1) steady-uniforn flows; (2) steady-varied flows; and (3) unsteady or unsteady-varied flows.

'Figures in brackets indicate literature references at the end of this paper.
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Establishment of unsteady-uniform flows is practically impossible [9,10]. Also, considering the
effects of gravity the state of a partially filled pipe flow may be subcritical (Froude number, Fr,
less than unity), critical (Fr equal to unity), or supercritical (Fr greater than unity). These three
basic types of flow can be further described as follows:

Steady-uniformflows. The flow parameters, that is volume flow rate or discharge Q, depth h,
and velocity V, do not vary with respect to both T and x. Also, the energy line, water surface,
and pipe axis are parallel. Any one of the flow parameters (Q, h, or V) completely define the flow
conditions for a given pipe, i.e., if Q is given, h and V can be easily determined by the use of the
Chezy or Manning formula [9,10].

Steady-varied flows. The flow may be either gradually or rapidly varied. For steady varied
flowsj Q is constant with respect to both T and x, but h and V are constant only with respect to T
and vary with X. The energy line, water surface, and pipe axis are not parallel. There are several
(about 12 for gradually varied flows) possible water surface profiles or flow profiles for steady
varied flows. For given value of Q through a pipe, values of h and V at any section of the pipe
may be determined by numerical integration of the steady-varied flow equations.

Unsteady flows. Unsteady flows may be either gradually varied unsteady flows or rapidly
varied unsteady flows. Short duration unsteady flows through slightly-pitched-pipes, as in
horizontal branches of gravity drainage systems when a plumbing fixture is discharged into the
drains serving the fixture, are often called surge flows. For surge flows, the volume flow rate of
the liquid entering the pipe rises rapidly from zero to a peak value, and then gradually falls off to
zero. A surge flow attenuates as it moves downstream, i.e., the peak values of the flow parameters
decrease with an increase in axial distance from the pipe inlet.

For unsteady flow, the flow parameters vary with both T and x. Also, the energy line, water
surface, and pipe axis are not parallel. Owing to their complexity, the exact solutions of the
unsteady flow equations are not possible. However, various finite difference schemes have been
developed to obtain approximate solutions of the unsteady flow equations. Numerical integration
techniques applying the method of characteristics may be used to estimate the attenuation of a
surge flow along the length of the pipe and to obtain approximate values of the flow parameters
[5,9-13].

The application of such finite difference techniques has been the subject of a parallel study at
NBS to investigate the motion of solids in partially filled pipes [8]. In this approach, motion of the
solid is predicted by an empirical equation linking the disturbed flow depth across the solid to its
velocity and other flow parameters. The flow-induced motion of a solid predicted by this
technique is qualitatively consistent with the observed data.

2.2 Description of Liquid-Solid Interaction and the Motion of a Solid

Let us visualize what happens in the case of a single cylindrical solid, initially at rest in a
slightly pitched horizontal pipe, as a partially filled pipe flow approaches the solid. The stationary
solid partially blocks the flow and the liquid rushes through the crescent shaped space between
the solid and the pipe wall. In addition, when an open channel flow is obstructed by the presence
of an obstacle (such as a bridge pier, dam, sluice gate, or a weir), the depth of the liquid surface
upstream of the obstacle becomes greater than it would have been for unobstructed flow. This
phenomenon is called the "backwater" effect of the obstruction on the flow and has been studied
by many researchers, see, for example, references [9] and [10].

The extent of this effect is greatly dependent upon the size of the obstruction and the state of
the flow. Flow at the obstruction is either subcritical or supercritical [9,10]. For example, if the
obstructed flow is subcritical, the backwater will extend a long distance upstream relative to the
dimensions of the obstruction (fig. 1). If the flow is supercritical and the obstruction is relatively
small, the water surface adjacent to the upstream end of the obstruction is disturbed and the
disturbance does not extend further upstream. However, a relatively large obstruction may cause
the upstream water level to rise above the critical depth and cause the backwater effect to extend
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a short distance upstream (fig. 1); this backwater profile may be terminated by a hydraulic jump.
The backwater effect of solids on the flow was observed during the recent experimental study by
the author [3,4]; this effect is shown in figure 2.

As a result of the backwater effect, there is a buildup of some water upstream of the solid

causing a hydrostatic head difference along the solid. Also, curvature of the stream lines around
the upstream end (or the nose) of the solid may increase the flow velocity at that point. Eddies
may be formed along the sides and in front (downstream) of the solid as indicated in figure 3.

The stationary solid, in addition to its weight, is also subjected to the following water flow-
induced forces in the downstream direction: (1) a pressure force due to the unequal water depth
and unequal velocity along the opposite ends of the solid; and (2) a shear force due to the
streaming of water past the solid. The solid is also subjected to similar forces due to the induced
air flow in the pipe; the effect of air flow related forces, however, is negligibly small. In addition,
the solid is also subjected to a buoyancy force, a reaction force at the solid-pipe contact surface,
and a force due to the friction between the solid and the pipe wall.
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Figure 1-Schematic of the backwater effect of an obstruction on an
open channel flow.

Figure 2-Photograph showing the "backwater effects" of a solid on
the partially-filled pipe flow.

Figure 3-Schematic of a cylindrical solid in a partially-filled pipe
flow showing eddies and backwater effects.
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The result of these forces may not act at the solid's center of gravity, thus producing a net
moment which may cause a slight upward tilt of the nose of the solid, a slight lateral displacement
of the solid, or both. Any shift in the position of the solid would cause changes in the magnitude
and in the line of action of the forces acting on the solid. As a result, the solid may oscillate with
respect to its original position for a while or it may take up a new position so that the net moment
is zero. However, for the force analysis of the flow-induced motion of the solid it will be assumed
that the axis of the solid remains parallel to the pipe axis.

The magnitude of the liquid flow-induced forces acting on the solid increases with an increase
in the liquid flow rate through the pipe. The solid remains stationary until the sum of forces acting
in the downstream direction exceeds the force due to static friction between the solid and the pipe
wall. Once this friction force is exceeded, the solid starts to move. The instantaneous water flow
rate, which is just sufficient to start the motion of the solid, is called the "threshold flow rate;" and
corresponding flow parameters are called "threshold flow parameters."

When the solid is in motion, the friction force is reduced because the coefficient of sliding
friction is less than that of static friction. The pressure and shear forces acting on the solid in the
downstream direction are also reduced because of a decrease in relative velocity between the
water and the solid. The shear force over some parts of the solid surface may even reverse in
direction if the solid velocity is higher than the local liquid velocity. This situation is likely to
occur near the interface between the bottom of the pipe and the solid. The eddies along the side of
the solid and the flow in the thin water layer between the solid and pipe invert may also give rise
to a lift force, causing a further reduction in the friction force. As a consequence, the solid
accelerates and/or decelerates until it attains an "equilibrium velocity" and a balance of forces
develops. The "equilibrium velocity" of the solid (except for steady-uniform liquid flows), does
not have a constant value because the velocity of the carrier fluid for steady-varied and surge
flows is not constant along the length of the pipe. During the motion of the solid, if the solid
velocity is not equal to the local liquid velocity, the liquid continues to flow past the solid.

The solid will continue to move with the equilibrium velocity as long as there is sufficient
liquid influx to balance the forces acting on the solid. However, if the flow of carrier fluid through
the pipe is of steady-varied or surge flow type, then the liquid flow-induced forces acting on the
solid may decrease as the solid moves downstream due to a decrease in the liquid velocity, liquid
depth, or both. As a consequence of the decrease in the forces, the solid decelerates, from
equilibrium velocity and may come to rest,

In general, there are three different phases of liquid flow-induced motion of a solid in partially
filled pipes: (1) the solid accelerates from rest to equilibrium velocity; (2) the solid continues to
move at the equilibrium velocity; and (3) the solid decelerates from the equilibrium velocity,
particularly if the carrier fluid flow is of steady-varied or surge flow type.

2.3 Force Balance and Equations of Motion

The analysis presented below is one-dimensional and deals with the water flow-induced
motion of the solid in the downstream direction. Also, it is assumed that the axis of the solid
remains parallel to the pipe axis, i.e., any shift of the position of the solid with respect to the pipe
axis is neglected.

Various forces acting on a cylindrical solid due to water flow in a partially filled pipe were
described in- the previous subsection. These forces and the coordinate axes are shown in figure 4.
Summation of x- and y-component of forces yield the following:

2Fx=T~l-F ,,+ F,~+F sinO-F, -Fb sin6-F6 sinO=rna (1)

IF,=R,- W, cosO-4-Fb cos±+Fcos6=O (2)

where the symbols are defined in the nomenclature. The brief descriptions and mathematical
formulations of the force terms are given below.
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Figure 4-Forces acting on a solid in a pipe flowing only partially < v SURF f
full. L

The buoyant force, Fb, is taken equal in magnitude to the weight of water displaced by the
solid. (Due to local flow acceleration, Fb may actually be somewhat less than the weight of the
displaced liquid.) It acts in a vertical direction and its line of action passes through the centroid of
the volume of water, Vwd, displaced by the solid. Both the magnitude of F4 and the location of its
line of action will vary with the variations in the magnitude and shape of VWd. Since the stream
depth varies along the length of the solid, the magnitude of F, may be expressed as:

rX'
Fb=pg Aw dx=pg V~d=pg L A (3)

where A,,= the value of the wetted cross-sectional area of the solid averaged over L (the length of
the solid).

The friction force, F,' is due to the friction between the solid and the pipe wall in the
presence of water. The value of Ff is at maximum when the motion of the solid is impending. The
magnitude of F. decreases when the solid starts to move because the coefficient of dynamic
friction is less than that of static friction. The magnitude of F. will decrease further if a lift force is
generated and it will be equal to zero when R. is zero. The value of F. may be found as:

F,=??R,, or substituting R. from eq (2)

Ff='q{(W -Fb))-F/}cosO ='(Wb-Ff) cos6 (4)

where

Wb=(Ws-F,)=pgL[o-A,-A.w] (5)

The lift force, F., depends on the water solid interaction. It is due to the flow-produced forces
on the solid in a direction upward from the pipe wall. Its magnitude and center of action will
depend upon the density and size of the solid, the size of the pipe, and the local characteristics of
the flow. Force F. may be assumed to act in a direction parallel to Fb and it further reduces the
magnitude of Wb The magnitude of JE may be assumed to vary between zero to a maximum value
of Wb. The force F. may be written as:

F. = Ce Wb (6)

where C> is a lift coefficient which is a function of the flow velocity relative to the solid. The
value of C> varies between zero and one; however at the present state of knowledge, C( cannot be
predicted from theory alone.
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The pressure forces F>, and Fp2, respectively, act on the nose (upstream end) and tail
(downstream end) of the solid. The magnitude of pressure forces is dependent on the water depth
which is dependent upon the size of the pipe, depth of the flow stream, and the relative velocity
between the solid and water. The pressure forces F,, and F,2 may be written as follows:

Fp,=pgW+U1/2g], As, (7)

F, 2 =PgWT+ U'/2g 2 A.~ 2 (8)

where subscripts 1 and 2, respectively, refer to the nose and tail of the solid.
Ur= V-U= relative velocity between the solid and the water
3 =the distance from the water surface to the centroid of the wetted cross-sectional area

of the solid, A,,.
For a right circular cylindrical solid situated with its axis parallel to the axis of the pipe as

shown in figure 3, 7 may be expressed as:

y=( { ydA )IA, =d{[2d 2(E-2) 3 1 2/3A,,]-(l-2c)/2} (9)

where
rh

AsW= f dAs =[cos-'(1-2e)-2(l-2c)V/?7h)]d 2/4 (10)

E =y/d, and y equal to the distance of the water surface from the bottom of the solid. If the solid is
in contact with the pipe, then 7 may also be expressed as:

= [1 XydA]/Aw=D{2D2(X_2)3/2/3Ac_(1-2X)/2} (11)

and
rh

A,= JdA,=[cos-'(1-2A)-2(1-2;)VI-)] D 2/4 (12)

where X=h/D, and h is the distance of the water surface from the bottom of the pipe.
The net pressure force, F,, acting on the solid in the downstream direction (or x-direction)

may be obtained as:

F =Fp,-F"2 =pg{f[K+ U 2/2g]1A 8._-[+ U T/2g] 2 A,, (13)

The shear force FJ acts over the entire wetted surface of the solid in a direction parallel to the
direction of flow. The shear force is dependent upon the size of the solid, the surface roughness of
the solid, the depth of flow stream, relative velocity between the solid and the water, and water
viscosity. The shear force F, may be expressed in a formulation similar to the formulation of the
shear force acting on the flow due to pipe friction (or boundary layer shear). The velocity and
depth of flow varies along the length of the solid, and F. may be formulated in terms of the
average values of the variables averaged over the length of the solid as:

Fs=Ts LPw (14)

where

-{- { IPsw dx=co&'(l-2c)d=average value of wetted perimeter of the solid, averaged over
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L, and

7,, =average value of shear stress due to water flow on the solid.

The relationship of the shear stress, 7-,, to the local flow parameters is not known and needs
development.

Substituting the expressions for various force terms from eqs (3), (4), (5), (13), and (14), the
equations of motion for the solid may be rewritten as:

p{[gf+ Us/2]A,.,-[gkF+ U2/2] 2A sw2}+ r,, LP5

+ Wb sinO(l-C 1 )--qWbcosO(l-C,)=ma (15)

Equation (15) is free from any assumption regarding the shape or size of the solid or the type
of liquid flow in the pipe. Various terms have been formulated for a right circular cylindrical solid
in motion or at rest in a pipe partially filled with flowing water; however, eq (15) gives the force
balance on a discrete solid of any shape or size moving or at rest in a pipe totally filled or partially
filled with flowing liquid.

For example let us examine the case of a right circular cylinder at rest in a pipe filled with
flowing liquid; for this case.

a=O, C1=O,

A, =A, 2=d , 2/4,

Y.=y2 =d/2,

Pw = Erd,

U., =VI, Ur2= V2, and

(V 1
2- Vl)/2=AP across the solid.

Now substituting these values in eq (15) we get

pAPA8 = 7-, LP+ Wssin6-rWbcosO (16)

Equation (16), when adjusted for proper direction of various forces, is identical to eq (12-54)
of reference [2]. For a cylindrical solid moving with a steady speed in a pipe filled with flowing
liquid, eq (15) becomes identical to eq (12-71) of reference [2], after proper directions of the forces
are taken into consideration.

2.4 Force Models to Simplify the Equation of Motion

Equation (15) may be further simplified by combining the flow-induced pressure and shear
forces to obtain a longitudinal flow-induced thrust force acting on the solid as:

F. 8-Wb(l-C([71cosO-sinO]=ma (17)
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where,

F.,=F,+F,=pC Uwher A/2 (18)

and where C, is a coefficient of the flow-induced force acting on the solid and is expressed by the
following:

C,=(2/U 2HA, )[gj+ U 2/2), A,~,-(go+ U ,/2)2 As 2 + rw LPF] (19)

To further simplify eq (19), the force F,, and the buoyed weight, Wb, of the solid may be
expressed:

Fws=PCr[U r./2] A,, (20)

Wb=pgL[wrA,-Ar.i (21)
where

Uro = V.- U

A... =area of the nose of the solid wetted by the free stream depth, h. defined as the stream depth
corresponding to the free stream velocity V0.

The quantity V. is the "free stream velocity," that is, the average velocity of water in the absence
of a solid. For a steady uniform flow, V. is the free stream velocity of flow in the pipe; for a
steady (constant flow rate) gradually varied flow, V. is the free stream velocity at location x,; i.e.,
the axial distance corresponding to the position of the nose of the solid in the pipe; and for an
unsteady, or surge flow, V. is the free stream velocity at location x, and at time T., i.e., the time at
which the nose of the solid is at location x,.

The quantity C, is a coefficient of thrust based on the "free stream velocity." The coefficient
C, is similar to a well known quantity Cd, "the coefficient of drag," for submerged bodies in
infinite flow streams; here the subscript r is used to emphasize the thrust force exerted by the
flowing liquid on the solid and the finite size of the flow field. Also, the effects of a solid on an
infinite flow field are negligible and the drag coefficient, Cd, is taken as independent of the
quantity Aw, /A, 0 (i.e., the ratio of the wetted cross-section area of the solid and the free stream
flow area). Depending on the cross-section areas, the effect of a solid on a partially filled pipe flow
may be substantial and should be taken into consideration. Hence, the thrust force coefficient C, is
considered to be dependent upon the quantity Asw0 /A w0

The exact relationship between C, and Asw IA , is complex even for a steady uniform flow
condition. The approximate value of F. may be obtained by assuming that the coefficient C, can
be expressed as:

C,= I +Aswo /Awo (22)

Substituting C, from eq (22) into eq (20), F,, or F, may be expressed as:

F~,=Fr=p1±+Asw /Awj [U J2]Ansr (23)

where F, is the flow-induced force acting on the solid, the subscript v is used to indicate that the
force is based upon free stream velocity.
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The validity of the assumed expression for C, may be examined by considering the following
two limiting conditions: (a) the solid in an infinite flow field; and (b) the solid completely
blocking the flow.

For the first case, when A., co; then A,,. IA, > 0. In this case,

Fr-#p[U2./2] Aw. (24)

Equation (24) represents the approximate value of the drag force acting on the cylinder in an
infinite flow field with its axis parallel to the free stream velocity, since Cd for such a cylinder is
nearly equal to unity [13].

For the second case, when A,,, -A.O; then Asw /Ag>,*l. In this case,

F,=p[U'0 oAsw. (25)

Equation (25) represents the case of a jet impinging on a flat plate, where the force acting on
the solid (i.e., the flat plate) is equal to the total flow momentum relative to the solid [14,15].

Substituting for Wb and F, from eqs (21) and (23), respectively, the equation of motion for the
solid, i.e., eq (17) may be rewritten as:

p(l +As~ /ABe)(U I /2)Aw 0 -pgL(arA,-Aw3)[71cos6-sinI](l-C6 )=ma (26)

An alternate expression for the longitudinal flow-induced force, F.,, acting on the solid may
be obtained by considering the "momentum flux" or "specific force," M, of the free stream
impinging on the solid as discussed below. 2 The momentum flux, M, of an open channel flow is
defined as:

M= [ fydA + Q V/g] = (+ V 2/g) A w. (27)

Force F,, may be expressed as

Fws=F.=pg(F+ U2, /g)Aw.-F 2, (28)

where Fm is the flow-induced force acting on the solid, the subscript m is used to indicate that the
force function is based upon the free stream momentum flux, and F2 represents the force acting
on the downstream end of the solid.

When Us= 0, Ur = V and

Fws=Fm = pg(Y+ V 2/g) Aw 0-F2. (29)

The first term on the right-hand side of eq (29) represents the force of an open channel flow
on an obstruction, such as a sluice gate or a bridge pier, if the force F2 is negligible. Such a
situation is likely to occur only initially when the flowing liquid first contacts the solid. However,
as soon as some liquid flowing through the crescent shaped space between the solid and the pipe
wall reaches the downstream end of the solid, the liquid fills the portion of the pipe cross-section
adjacent to the bottom of the pipe to form a region of eddies as shown in figure 3. The velocity

2The quantity M has been variously called the "momentum flux," the "specific force," the "momentum function," the
"total force," the "force plus momentum," or briefly the "force" of a stream 19,101.
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relative to the solid of the liquid adjacent to the downstream end of the solid is zero; the depth of
this liquid is smaller than the free stream depth except when the buoyed weight of the solid is
zero. When the buoyed weight of the solid is equal to zero then the depth of liquid adjacent to the
downstream end of the solid is equal to the free stream depth. Hence, it may be assumed that the
force F2 is a hydrostatic force having a value equal to a fraction of the free stream hydrostatic
force as:

F2 =pg (oASWVT (30)

Substituting F2 from eq (30) into eq (28), eq (28) may be rewritten as:

Fmn=Fws=Pg(l O-A % YAswo+pU 20Aw. (31)

The first term on the right-hand side of eq (31) is equal to the net hydrostatic force acting on
the solid and is equal to zero when Wh is equal to zero.

Substituting for Wb and Fws, respectively, from eqs (21) and (31), eq (17) may be rewritten as:

pg (A )A Aso+gpAU 20 AA A )[77cos6-sinbl(l-C,) =ma. (32)

A comparison of eqs (23) and (31) indicates that at identical flow conditions, the magnitude of
force Fm is larger than that of force F,.

Considering the force and mass balance for the water over the length of the pipe, L,
containing the solid, the continuity and momentum equations for water may be expressed as
follows:

continuity, Q,-Q2=a/aT { Adx=(aA/aT)L; (33)

momentum, pg(M,-M2) +pgA~!sin6 L -pgA;i L Sf-P,. = -p - (AV)L (34)
aT

where

M=(jT+ V2/g)AW,

S,= r7p/vR =V 2 /C 2R = n2 V 2/R4/3i

pgAL sinO= =W sinO

TP,=average shear stress due to pipe on the water flow,

and

Fsw=-Fw,=the flow resistive force exerted by the solid, and F,, has already been defined in eqs
(18), (23), or (31).

Now, if the solid is of infinitesimal length, then eqs (33) and (34) take up the more familiar
forms, i.e., the equation for unsteady flow in open channels, e.g.,

when,
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L=Ax,> dx, then

aQ/ax+aA/aT=0 (35)

or

paM/ax+pg AW(SO-S,)-a(FSj/ax=- ppaQ T. (36)

Also, the resistance due to the solid may be expressed in a manner similar to the flow
resistance due to the pipe wall as:

a(F 5.)/ax=pgA. Sf5

and eq (23) may be rewritten as:

paM/ax-pg AW(SO-Sf-SfS )=-p aQlaT (37)

where S, may be expressed in a manner similar to S., as

Sfs U02 /1CR-n U 2/R4/3,

however, in this case coefficients C, and n, are not constant and are not known. In the absence of a
solid, eq (37) becomes

pg aM/ax+p aQ/aT=pgA,(S-S,) (38)

For steady uniform partially filled pipe flows, parameters, Q, V, and h, are constant
throughout the pipe; and for a given value of Q, the values of u and h can be determined using the
Manning equation [9,10]. Also, for given values of Q, pipe variables (D,n,S), and solid variables
(d,L,a-), the force F,, varies only with the solid velocity and eqs (26) and (32) can be integrated in
closed form.

For steady-varied and unsteady flows, eqs (35) and (38) may be solved numerically to yield
the free stream flow depth and velocity along the length of the pipe. From this solution local
values of F., and Wb can be obtained and substituted in eqs (26) and (32). Equations (26) and (32)
can also be solved numerically. The numerical solutions of these equations are beyond the scope
of this study. However, the effects of relevant variables on various states of the solid motion may
be examined, without loss of generality, for steady-uniform partially filled pipe flows. The
solutions of eqs (26) and (32) and the effects of relevant variables on various states of the motion
of a solid are discussed in the following section.

3. Solutions of the Equation of Motion for Steady-Uniform Liquid Flows

The three states of motion of the solid that are considered below include: (1) the threshold
conditions, when the motion of the solid is impending; (2) the accelerating motion of the solid, the
increase of the velocity of a solid from zero to equilibrium or maximum velocity, U., as it travels
downstream; and (3) equilibrium velocity conditions, that is, when the solid has attained the
equilibrium velocity.

Before proceeding with the solutions of the equation of motion for the solid, it is instructive
to describe the relationships of various flow parameters to each other and to the pipe variables for
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steady-uniform liquid flows. The volume rate of flow, Q, is considered the controlling flow
parameter for this study. For a given value of Q and pipe variables (D, n, and S), the value of flow
depth (A) and water velocity (V) can be computed by the use of the Manning equation as [9,10]:

Q= (A "R213 S112)ln (9

V= Q/Aw (R2/3,S 12)ln (40)

where

R, = (D/4)[l -2(l-2X)(X-X2) "2/cos7'(l-X)] (41)

X=h/D,

and A. is given in eq (12).
The momentum flux or specific force, 21, defined in eq (27), may be computed from A and V.

The flow specific energy may also be computed from h and Vas:

E=h + V 2,g (42)

The quantities A, V, M, and E increase with an increase in Q. For a given flow rate Q,
quantity h increases with an increase in n and decreases with an increase in D and S; the quantities
V, M, and E increase with an increase in S and decrease with an increase in D and n. Variations of
h and V at a given value of Q, due to variations in D, n, and S would affect various terms in the
equation of motion of the solid, i.e., eqs (15), (26), or (32).

3.1 Threshold Conditions

The minimum value of steady-uniform flow rate required to start the motion of a solid, i.e.,
threshold flow rate, Q,, and other threshold flow parameters may be determined by solving eqs
(26) and (32) for the threshold conditions, i.e., when the motion of the solid is impending. At
threshold conditions, 71 represents the coefficient of static friction, m7,, between the solid and the
pipe wall in the presence of the liquid. The determination of the value of m% in the presence of the
liquid is complex and considered beyond the scope of this study. Nevertheless, '% is one of the
more important variables because it is the major determining factor of the resistance to the motion
of a solid. Also, the quantities a, C, and U, are all zero at the threshold conditions. For these
conditions, eqs (26) and (32) may be rewritten as:

VO2-2gL(orAs /AW_)7(-S)A-}( ASWO 1,4O)=0 (43)

and

VI_-{gL(crA , /A , -1)[3(1-S2 )t '2-S]-gyll-Ao /aA}l = (44)

where S=sinO=slope of the pipe,

As=7rd 2/4,

and the other quantities have been previously defined. The free stream liquid velocity V., is
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related to the free stream water depth h., through the free stream hydraulic radius R., by the
Manning equation as indicated in eq (40).

Substituting for V. from eq (40), eqs (43) and (44) may be expressed as:

(S'12 R 2/3 /1n)2-[gL(o-A, /Asw.- l)(7Q _(l-S2)112-S](A wo /A ,) = 0 (45)

and

(S"'2R2/3/n)2-{gL(orAs /As l-1))[ 7A,(1 1-S2)112 -]-gji-A,,A0 /crA3} =0 (46)

Since the quantities A,.., A ., Ro, and T. are all functions of the free stream depth, h., eqs (45)
and (46) may be solved by successive iteration to yield a value of h0 for any values of the variables
D, n, S, d, L, .-, and 7,75 This value of the stream depth is the threshold stream depth, h,, and the
flow rate corresponding to h, is the threshold flow rate, Q,. Knowing the value of h,, quantity Q,
can be computed by eq (39). The value of threshold flow parameters, i.e., V,, M,, and E, may be
computed by the use of appropriate equations.

Equations (45), (46), and (39) are applied to examine the effects of the relevant variables on
the threshold flow rate in the following section.

3.1.1 Effects of the Variables on Threshold Flow Rates

Equations (45) and (39) are applied to examine the effects of the variables on Q,. The seven
variables under consideration are D, n, S, d, L, a-, and 775 The variations of Q, due to variations in
7,7 and another variable, while the remaining five variables are held constant are presented in
figures 5-11. An examination of these figures indicates that the value of flow rate, Q., required to
initiate the motion of a solid increase with: an increase in the values of 71,, D, n, d, L, and oa; and a
decrease in the value of S. These results also indicate that for a given solid (i.e., fixed values of d,
L, cr, and j) and a given value of Q, the chance of initiating the motion of the solid can be
increased by selecting a pipe with a smaller diameter and with the lower roughness, (i.e., having a

1.5 1
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lower value of the Manning coefficient, n), or by increasing the slope or pitch of the pipe.
Equations (45), (46), and (39) are applied to examine the effects on Qi of utilizing the two

force functions, i.e., the force function F. based on the free stream velocity (eq (23)) or the force
function F. based on the free stream momentum flux (eq (31)). The variations of Q. due to
variations in 71., while all other variables are held constant, for the two force functions are shown
in figure I11. An examination of this figure indicates that the values of Q. obtained by the use of F,
are larger than those obtained by the use of F.. The smaller values of Q. resulting from the use of
force function Fn are consistent with the larger magnitude of force F., given by F. than by F,
under identical conditions. It suggests that the selection of a proper force function is an important
factor in the development of mathematical models for predicting the motion of solids in~ partially
filled pipes.

3,2 Accelerating Motion of a Solid

Accelerating motion of a solid, i.e., the increase of the velocity of a solid from zero to U., as
it moves downstream in the pipe may be examined by solving eqs (26) and (32). The lift
coefficient, C,, may be taken as zero without any loss of generality. When the motion of the solid
is initiated, X represents the coefficient of kinematic or sliding friction, 77d, between the solid and
the pipe wall. Magnitude of %11 is less than that of 71.; it may vary with the velocity of the solid
relative to the pipe wall and it may further decrease if a liquid film is formed between the solid
and the pipe wall. However, for the purpose of this study, 71, is considered to be a constant
quantity and its value is assumed to be 75% of that of 71.
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Substituting C,, equal to zero, pa-LA, for the mass of the solid, m, and dU/dT for the
acceleration of the solid, a, into eqs (26) and (32) and rearranging the terms the equations may be
rewritten as:

(VO-)) 2 -V2= /N dU/dT

where, vZ= 2gL(aA /A,M,-l)[0.75,q(l_-S2)'72 -S]/(l +Aw,, /AJ0 )

(47)

(48)

(49)and, I1N=2o-LA, /[A,Wojl+A~,. A~O)]

and

(M-U _v, =(11/N,)dU/dT

where
V S=gL(rAr, /A,..,-S)[0.75'5,(lS 2)1-2 _-S]=-gSl -A(I,, /aA) (51)

and

l/N,=a LA,/A,,,.- (52)

(50)

As indicated earlier, for a given flow rate, the free stream depth and velocity are constant
throughout the pipe. Hence, for a given value of Q,, and the variables D, n, S, d, L, a, and 71,, the
quantities h,, and VO are all constants; and the only quantity in eqs (47) and (50) that varies with
time is the velocity of the solid, U. Equation (47) may be rewritten as:

dU
(V,,-Lf-v 2 =NdT. (53)

The integration of eq (53), for values of v greater than zero and for v equal to zero yields the
following:

(1/2v)ln (V-Uv )±+C,=NT, for v>0

l/(V,-U)+C2=NT, for v=0
and

(54)

(55)

where, C, and C2 are constant, and can be evaluated from the initial
For this initial condition eqs (54) and (55) yield,

condition, i.e., at T=0, UJ=0.

C,=(I/2v) In [(V,+v)/(V,-v)],

and C4= I/V0 .

Substituting for C, and C2 in eqs (54) and (55), respectively, and rearranging terms, these
equations may be rewritten for U, as:

U= VO-v (I +Bc) (V,,2 -v 2) tanh(bT/2)
(v+ V. tanh(bT/2) '
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and

U= V, 2NT/(I + V0 Nt), for v=0 (57)

where, B= (V.-v)/(V, + v)

and b=2 vN.

Equations (56) and (57) give variations of U with time. These-equations indicate that the value
of maximum velocity attained by a solid is equal to V.-v when v is greater than zero and VO when
v is equal to zero.

Equation (56) indicates that U will be equal to Um at a time, T, for which tanh (bT/2) is unity
or when bT/2 is equal to or greater than 6.5. Equation (57) indicates that U will be equal to U. at
a time, T, equal to infinity. Or

Urn=Vo-v at T=6.5/ VN, for v>0 (58)

Urn=VoatT= o, forv=0. (59)

Since U=dX, /dT, eqs (56) and (57) may be integrated to determine the distance, X,, traversed
by a solid. Initially, at time T, equal to zero, X, is zero, for this initial condition integration of eqs
(56) and (57) yields the following expressions for X,.

X,=(V.-v)T-(l/N) in ( I B ), for v>O (60)

and

X,= V.T-(I/N) In(l + V. NT), for v=O. (61)

Equations (60) and (61) give the variation of X, with time. Equations (56) and (60) may be
applied simultaneously to study the variations of U with the axial distance or as the solid travels
downstream from its starting position for v greater than zero. And for values of v equal to zero,
eqs (57) and (61) may be applied simultaneously to examine the variations of U as the solid travels
downstream. Solutions of eq (50), i.e., the expressions for U and X, corresponding to the force
function Fm may be obtained by replacing N and v by N, and v, in eqs (56) to (61). The effects of
the variables on the accelerating motion of a solid are examined below.

3.2.1 Effects of the Variables on the Accelerating Motion of a Solid

Equations (56) through (61) are applied to examine the effects of Q and the variables D, n, S,
d, L, a-, and 71, on the accelerating motion of the solid. The velocity-histories of a solid, that is, the
increase with time of the nondimensional velocity, UIU., of a solid from 0.0 to 0.99, are shown in
figures 12-20. Each figure shows the effects of one variable on the velocity-history. An
examination of these figures indicates the following: (1) the flow rate Q and the variables D, n, S,
and a- do not have a significant effect on the velocity-history of a solid; (2) the variables d, L, and
71, do affect the velocity-history, and the time required for U to be equal to U. increases with an
increase in d, L, and 71,; and (3) the velocity-history is not significantly affected by the force
function (fig. 20).
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The velocity-distance profiles of a solid, that is, the variation of the velocity of a solid with
the nondimensional axial distance, X/D, traversed by the solid are shown in figures 21-29. Each of
these figures shows the effect of one of the variables (Q, D, n, S, d, L, tr, 71,, and F, or Fm) on the
velocity-distance profile of a solid. An examination of these figures indicates the following: (1) the
distance traversed by a solid during its acceleration from rest to a velocity of 0.99 U. increases
with an increase in Q, S, and L, and decreases with an increase in D, n, d, a-, and 71.; (2) the
velocity, U, of a solid at a given axial distance increases with an increase in Q and S; (3) the value
of U at a given axial distance decreases with an increase in D, n, d, L, a, and 71; and (4) the
velocities of a solid at all axial distances are higher when Fm is used than when F, is used.

3.3 Equilibrium Velocity Conditions

The equilibrium velocity of a solid, for steady-uniform flow is a constant quantity, and it is
the maximum velocity that a solid can attain for a given value of flow rate. The expression for the
equilibrium or maximum velocity, U., is given in eq (58) for v>O, and in eq (59) for v=0. The
expression for U, may also be obtained by letting dU/dT equal to zero in eqs (47) and (50), and
are:

Um= V,-v, for force function F,, (63)
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Figure 29-Solid velocity versus nondimensional axial distance, for
different force functions.

and

Um=oV.-v1, for force function FmI (64)

where, v and v, are given in eqs (49) and (52), respectively.
The effects of the variations of flow rate Q and various variables U. are examined below.

33.1 Effects of the Variables on the Maximum Velocity of a Solid

Equations (39), (44), and (63) are applied to examine the effects of the liquid flow rate, Q, and
of the variables D, n, S, d, L, a-, and qj, on Um. The variations of Um due to variations of Q and one
variable, while the other six variables are held constant, are shown in figures 30-37. The
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corresponding variations of V. are also shown in these figures for comparison. The maximum
value of Q considered for this study is equal to 2.0 I/s (or about 31.4 gal/min); this value of Q
corresponds to the approximate value of the peak water flow rate from water closets. An
examination of these figures indicates the following: (1) both VO and U. increase with an increase
in Q; (2) as indicated earlier, flow velocity, V., increases with an increase in S and a decrease in D
and n; and (3) the maximum velocity of solid, U., increases with an increase in S, and it decreases
with an increase in D, n, d, L, t-, and 71.
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Figure 30-The maximum velocity, U.,
different values of pipe diameter.

of a solid versus Q., for Figure 31-The maximum velocity, U., of a solid versus Q., for
different values of Manning coefficient.
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Figure 33-The maximum velocity, U., of a solid versus Q., for
different values of solid diameter.
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Equations (63) and (64) are applied to examine the effects of the two force functions on Um.

The variations of U. due to variations of Q, for a set of values of the variables are shown in figure

37. An examination of this figure indicates the values of U. are higher for F,, than those for Fv

The larger values of U. attained by a solid when force function F. is used, are consistent with the

larger magnitude of force given by F,, than by F, under identical conditions.
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3.4 Comparison with Experimental Data

An experimental study of the motion of single solids with steady uniform flows in partially
filled pipes was carried out under the sponsorship of NBS at Brunnel University, U.K. [16]. In this
study, the solid was introduced into the established flow with some initial velocity via a 50 mm
tube and a 45' elbow and the effects of some variables (Q, S. L, d, and a-) on the velocity of the
solid (U) were examined. The details of the experimental equipment and procedures may be found
in reference [16]. Examples of typical data from reference [16] are reproduced in figures 38 and 39.
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Figure 38-Solid velocity measured along the 100 mm diameter pipe
compared with the free stream water velocity (Ref. 16).

The experimental data indicate that the effe
velocity predicted by the analysis (figs. 21-2

Figure 39-Solid velocity measured along the 100 mm diameter pipe
compared with the free stream water velocity (Ref. 16).

cts of the variables (Q, S, L, d, and oa) on the solid
9) are qualitatively consistent with the data of

reference [16]. The observed values of the maximum solid velocity are fairly close to the results
predicted by eqs (56) through (59) for the magnitude of 71, equal to about 0.1, except for the
experiments with a flow rate of 2 I/s. The data for the flow rates of 2 I/s indicate that the solid
velocity (U) is somewhat higher than the free stream velocity (V.) of the carrier liquid calculated
from the measured values of flow depth. These results may be explained as follows.

When the quantity W(I-C,4) is equal to zero, then the solid no longer drags on the pipe wall
but moves as a waterborne object situated in the flow somewhere above and away from the pipe
wall. The free stream velocity (VO), calculated by the Manning equation or by the measured flow
depth, represents the average value of the flow velocity averaged over the wetted portion of the
cross-section area. Considering the velocity distribution of a partially filled pipe flow at a pipe
cross-section, the value of average velocity, V. may be somewhat less than the velocity of the
liquid adjacent to the waterborne solid moving with velocity, U. However, the available data are
too few to draw any definite conclusions.

Equations (56) through (59) are not capable of predicting this phenomenon. Since the analysis
leading to these equations has been based on free stream conditions derived from the Manning
equation, it limits the maximum value of U to V.-

Typical data showing the velocity of single solids induced by surge flows in a partially filled
pipe are reproduced from reference [4] in figures 40 and 41. The effects of the variables (D, S, L,
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Figure 40-Solid velocity versus nondimtensional axial distance for Figure 41-Solid velocity versus nondimensional axial distance for
7.6 cm long solids and for water volume-1.5 L, and S=0.04 2.5 cm long solids and for water volue=.5 L, and 5=0.04
(Ref. 4). (Ref. 4).

d, and ah), predicted by the analysis for steady uniform flow are also qualitatively consistent with
the data of references [3] and [41.

The qualitative consistency between the predicted and observed effects of variables on the
flow-induced velocity of a solid confirms the form of the analysis presented. The available
experimental data also illustrate the limitations of the model inherent in the use of free stream
velocity derived from a one-dimensional representation of flow such as the Manning equation.

4. Conclusions

A general equation for the liquid flow-induced motion of a solid is developed. Two alternate
force models, one based on free stream velocity and the other on free stream momentum flux, are
formulated to approximate the flow-induced force acting on the solid. These force models simplify
the equation of motion. The simplified equation is solved for steady uniform liquid flows to
examine the effects of flow rate (Q), pipe variables (D, n, and S), solid variables (d, L, and a-),
coefficient of friction between solid and pipe wall ('11), and the force functions (F, or F.) on the
motion of the solid.

The minimum value of flow rate required to initiate the motion of a solid, or the threshold
flow rate, increases with an increase in D, n, d, L, cr. and 71. and decreases with an increase in S.
The flow rates required to initiate the motion of solid predicted by the use of F, are larger than
those predicted by the use of Fa.

The maximum velocity attained by a solid as well as the velocity of the solid at a given axial
distance of the pipe increase with an increase in Q. and S, and decrease with an increase in D, n, d,
L, cr, and 71,. The qualitative effects of the variables Q., D, S, d, L, and 71, on the velocities of the
solids are consistent with the available experimental data. The velocities of a solid predicted by
the use of F, are lower than those predicted by F,.

The qualitative consistency between the predicted and observed effects of the different
variables on the motion of the solid demonstrates the validity of the analysis presented. To obtain
quantitative agreement between the predicted and experimental results, and to determine which of
the two force models is better suited for the problem it is necessary to determine or assume the
values of the coefficient of friction between a solid and the pipe wall in the presence of the liquid.
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