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The paper describes a new type of calorimeter that can be quickly put into operation for determining
absorbed dose at a point in polystyrene. It also describes a unique method of decreasing drifts in electrical
signals caused by temperature gradients. Two calibrated thermistors were placed close together between
sandwiched polystyrene discs that were immersed in water. The assembly was irradiated with gamma rays
from a cobalt.60 source. The dose rate was about 14 mGy/s and exposure times were about 100 s. The
standard deviation for a daily set of measurements was about 0.7%. A zero heat defect for polystyrene was
assumed. A calculation converted the measurements to absorbed dose in water. The dose in water determined
in this way, and with a graphite calorimeter, is 3-4% lower than that measured in an all-water calorimeter
previously reported. Drifts in electrical signals are eliminated by a resistance-capacitance circuit placed across
a Wheatstone bridge. The rate of potential change across the bridge (caused by the circuit) is adjusted to
have an opposite effect to the drifts in electrical signals produced by temperature gradients within the
calorimeter. The method can be applied to other calorimeters.

Key words: absorbed dose; calorimeter; heat defect; polystyrene; temperature drifts; thermistor; water.

1. Introduction

One purpose of this paper is to report on an
investigation of a calorimeter for measuring absorbed
dose' at a point in polystyrene and converting the
results to also give absorbed dose in water. Another
purpose is to describe a method of balancing drifts in
electrical signals caused by temperature gradients. In
general, the method can be applied to other
calorimeters.

The calorimeter and the method of drift balance
have been briefly described in previous publications
[1,2].2 In the present paper, the calorimeter
(particularly) is described in detail.

Because the standard absorbing material is water [3],
recent investigative studies of a calorimeter for

About the Author: Steve R. Domen is a physicist in
NBS' Radiation Physics Division.

' Absorbed dose is the mean energy per unit mass imparted to
matter by ionizing radiation. The SI unit of absorbed dose is the
gray (symbol Gy). I Gy = I J/kg (= 100 rad).

2 Figures in brackets indicate literature references at the end of
this paper.

measuring absorbed dose at a point in water were
undertaken and reported [4,5]. It was pointed out [5]
that the first major effort in the development of this
type of calorimeter (in overcoming the physical
problems of accurately and efficiently measuring a
temperature rise at a point in water) was successful-
but that the second major effort still remained, that is,
to determine the existence of and corrections for heat
defects in irradiated water (heat defect is the energy
absorbed or released in induced radiation chemical
reactions, being positive or negative depending,
respectively, on whether an endothermic or
exothermic reaction takes place). Under cobalt-60
irradiation, the apparently measured absorbed dose
rate in distilled water is 3.5% higher [5] than results
obtained with a graphite calorimeter [6], the results
being converted to apply to water [7]. Nearly the same
result, 3.8% (derived from comparisons with
ionization measurements), was reported [8] as a result
of measurements made in a copy of the water
calorimeter irradiated with cobalt-60 gamma rays and
with photon beams up to a maximum energy of 25
MeV; but for the case with electrons from 13 to 20
MeV, the results with the water calorimeter were 1%
lower than those derived from ionization measure-
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ments. This lower result does not appear to be in have to encourage its construction and use. In the
agreement with measurements in another copy of the
calorimeter irradiated with 17 and 22 MeV electrons
[9], nor with what would be expected from theoretical
calculations [10,11]. Reference [11] indicates that calo-
rimetric results should be the same for photons as
well as for electrons, assuming that the initial condi-
tions of the water are effectively the same.

Comparison of results with other types of
calorimeters would aid in the possible realization of an
accurate and efficient instrument for use under widely
different irradiation conditions. Such calorimeters
should be constructed of materials having absorption
properties close to that of water and having a
negligible or known heat defect. Polystyrene is such a
possible material. By using the techniques described in
this paper, other materials can be used to compare
their heat defects as a function of accumulated dose-
to investigate them for potential calorimetric use.

Reported results [12] indicate a 0.0±0.8% heat
defect in a polystyrene sample irradiated with cobalt-
60 gamma rays, after a pre-irradiation of about 2 kGy.
Within experimental error, no heat defect was
observed with fast neutrons [13]. Other reported
results [14] indicate that a polystyrene sample (from a
different manufacturer) irradiated with 30-kV x-rays
gave only borderline evidence of a heat defect,
(0.67_0.94)% standard deviation, a constant result as
a function of accumulated absorbed dose. A heat
defect of 0. 1% was reported for polystyrene irradiated
with 1.7 MeV protons ([3], p. 14). Although these are
limited irradiation conditions, the results suggested the
construction and investigation of an absorbed dose
calorimeter in which measurements are made directly
in polystyrene and the comparison of this calorimeter
with the water and graphite calorimeters under a wide
range of conditions.

The present paper describes and reports results of
investigations with a polystyrene-water calorimeter
irradiated with gamma rays from a cobalt-60 source.
This combination of solid and liquid materials makes
possible an efficient instrument that can be brought
quickly into operation and balanced (in contrast to one
with a large solid polystyrene cylinder and no means
of controlling temperature drifts [15]). Advantage is
taken of the mobility of water in quickly bringing it
and a relatively thin polystyrene disc close to a
uniform operating temperature.

Rapid control of objectionably large drifts (caused,
for example, by small remaining temperature
differences between the discs and water, or by
successive runs with collimated beams of low-energy
electrons) is a vital feature that a calorimeter must

water calorimeter previously reported, the drifts were
essentially instantly controlled by making a small
change in electrical power dissipated in the water [5].
In the presently described calorimeter, the drifts are
also rapidly decreased by changing the internal
temperature gradients in addition to applying another
simple technique. This technique consists of merely
changing a charging potential applied to a resistance-
capacitance (RC) circuit placed across a Wheatstone
bridge, to produce a changing potential across the
bridge that has an effect opposite to that caused by
remaining small temperature gradients.

This paper describes the new features and operation
of the polystyrene-water calorimeter in detail.
However, many details are not described or are only
briefly described because the only physical difference
between the present calorimeter and the water
calorimeter is the detector that is used. Construction
features, the bridge circuit, calorimeter setup,
thermistor sensitivity measurements, and corrections
for thermistor power dissipations have been detailed
[5]. The present paper, too, is written in detail to aid
those in particular who may want to construct the
calorimeter and understand its design and behavior.

2. Measurement Theory

Advantage was taken of the low thermal diffusivity
of polystyrene and water, which retard a temperature
change at a point of measurement. Two bead
thermistors were positioned close together between
sandwiched polystyrene discs immersed in water. The
thermistors formed opposite arms of a Wheatstone
bridge to double the sensitivity in comparison with
a one-thermistor bridge.3 The absorbed dose is

D=(l/2)(AR/R)(k')(c), (1)

where D is the absorbed dose,
(1/2) is the result of using two thermistors. to

measure a temperature,
AR/R is the fractional change in the

Wheatstone bridge balancing resistor,
S is the mean fractional change in resistance of

the thermistors per unit temperature rise, and
c is the specific heat capacity of polystyrene.

3The sensitivity could be doubled with a one-thermistor bridge,
by doubling the potential applied across the bridge. This would
quadruple the thermistor power dissipation. Reference [51 points out
reasons for maintaining as low a power level as possible.
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If c is in J/(g-K), D is in kGy. The product
(1/2)(AR/R)(S ') is the temperature rise. The
sensitivity, S, was determined to an uncertainty of
about 0.1%.

The sensitivity is nominally 4% per degree and
decreases by seven parts per thousand per degree
increase at room temperature. The value of c increases
by four parts per thousand per degree at room
temperature. Calculated changes in S and c were
determined by use of a probe mounted inside the
calorimeter and connected to an instrument that
displayed temperature with a resolution of 0.01 K.

The value of c used in this investigation, at an
operating temperature of 22.5 'C, was 1.203 J/(g-K).
This value was calculated from an equation [16]:

c=(104.15)-'(7.7551-10 5 T-2 +0.53447T-41.58)

J/(g.K), (2)

where T is the absolute temperature. One mole of
polystyrene= 104.15 g.

Equation (2) was fitted to results of specific heat
capacity measurements (of various samples of
amorphous polystyrene which had a density of 1.05
g/cm 3) determined by various investigators, from 200
K to 360 K. The reported rms deviation is 0.5%. Only
selective results were used which were judged to
meet satisfactory standards based on experimental
technique, error limits, and accuracy of representation
of the data.

Although a calculated value appears to be a
reasonable result to use in this investigation, attempts
are being made to determine the specific heat of
samples (from which the detector was made) to an
accuracy and precision within a few tenths of 1%.
Any further results or changes will be reported in a
future publication.

3. The Calorimeter

Figure I shows some features of the calorimeter.
Two 0.25 mm diameter bead thermistors are
embedded near the central plane of two sandwiched
discs of clear polystyrene. The central plane is near a
5/cm2 depth in once-distilled water that is partially
electrically conductive. The discs are fastened to three
acrylic rods secured to the bottom of a 30 cm cube
water container constructed of acrylic material
(mounting the rods on a vertical wall, and providing
an entrance window, permits measurements with

THERMISTORS IN BEAM
POLYSTYRENE I ALUK

EXPANDED
POLYSTYRENE

IINUM FOIL

WATER LEVEL

-30cn CUBE
ACRYLIC
CONTAINER

30 cm SDUARE
ELECTRODE

LABAT IC
So ~~POWER

CONTROLLER

Figure 1-Essential features of the absorbed dose polystyrene-water
calorimeter. The "adiabatic" power controller permits a potential
to be applied across the electrodes so that in the vicinity of the
discs the rate of temperature rise of the water, as a result of
electrical power and beam irradiation, is as nearly as possible the
same as that of the discs.

horizontal beams). Two electrodes (30 cm square
stainless steel) for "adiabatic" operation are secured
against opposite walls inside the container (in the
water calorimeter they were the drift control
electrodes [5]). The potential supply consists of a
series-parallel arrangement of four 67.5 V drycell
batteries which provide 135 V across a 10-turn 50-kQ
helipot. Closing switch S. causes heating of the water.
Measurements of potential across the electrodes and
current through the stagnant water permit the
determination of the rate of temperature rise of the
entire water bath. The potential, V, is predetermined
so that the rate of temperature rise of the water in the
vicinity of the discs (as a result of electrical power and
beam irradiation) produces as nearly as possible the
same rate of temperature rise as do the polystyrene
discs heated directly with broad beam irradiation. The
electrical resistance of the water, usually in the range
of 10-25 kQ, decreased during a daily set of
measurements by about a factor of 2. This increased
the drifts but these could be reduced by making small
changes in the adiabatic power controller.

The approximate potential across the electrodes is
pre-determined as follows: The rate of temperature
rise of the polystyrene can be calculated from the
absorbed dose rate and the specific heat of
polystyrene, or it can be determined from the
measured rate of fractional resistance change of the
known thermistor sensitivities. Considering that the
specific heat of water is 3.5 times greater than that of
polystyrene, and that the absorbed dose rate and heat
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defect in water are each approximately 3% greater,
the rate of temperature rise in polystyrene irradiated
with cobalt-60 gamma rays is approximately 3.3 times
greater than that of water. The purpose of the
electrical heating of the water is to make up the
difference. Before an irradiation run (and particularly
before the first run), an arbitrary potential, V,
produced a current I,. These measured values
permitted a calculation of the electrical resistance of
the water. The values V, and 1, also permitted (as a
first approximation) the calculation of the approximate
potential, V, to accomplish adiabatic operation.
Observations of the afterdrifts showed, however, that
this value was too high by approximately 10%. The
reason for this is that the derivation of V assumed a
uniform current density throughout the water where
in reality the current lines must necessarily be forced
to flow around the discs.4 This causes a greater
current density and thus a greater heating effect in the
vicinity of their flat surfaces. A reasonably accurate
formula was found to be

V=OS9VD v,/ 1, (3)

where b is the absorbed dose rate in Gy/min. In
practice, observations of the drifts will indicate when
the potential, V, needs to be adjusted.

4. The Detector

Figure 2 shows some details of the detector. Each
thermistor, positioned I mm from the disc axis, is
embedded just underneath each inner surface. Each
disc is 10 mm thick and 152 mm in diameter. Mainly
to avoid damage to the wiring during assembly (and
because of heat transfer considerations), the discs are
separated by three 0.3 mm thick paper spacers (6 mm
in diameter) equally spaced near the disc cir-
cumference. Silicone rubber is applied around the
discs' central plane to provide a watertight seal. The
signal leads are connected to a waterproofed electrical
socket fastened near the circumference of the lower
disc. A small hole drilled along the axis of the socket
permits enclosed air between the discs to vary with
changes in atmospheric pressure.

It will be pointed out later that good mechanical
and thermal anchoring (other than through air)

If the chosen discs are electrically conductive (such as A-150
plastic [17] or graphite which has a reported heat defect near zero),
then they must be electrically insulated from the water. Reference
[181 reports an endothermic heat defect of about 4% for A-150
plastic irradiated under different conditions.

0.3 mm SPACER

BEAM

2mm-. 1.

SILICONE
RUBBER

/DRAWING NOT\
\ TO SCALE J

0.25 mm BEAD
THERMISTORS

RUBBER
SLEEVE

ELECTRIC
SOCKET

WATERPROOF
SPAGHETTI

Figure 2-Constructional details of the detector. Each of the two
polystyrene discs is 10 mm thick and 152 mm in diameter.

between the discs and thermistors (including the wires
leading from them, for a length of at least I cm) seems
to result in important and desirable detector behaviors.
Figure 3 shows the wiring configuration. A compass
was used to scribe grooves slightly larger than the
embedded wires. Each thermistor bead was
commercially fused around two 25 gm diameter wires
(90% platinum, 10% iridium) which are soldered to 25
gm diameter copper wires (the copper wires have a
higher thermal conductivity by a factor of 12). The
thermistors and the I cm lengths of Pt-Jr wires are totally
embedded in epoxy resin. The copper wires are
partially embedded in silicone rubber (which aided
in the initial layout), and the remainder is entirely
embedded in epoxy resin. The embedments were done
with the aid of a microscope which also aided in
removing minute amounts of embedding material
outside the grooves. This precaution (and considering
that their specific heat capacities are not largely
different from that of polystyrene) made the
irradiation thermal effects of those remaining materials
negligible. The thermal effect of irradiating the small
amounts of different materials (other than polystyrene)
composing the wires and thermistors is negligible,
<0.01 % within a few seconds after irradiation [5].

The purpose of the shown configuration (in
preference to directing the wires directly to the
socket) is to decrease possible conductive effects along
the wires (caused by variations in radial dose rates)
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Figure 3-Wiring configuration of the detector,

which would tend to affect a temperature
measurement. Because the longer lengths increase the
resistance of the wires, their resistances are calculated
to correct for their effects.

The measured density of the polystyrene discs was
1.050 g/cm3 . The discs' electron density (electrons per
unit volume) is only 2% greater than that of water.

5. The Wheatstone Bridge

The upper part of figure 4 shows the simplified dc
Wheatstone bridge circuit containing two thermistors.
The circuit is used for determining both the fractional
resistance change (AR/R) in the balancing resistor (R)
and the fractional change in thermistor resistance per
degree temperature rise (S) of each thermistor, C and
J-for use in eq (1). A selector switch permits
measurements in the shown (C+J) mode, or in the C

SI

CI

AMPLIFIER

I- 1.0 GQ

iLF

S2

'1

Figure 4-Wheatstone bridge circuit and signal drift balancer.

or J mode. Each arm of the bridge has a nominal
resistance of 3 kfl. The dc output of the bridge was
connected to a nanovolt null detector that consisted of
a chopper, ac amplifier, and demodulator system
followed by a dc amplifier.

6. The Drift Balancer

The new design feature is the RC-circuit, shown in
the lower part of figure 4. Switch S. permits the
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circuit to be either connected across or disconnected lC T I I I I
from the bridge and amplifier. The amplifier normally
has a small input resistance of about 300 kil compared

to at least 0.1 Gfl of the RC-circuit. Its use and further
details of the electrical signal drift balancer are
described below.

7. Thermistor Sensitivity Measurements

The thermistor resistance value (r) at a given
absolute temperature (T) is given by the well-known
empirical expression:

r roef(1/k-11ro) (4)

where rP is the resistance at temperature T. and /3 is
the "material constant."

The sensitivity of a thermistor (S) is defined as
(l/r)(dr/dT), which gives

Ld

z

LU

I-

LUJ
a-

(5)

Equation (4) can be reduced to linear form:

y=13x+O, (6)

where y= in r, x=1/T, and O= in r0 -,//T0, a constant.
Least-squares fits of the data are applied to eq (6).

Resistance measurements were made in a
temperature range of 16-28 'C, in steps of 2 degrees.
A crystal thermc meter (1 mK resolution) measured
the temperature of the surrounding agitated water.
When necessary, the temperatures were maintained
within several millikelvin by adding ice water or by
momentarily supplying 400 W of electrical power to
immersion heaters (not shown in fig. 1).

The relatively small thickness (10 mm) of each
sandwiched disc results in a reasonably short time for
the thermistors to reach their ultimate temperature
change. This is illustrated in figure 5. It shows the
result of calculations from the use of theoretical values
tabulated [19,20] combined with a thermal diffusivity
of 12.4X 10' cm2 /s determined from a table of
recommended values for polystyrene [21], at the
calorimeter operating temperature (for water it is
14.4X 1i4 cm2 /s).

Consider that the entire system is at initial
temperature T, and that the agitated water is suddenly
raised (or lowered) in temperature to T, The curve
shows the amount of temperature change (in percent
of the ultimate temperature change) of the thermistors
as a function of time. At 26 and 39 minutes the
thermistors theoretically reach, respectively, 99 and
99.9% of their total temperature change. (Figure 5

TIME, min

Figure 5-Temperature equilibration at the central plane of the
sandwiched polystyrene discs, each 10 mm thick.

applies to any pair of sandwiched polystyrene discs
each of thickness t cm, when the shown numerical
values of the abscissas are multiplied by t2 .) However,
at 30-35 min (in practice) the bridge output indicated
that further resistance (temperature) changes were
insignificant. The resistances were then determined
from the known resistance values of R and R' and
from measured potentials across each bridge arm.

The results are shown in table 1. The first set of
measurements was made before the calorimeter
underwent radiation. Two months later a second set of
measurements was made after the detector had
received 1.33 kGy of absorbed dose. The results show

Table 1. Measured values of the "material constant," ,5

Accumulated
dose /ic O,8
(kGy) (K) (K)

0 3134.1 3178.6
1.33 3137.2 3177.6

3135.7 3178.1
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insignificant changes. A mean value, A, of 3157 K was
used for the (C+J) mode indicated in figure 4.

8. Calorimeter Setup

In order to compare results, the polystyrene-water
calorimeter was irradiated under conditions essentially
identical to those of the graphite and water
calorimeters. Irradiations were made with the same
cobalt-60 unit collimated to give the same-sized broad
beam. Optical sighting and micrometer measurements
were used to accurately position the central planes of
the sensing units near I m from the source and at a
mass depth near 5 g/cm2 .

9. Drift Balance

Reduction of temperature gradients which cause
drifts first requires elimination of large drifts (after
water is introduced in the calorimeter) and then
reduction and stabilization of subsequent small drifts
observed at high amplification.

The calorimeter was most stable when it was made
uniform in temperature at the room temperature
regulated near 22.5 'C. The introduced water was
about I degree cooler. This caused cooling of the
polystyrene discs during the calorimeter setup. The
water was then agitated with a gas and raised to room
temperature by use of the immersion heaters. The
heaters were then turned off, but the agitation
continued. The output of the Wheatstone bridge
indicated the general thermistor response shown in
figure 5. At about 30-35 minutes the agitation was
turned off. Irradiation measurements were made whdn
the water was stagnant (tests showed that this
condition permitted much better reduction and control
of drifts than when the water was agitated and raised
in temperature during a measurement).

In theory, it would seem that prolonged agitation
would result in insignificant temperature drifts. In
practice, subsequent drifts observed at high
amplification should not be expected to be zero, to
remain constant, or to be small because they can
change as a result of a number of internal and/or
external causes. Significant drifts were usually
observed after prolonged agitation. This could have
been caused by the temperature of the incoming
agitating gas and/or as a result of heat exchange with
the outside of the container which may have resulted
in a small temperature difference between the water
and discs. As a result, significant cooling drift rates (at
times) were observed even though theoretical

calculations showed that a significant heating drift rate
of 150 MK/min (0.18 Gy/min) would be present at the
end of 40 min of agitation.

Some causes of the behavior of subsequent drifts
result from imperfect "adiabatic" operation. Changes
in drifts can also be caused by changes in temperature
gradients that result from variations in axial and radial
dose rates, effects which will increase as successive
runs are made. Therefore, rapid reduction and control
of drifts is a vital and time-saving operation.

The effect of non-adiabatic operation is illustrated
by the recording shown in figure 6. The small initial
drift indicated near equilibrium conditions, switch S.
open (fig. 4). A broad cobalt-60 beam was turned on
for 90 s, switch S. open (fig. 1). Figure 6 indicates that
the polystyrene discs rose higher in temperature, ATP,
compared to the surrounding water that rose less in
temperature, AT.. This caused rapid and non- linear
cooling after irradiation, as shown by the recording.

BEAM OFF

AT,

-TIME

I - 15 min

T
ATw

BEAM ON

L

Figure 6-Recording of a non-adiabatic run of 90 s irradiation. The
temperature rises of the polystyrene discs and surrounding water
are indicated by AT, and AT., respectively.

Figure 7 illustrates the basic idea of rapidly
decreasing and balancing drifts by use of the RC
circuit shown in figure 4. Consider switches S, and S2
initially open. The 10-turn, 10-kfQ potentiometer, R2,
was adjusted to about mid-scale and then S, was
momentarily closed across the 4- iuF polystyrene
capacitor. The circuit was then connected to the
bridge by closing S. Assuming that there are no
temperature drifts, the bridge output signal will
indicate a zero signal as illustrated by the baseline
segment OA in figure 7. If R2 is adjusted to give signal
AB or AC, the signal will decay to the baseline at a
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B

M'

TIME-- -

I-,
4/
V

C

Figure 7-Illustration of the principle used in balancing drifts in
electrical signals caused by temperature gradients within the
calorimeter.

rate depending mainly on the value of R 3C1. In this
way, a changing external electrical signal was applied
across input PP' of the amplifier input (or output) to
oppose a drift in electrical signal caused mainly by
internal temperature gradients. For example, an
increasing signal produced by a heating temperature
drift in the general direction of OM (fig. 7) will be
opposed by a decrease of the electrical signal AB.
And a decreasing signal produced by a cooling
temperature drift in the direction of OM' will be
opposed by a decay of the electrical signal AC.

The RC circuit was adjustable to balance a large
range of electrical signal drifts. The resistor R. was
adjustable to give four resistance values from 0.1 to
1.0 Gfl. This gave time constants of 7, 13, 33, and 67
minutes. The potential V was adjustable in order to
place from one to four 1.35-volt mercury cells in
series, The maximum electrical drift that could be
produced at the amplifier input was equivalent to an
absorbed dose rate drift near 7.6 Gy/min in the (C+J)
mode, when 4.5 tAW of electrical power was dissipated
in each thermistor. However, during measurements
only small adjustments were needed as will be
illustrated below.

Although the RC circuit can greatly reduce
observed drifts, it is always good practice to reduce
internal temperature gradients as much as possible so
that only a small and remaining drift needs to be
balanced. This allows more linear drifts which lessen
extrapolation errors when analyzing runs. This
condition will also permit longer and more accurate
irradiation runs, particularly when measuring low dose
rates. A large drift observed over a small time at a
reduced amplifier gain may appear to be linear; and

although the RC circuit will oppose the large drift, the
remaining drift might appear to have an objectionably
large curvature, particularly when observed under
measurement conditions that require a high amplifier
gain. Therefore, a way to improve this situation is
mainly to decrease the internal temperature gradients.

Reduction of internal temperature gradients in the
stagnant water was accomplished in a simple manner.
Switch S. was open. A heating drift generally meant
that heat was conducted from the warmer surrounding
water to the cooler polystyrene discs. This drift was
reduced by momentary irradiation which raised the
temperature of the discs at a rate nearly 3.3 times
greater than the surrounding water (switch S. of fig. I
remaining open). This procedure was repeated in steps
until the drift was desirably small, Conversely, a
cooling drift was reduced by momentarily closing
switch S. (no beam irradiation), and the procedure
was repeated until the drift was also desirably small.
After each of these procedures, reasonably short
periods of waiting were required to allow for
approximate temperature equilibration between the
discs and surrounding water. When the drifts are
reduced to reasonably small values, further application
of these procedures may result in an uneconomical use
of time. At this point the RC-circuit can be put into
use. Some delayed control of small drifts can be made
during measurements by making required adjustments
in the adiabatic power controller (fig. 1).

10. Performance

Figure 8 shows the performance of the calorimeter.
Time increases from right to left. The initial upward
drift shown was considered too large. This heating
drift signal was reduced by merely adjusting R2 to
cause the recorder pen to move in the direction of the

Figure 8-Recorder tracings illustrating quickly balanced electrical
signal drifts, large signal-to-noise ratio, and the rapidity of
measurements.
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drift (upward). 5 Then an adjustment was made by small compared to the noise level which can be
changing the Wheatstone bridge balancing resistor, R,
causing the pen to move approximately to the chart
mid-scale (the null position). The result shows a much
reduced drift signal; and although it could easily have
been reduced further, it was considered negligible
compared to the beam response. Then switch S. (fig.
1) was closed and the beam was immediately turned
on. R was adjusted around the null (mid-scale) until S.
was opened and the beam turned off after 90 s. The
abrupt spikes shown are the result of this manual
change in R. Two runs were made before further
adjustments were made in R, and R.

The beam dose rate was near 0.8 Gy/min which
produced a 1.0 mK temperature rise in 90 s. This is
small compared to the average 18 mK temperature
rise of the thermistors as a result of an average
electrical power dissipation of 4.5 juW.6 The total pen
deflection during a run was 41 times greater than the
indicated distance for 31 may. The electrical noise
was small.

Figure 8 illustrates control of only small
temperature drift signals, up to 17 4K/min. Tests (not
shown) indicated that much larger temperature drifts
were also reduced and balanced by the RC circuit.
The simplicity of the circuit and its ease of use are
desirable features for applying it to other calorimeters,
in general. (A complicated circuit could be designed
to reduce drifts during runs by generating feedback
ramp signals predicted by curve fits to background
drifts.)

Experience with the calorimeter has shown its
utility. Positioning the empty calorimeter, filling it
with water to an accurate depth, getting it into
operation, and making 30 runs of 100 s duration for
each irradiation required about 4 hours.

Insignificant temperature effects were caused in the
thermistors as a result of adjusting R2 in the drift
balancer. In figure 8, the first shown adjustment in R2
produced an initial potential change across PP' (in fig.
4) of about 0.4 gV. This caused a power change of
15>X 10- RW in each thermistor. The temperature
change was (4.1)(15X 106) mK=0.06 ILK. This is

'The effect of superimposing the exponentially decaying signals
(RJCJ = 13 minutes) on the linear drifts resulted in a theoretical error
of <0.01%-for the runs shown in figure 8.

'Within 3%, each thermistor rose in temperature by 4.1P mK,
where P is the thermistor power dissipation in MW, Tests showed
that when either thermistor changed in temperature by 81, as a
result of a change in P, it produced a temperature change of 0.044
8T in the other thermistor-as determined by the rebalance of the

Wheatstone bridge.

estimated as an equivalent temperature change of
several microkelvin by use of the illustrated
temperature scale shown at the left in figure 8.
Furthermore, about 95 percent of the additional 0.06
giK temperature change, caused by that sudden
change in R2, occurred in about 5 s-thereafter a
slowly changing drift (theoretically) remained (the
behavior would closely resemble that shown in fig. 14
in [5]). Therefore (as a result of adjusting the drift
balancer) the effects of the temperature perturbations
in the thermistors were essentially non-existent,
<0.001% of the temperature rise caused by
irradiation.

11. Results

Figure 9 shows a plot of the measured absorbed
dose rates in polystyrene as a function of accumulated
absorbed dose. The measurements were made over a
42-day period (the water was drained from the
calorimeter after each day of measurement). The
measurements were corrected for cobalt-60 decay to
the first day of measurement. Each data point
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Figure 9-Plot of average results (with mean errors) of daily
measurements of polystyrene absorbed dose rate as a function of
accumulated absorbed dose. The standard deviation of the shown
points is 0.6%,

381

I

- I

_



represents an average result of 30 to 63 runs (each 90 heat defect). An equal weight was assigned for the
to 120 s of irradiation), which resulted in an
accumulated absorbed dose of 40 to 79 Gy for each
group of runs. Each data point is shown plotted
against the total absorbed dose the detector received-
the sum it received on previous days plus the average
it received on the day of measurement. The breaks
shown in the abscissa indicate from 150 to 200 Gy of
continuously delivered but unmeasured absorbed dose.
The total absorbed dose was 1.33 kGy.

The individual runs (not shown) were plotted in all
the groups. They showed increases or decreases, of
questionable significance, with accumulated dose. The
extremes of the changes varied from about a 1.5%
increase on the first day to about a 2% decrease on
another day. The detector received no irradiation
prior to the first day of measurement. The 1.5%
increase on the first day occurred up to an
accumulated dose of about (30-40) Gy where a
plateau was reached. The plateau extended to an
accumulated dose of 70 Gy, at the end of the first day
of measurement.

There was no consistent evidence of significant
effects on measurements of absorbed dose when, on 3
days, measurements were made with six different
dissipations of thermistor electrical power (Pc and PI)
that ranged from 4.5 to 320 juW.' Measurements in the
C-mode (P,=9 ptW while P, was 0, 9, or 160 lLW)
gave the same result as measurements in the J-mode
(P,= 9 taW while Pc was 0, 9, or 160 MW).

Because there appeared to be no effect due to the
various measurement conditions described, and even
though the data on some days showed small
variations, all the shown plotted data indicate an
average of all measurements on a particular day. The
uncertainties shown in figure 9 are standard errors of
the mean that varied from 0.08 to 0.18%. The
computed standard deviation of each group of runs
ranged from 0.5 to 1.0% with an average of 0.7%.
The plotted results shown in figure 9 were assumed to
be random fluctuations about a constant value (no
evidence of a continuous and significant change in

7 This contrasts with a nearly 4% change in the measured
absorbed dose in the water calorimeter when powers were changed
from 9 to 200 IzW (fig. 13 in [51). Also, even at the 320 pW
presently used, no change in response was noted as a result of small
charges in room air pressure-previously observed, Perhaps the
speculative reasons given there (in section 1i in [5D were correct,
concerning the existing conditions and suggested changes (applied
to the present detector) of the thermistor and lead embedments
described in section 4 of the present paper. Further investigations
will be made.

average result of each group. Averaging the 12 groups
gives 13.94 mGy/s with a standard error of the mean
of 0. 17%. The 12 average daily values (shown by the
points) give a standard deviation of 0.6%. Different
averages of nine daily groups of measurements made
with the water calorimeter give a standard deviation
of 0.2% (fig. 20 in [5]) for the average daily
reproducibility.

12. Absorbed Dose to Water

The absorbed dose rate in polystyrene, 4b,
produced by gamma rays from a cobalt-60 source, is
converted to absorbed dose rate in water, Db, by
evaluating the equation [22]:

_ =(A-P)8 - P, , D
(Ae.lP)p P (7)

The first term is the ratio of the weighted mean, mass
energy-absorption coefficients in water to that of
polystyrene (weighted with the photon energy
fluence) and the second term (P,,p,) is the replacement
factor, to be discussed later.

Table 2 shows values used in determining the first
term. Column I shows the energy intervals and
column 2 shows values of the photon fluence per
primary photon at a depth of 5 g/cm2 [23]. The
scattered fluence is shown to be 45% of the primary
fluence. Column 3 shows values of the energy per
primary photon, which has a mean energy of 1.252
MeV. The total scattered energy is shown to be 0.22
MeV, which is 15% of the total radiation energy at
the point of measurement. Columns 4 and 5 show
values of the mass energy-absorption coefficients for
water and polystyrene, respectively. Their ratios are
shown in column 6. Column 7 shows ratios of the
mass attenuation coefficients of water to polystyrene.
Values of all the coefficients were obtained from [24].
The last column shows values (in percent) of the
scattered photon energy contributions to the total
absorbed dose in polystyrene. The scattered energy
contributes 16% to the measured absorbed dose.

The first term in eq (7) is

(g1/p)w = =v = 1.033,
(Ae.i/P)p ZP

(8)

where Z= tsr(IAe,/P)vr + E Respective-
ly, Efi and Esraxt are the mean energies of the primary
photon and of the scattered photons for the intervals
shown in column 1. The contribution of the scattered
radiation to absorbed dose shown in column 8 is
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Table 2. Scattered radiation contributions to absorbed dose at 5 g/cm' depth

Energy Contribution to

Fluence per primary total absorbed

Photon per primary photon (g,_/Pp)w (04./p)P (. /) dose in
energy photon (X 100) (X 100) (XlO) (p)w potystyrene
(MeV) (X 100) (Mev) (cm2/g) (cmn/g) (k,-/P\ (u/p)p (%)

Scatter Scatter
0.00-0.10 5.8 0.29 4.155 2.387 1.741 1.141 0.2

0.10-0.20 8.2 1.23 2.762 2.631 1.050 1.039 0.8

0.20-0.30 7.4 1.85 3.079 2.972 1.036 1.036 1.3

0.30-0.40 1.6 0.56 3.236 3.131 1.034 1.034 0.4

0.40-0.50 2.2 0.99 3.289 3.185 1.033 1.033 0.7

0.50-0.60 2.0 1.10 3.292 3.188 1.032 1.033 0.8

0.60-0.70 2.6 1.69 3.264 3.162 1.032 1.033 1.3

0.70-0.80 2.4 1.80 3.225 3.125 1.032 1.033 1.3

0.80-0.90 2.5 2.13 3.179 3.081 1.032 1.033 1.5

0.90-1.00 2.8 2.66 3.126 3.030 1.032 1.033 1.9

1.00-1.10 2.6 2.73 3.072 2.978 1,032 1.033 1.9

1.10-1.20 3.0 3.45 3.017 2.925 1.032 1.033 2.4

1.20-1.25 1.4 1.72 2.976 2.885 1.032 1.033 1.2

45 22 16

Primary Primary

1.252' 100 125.2 2.961 2.871 1.031 1.033 84

Total Total
0-1.252 145 147 100

*This is the average primary photon energy.

where this is evaluated for polystyrene.
The replacement factor, PnP, was calculated as the

ratio of the photon energy fluence in an all-water
compared to a polystyrene-water calorimeter (at the
position of measurement). The difference in photon
energy fluence is caused mainly by the front disc, 10
mm thick. A simplified calculation gives

Prep, =e4"-t' (9)

where g, and gp are the linear attenuation coefficients
(of the average primary photon energy) in water and
polystyrene, and t is the thickness of the polystyrene
disc. This fraction calculates to be

Prep, = 1.00 1.

A detailed calculation, that includes the scattered
spectrum, causes a difference of <0.01%. These
calculated results give

Dw= 1.034 DP. (10)

This result is insensitive to the shape of the
spectrum. The ratio, of the g/p values (column 7)
is nearly independent of photon energy above

approximately 0.1 MeV. The ratio values near unity
would result in approximately the same spectrum in
the two materials, including in a graphite medium to
which the values listed in columns I and 2 actually
apply ([23], columns 1 and 6 in table 1). The spectrum
would vary slowly as a function of depth.

Below 0.1 MeV the listed values in the first row
show that although the ratios of coefficients increase
sharply, the energy fluence is decreasing at a faster
rate. These resulted in the indicated small contribution
of 0.2% of the total (primary plus secondary) absorbed
dose.

13. Comparison of Calorimeter Results

A comparison of absorbed dose rates to water,
determined with three types of calorimeters, is given
in table 3. The corrected and final results with the
polystyrene-water, graphite, and water calorimeters
are shown in the first row. The second row shows
standard errors of the mean, in percent. The third row
shows comparisons relative to the result determined
with the calorimeter constructed of graphite which is
known (as for polystyrene) to have an essentially zero
heat defect. The result with the graphite calorimeter is
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Table 3. Calorimetric determination of absorbed dose to water Table 4. Uncertainties in absorbed dose rate to water

Calorimeter Type

Polystyrene- Graphite Water
water [6,71 [5]

Water dose rate (mOy/s) 17.85 17.76 18.3a
Standard error of the mean (%0) 0.2 0.05 0 I

Relative dose rate 1.005 1 L.035

Combined uncertainty (90) 1.1 0.6 0.4

in agreement with the result determined with the
polystyrene-water calorimeter, within the combined
uncertainties shown in the last row. The above results
are, however, in disagreement with the results
determined with the water calorimeter. These results
indicate an exothermic effect of 3-4% in irradiated
water.

Measurements in copies of the NBS water
calorimeter irradiated with cobalt-60 gamma rays are
about 4% higher when compared with those
determined with ionization chambers [8,9].

14. Corrections and Uncertainties

Corrections and uncertainties in measurements of
source-detector distance and detector depth near 5
g/cm2 were negligible because of the optical sighting
and micrometer measurements that were used. To
compare with the water calorimeter results (that was
slightly corrected to apply to an exact 5 g/cm 2

detector depth), the present result was decreased by
0.11% to correct to an equivalent electrons-per-unit-
area detector depth. Effects of uncertainties in the
calibrated temperature probe ( 1 mK temperature
resolution), needed to measure the sensitivities of the
thermistors, were negligible. A negligible uncertainty
was also assigned to the measurement of the
sensitivities of the thermistors, because of the
repeatability of the results shown in table 1. To
compare the present result with those determined with
the water and graphite calorimeters, a correction was
made for cobalt-60 decay by using a half-life value of
5,272±0.002 years [25]. The correction factor was
near 1.24, with negligible uncertainty. Cerenkov
radiation contains wavelengths which are not locally
absorbed but are readily transmitted in transparent
materials like polystyrene and water. The maximum
effect occurs for electrons from about 1-2 MeV.
However, even in this range the effect is less than
0.1% of the electron energy loss by combined other
effects. Therefore, the effect of Cerenkov radiation
can be neglected, regardless of the incident radiation.

Estimated uncertainty (%)

Random Other
(degrees of

Source freedom)
Sty Wi

Reproducibility of measurement groups 0.2 (11)

(fig 9)
Heat defect 0.7
Dose-rate conversion, polystyrene to water

Absorption coefficient ratio 1241 0.3
Low-energy photons 0.5

Specific heat capacity of polystyrene 0.5
Effect of lead resistances 0.05
Beam attenuation of calorimeter lid 0.05 (5)
Beam exposure timing 0.05

Combined uzncertainty =V ,= l1%

Table 4 lists uncertainties from sources shown in
column 1. The second column lists uncertainties si in
terms of standard deviations of random measurements,
and the numbers in parentheses are the corresponding
numbers of degrees of freedom. The first listed source
of uncertainty is 0.2%, which is the standard error of
the mean for the reproducibility of measurements on
different days (from fig. 9). Ionization measurements
in a water phantom showed that the aluminum foil and
expanded polystyrene of the calorimeter lid decreased
the measurements by 0.34%. This correction was
made and a 0.05% uncertainty was assigned.

Column 3 lists uncertainties pi which are believed to
be reasonable estimates of other uncertainties, to be
treated as if they are standard deviations. Because of
the essentially zero heat defect reported for different
particles ([31, p. 14), [12, 13] and because there is only
borderline evidence of a small endothermic heat defect
(0.67%±0.97% [14]), no correction was applied but a
0.7% uncertainty was assigned, A 0.3% uncertainty
was assigned in the energy-absorption coefficient
ratios [24]. Although it was shown that the conversion
factor (1.034) for converting, absorbed dose in
polystyrene to water is insensitive to the radiation
spectrum, a 0.5% uncertainty was assigned in the
event that the spectrum (particularly of low-energy
photons) was greatly different from that used in the
calculations. A 0.5% uncertainty is assigned for the
specific heat capacity of polystyrene. The Pt-fr leads
fused to each thermistor bead had an average
calculated resistance of 12 ohms, and the additional
copper leads raised the resistance to an average of 27
ohms external to the nominal 3 kMI resistance within
the beads. The wires and thermistors have,
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respectively, a positive and negative temperature _WATER
coefficient of resistance. A calculation showed that the LEVEL

results of measurements had to be increased by 0.98% YlI I i3
because of the 27 ohm external resistance-and n Z Z X
increased further by 0.07% because that resistance DET

increased slightly during irradiation. A 0.05% _____________ PLANE
uncertainty was assigned. A 0.05% uncertainty was
assigned to the beam exposure timing. w l

The combined uncertainty was calculated by using a E
recently recommended procedure [26]. That uncertain- c
ty was obtained by combining in quadrature the uncer-
tainties shown in table 3. The result is 1.1%. Treating
the combined uncertainty as if it were a mean error
and multiplying it by 2 gives an overall uncertainty of [01

2.2%.
WATERFLOW

GAP 15 cm DIAMETER
(ORAWING NOT\
, TO SOAZE /

15. Further Investigations

Some other thermal effects were investigated in the
calorimeter both as described and in modified form.
When the calorimeter was irradiated with cobalt-60
gamma rays, the 10-mm thick discs were sufficient to
stop the most energetic electrons emanating from the
water. The electron spectrum at the sensors, therefore,
was that emanating from polystyrene. From the
surface to a depth of about 5 mm the electron
spectrum is only slightly changed because of the
difference in properties of the two materials. The
effect is negligible, based on an approximate thermal
diffusion calculation.

Similar effects at higher beam energies can be kept
negligible by an easily made modification of securing
additional discs to the detector assembly. This is
shown in figure 10. Modification (a) shows the
detector sandwiched by any necessary array of
polystyrene discs separated by narrow gaps. This
arrangement reduces the contributions of scattered
radiation from the water. It also permits water to be
made to flow between the gaps during agitation.
Placement or removal of the discs would have little or
no effect on the thermistor response shown in figure 5;
but the solid-bodied calorimeter (b), with the same
external dimensions and detector depth, would require
a considerably longer time for the temperature
gradients to subside [15]. Also, drift-producing
temperature profiles (particularly those caused by
successive runs with collimated beams of electrons)
can be relatively easily erased in calorimeter (a); but in
calorimeter (b) the time required for comparable
equilibration would be prohibitively long (an
unregulated surrounding temperature would result in
delayed and oscillating drifts).

Figure 10-llustrative modification cesigns of the polystyrene-water
calorimeter.

It is interesting to compare the theoretically
calculated changes in drift rates-along the axis at the
5 cm depth, from the top of the uppermost surface to
the detector plane (of each calorimeter). It is also
convenient to present temperature drift rates as
equivalent absorbed dose rates, which is a more
meaningful quantity to the operator.

Consider that the entire system (shown in fig. 10) is
uniform in temperature. The water is agitated and
suddenly raised in temperature by I K. Figure 11
shows the changes in drift rates as a function of time.
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Figure 11-Calculated drift rates caused by thermal diffusion.
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Curves (a') and (b) show, respectively, the drift essentially zero heat defect). A previous result
behaviors of calorimeters (a) and (b). Curve (a')
indicates that within 1 hour the drift rates would be
low enough, <0.01 Gy/min, for calorimeter (a) to
operate-verifying what was experienced. In contrast,
curve (b') indicates that calorimeter (U) would have
large and prolonged drift rates, 1-8 Gy/min from
0.3-S h.

Section 9 describes the reduction of relatively small
but still troublesome internal temperature drifts (in the
calorirreter mn stagnant water, shown in fig. 1, by use
of the immersed electrodes to heat the entire water
bath. The use of those electrodes may be ineffective
with calorimeter (a). However, effectiveness can be
achieved by connecting the electrode leads to other
leads that extend into the two gaps adjacent to the
detector (along diameters). Varying the electrical
power dissipated in those water gaps will clmange he
temperature gradients and will result in a reduction
and control of observed temperature drifts. Such a
system of heating sections of water (or conductive
plastic material) is described in [27].

16. Summary

As with the water [5] and graphite [6] calorimeters,
the polystyrene-water calorimeter proved that it can
be placed quickly into operation. The mobility of the
agitated water quickly brings the calorimeter close to
a uniform operating temperature. Remaining tempera-
ture drifts were decreased and balanced mainly by use
of an RC-circuit placed across a Wheatstone bridge.
The charging potential was adjusted in such a manner
that the changing electrical signal produced across the
bridge was in a direction opposite to that produced by
temperature gradients in the calorimeter. Reduction of
arge iterta' :emperature gradients is impnrtant to

reducing drifts. MNetions for re.actimon are descrined.
Posidoning the empty calorimeter, finling it with

water co an accurate depth, getting it into operation,
and making 30 runs of IN0 s duration for each
irradiation required about 4 hours. A cobal:-50
absorbed dose rate near 14 mGy/s was measured with
an uncertaintv of about 3.7% standard deviation
during a daily set of measurements. Comparison of
daily sets of measurements in polystyrene indicated no
consistent evidence of a change in heat defect. The
accumulated absorbed dose was 1.33 kGy.

The result with the presently described polystyrene-
water calorimeter agrees to 0.5% with a result
previously determined with a graphite calorimeter
(graphite, as for polystyrene, is known to have an

determined with a water calorimeter is higher by
3-49%o, indicating this magnitude of an exothermic
effect in water irradiated with cobalt-60 gamma rays.

The study described is part of a second phase of a
previously mentioned investigation: the investigation
of irradiation effects produced by different beams,
absorbed dose rates, and accumul-aated absorbed dose
that may cause significant positive or negative heat
defects at a point of measurement-particularly in
water which is the standard reference material f3j. The
polystyrene-water calorimeter now provides an
efficient investigative tool for comparison of the
calorimeters under widely different irradiation
conditions-conditions where it is uncertain if
evidence of am essentially zero heat defect will still
exist in polystyrene. To aid in alleviating this concern,
and to provide other comparative investigative tools,
plans are to design and investigate an A-150 plastic-
water and a graphite-water calorimeter. Different
models of this general latter design are described in
[28] and 129].

In general, the techniques described in this paper
can be applied to any material-water calorimeter, to
compare the heat defects of those materials for
potential calorimetric use, such as a recently
developed "solid water" plastic material [30].
Comparison of figure 1 in the present paper with
figure 3 in [5] shows that the only differences are the
detectors (that are readily interchangeable) and the
different roles played by the shown immersed
electrodes. The interchangeability provides a
convenient feature for comparison of absorbed dose
measurements in different materials by making use of a
single calorimetric structure and the same measuring
equipment. Elimination of a vacuum system, often
used with absorbed dose caLorimeters. further adds to
the sirnicily of t-e basic repc-te_ zesu_ n.
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The use of Manning's n as a friction factor is shown to be unsuitable in the case of small bore (less than
about one meter diameter) partially filled pipeflow, particularly for relatively smooth materials such as glass
and cast-iron. The Colebrook-White equation with the roughness coefficient k is presented in a form suitable
for inclusion in a computer program to solve the partially filled unsteady pipeflow equations by means of the
method of characteristics. Results are presented which show that the Colebrook-Wvhite equation provides
substantially improved predictions of the wave velocity along the pipe. It provides slightly improved
predictions for the maximum depth of flow along the pipe.

Key words: drains; partially filled pipeflow; pipeflow function; plumbing drainage.

1. Introduction

Steady-state flow tests in partially filled pipes on the
Brunel test rig at various gradients have shown that
the value of Manning's ii varies with slope (fig. 1).
Similar tests at fixed gradients confirmed results
reported elsewhere [2] 1which are that Manning's n also
varies with discharge (fig. 2). This is particularly
noticeable in channels of circular cross-section.
Steady-state tests carried out on 100 mm diameter cast-
iron pipe produced values of Manning's n from 0.008
to 0.01, values not significantly different from those

About the Authors: J. A. Swaffield beads the
Drainage Research Group in the Department of
Building Technology at Brunel University where S.
Bridge is completing her doctoral program. Dr.
Swaffield directs the NBS grant program at Brunel
and from time to time since 1980 has conducted
research as a guest worker in the Building
Equipment Division of the NBS Center for
Building Technology.

found for 100 mm diameter glass pipe. It was felt that
these values were too low and were not representative
of the roughness of the cast-iron. Manning's coefficient
was originally derived for large open channels of
rectangular cross-section with fully rough flow. This
led to doubts about the validity of using Manning's
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Notation

A cross-sectional area of flow (in)
C Ch6zy coefficient (m'"/s)
D pipe diameter (in)
f Darcy resistance coefficient
g acceleration due to gravity (m/s2 )
k roughness coefficient (in)
n Manning's n (inf"3 s)
Q discharge (mV's)
R hydraulic radius (in)
Re Reynold's number (characteristic

length equal to the hydraulic radius)
S channel slope
V velocity of flow (m/s)
a' kinematic viscosity of water (m`/s)'Figures in brackets indicate literature references at the end of

this paper.



hydraulic radius of flow. From these equations the

2. The Colebrook-White Equation

The Colebrook-White equation for pipeflow may be
written:

1-
= -2 log1o

following expression is derived:

Q=V32jRSA Jog1 0 [1 4 .83 R
2.52v 1

+RV128 gRSI

This equation may be used to calculate both normal
depth and also the initial steady-state loss.Rk e2.52

[14.83 R +ReVf I

where 3. The Roughness Coefficient
f =Darcy resistance coefficient
k =roughness coefficient (in)
R =hydraulic radius (in)
Re =Reynold's number (characteristic length

equal to the hydraulic radius)

The Colebrook-White equation for full bore
pipeflow may be developed from the general equation
by taking the hydraulic radius R to be equal to D/4
where D is the pipe diameter in meters. The Ch6zy
equation may be written,

V= Cv'kW

where

V =velocity of flow (m/s)
S =channel slope

C =Ch6zy coefficient = +/

g =acceleration due to gravity (mAs2 )

This equation was developed for large open
channels and later used to produce Manning's
equation, however the effect of cross-sectional channel
shape on the Ch6zy coefficient has been shown to be
limited [3] and it may be used for channels which are
moderately smooth [1]. Manning's equation is based on
the empirical relationship C= R "6/n. Reynold's
number is expressed thus,

4QR

Av

where
Q =discharge (m3/s)
A =cross-sectional area of flow (in2)
v kinematic viscosity of water (mV/s)

It is important to use the correct characteristic
length for the Reynold's number; here it is the

The coefficient k is a length parameter
characteristic of the surface roughness and is defined
as the sand-grain diameter for a sand-coated surface
having the same value of f, the Darcy resistance
coefficient, as the pipe under consideration.
Commenting on Nikuradse's equation for fully rough
flow, Henderson [1] says that although it is not easy to
determine accurate values of k, this is not a problem
since the logarithmic relationship in the equation
means that large errors in the value of k produce only
small errors in the value of C.

This observation also applies to eq (1) so that
slightly inaccurate values of k do not give rise to
serious errors in the value of Q. The Transport and
Road Research Laboratory Roadnote No. 35 [4]
provides a comprehensive list of k values for a wide
variety of materials and channel types including the
pipe materials currently being used on the Brunel test
rig. Glass is generally agreed to be smooth and to
have an effective roughness value of zero, cast-iron
varies between about 0.1 and 0.3 mm and a value of
0.2 mm was used for the laboratory test pipe. Table I
gives values for some of the more commonly used
pipe materials.

4. Results

4.1 Wave Velocity

Figures 4 and 5 show the time at which the
maximum depth occurs along the pipe during the
passage of a wave for two different gradients. The
graphs compare results from an earlier report ([5], figs.

Table 1. k values for various pipe materials-

Pipe material k(mm)

Glass 0.0
PVC 0.002
Coated cast-iron 0.1-0.3
Uncoated cast-iron 0.15-0.6
Glazed clay 0.15-0.6
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fully rough flow. Their behavior is described by the
Glass Pipe Colebrook-White equation [1].
(Average Values at Each Slope) The question of friction factors in open channels

was studied by a committee of the American Society
of Civil Engineers [3] which found the Colebrook-

0.011/ White equation to be more reliable than the Manning
equation with a constant value of n. For any given
channel it was found that the roughness value k (used

2.111 in the Colebrook-White equation) was more likely to

be constant than Manning's n. The Colebrook-White
a!119 equation, unlike Manning's expression, is based on

empirical studies of pipeflow and is suitable for
partially filled pipeflow provided the surface is

flu,, moderately smooth hydraulically and the pipe
0.005 0.01 0.015 0.0 0.025 diameter fairly small [1]. Figure 3 shows the change in

Slope Manning's n with discharge at two gradients with a

fixed value of the roughness coefficient k (the depth
Figure 1-Variation of Manning's n with slope. for each discharge was found from the Colebrook-

White equation and Manning's n calculated using the
known depth and discharge) and further demonstrates

Cast-iron Pipe the variation of the Manning coefficient compared to
(Slope = 0.005)

X

X

1 21 41 60

Discharge
I 0

(I/min)
100 120

Figure 2-Variation of Manning's n with discharge.

coefficient for small bore partially filled pipeflow, and
these doubts were reinforced by the above findings.

The roughness of a pipe is dependent on the flow
conditions. If the roughness projections are buried
within the laminar sublayer, the pipe is hydraulically
smooth; as the laminar sublayer shrinks, the
projections assume a greater significance until they
break through the sublayer and the flow becomes fully
rough. Moderately smooth surfaces such as glass,
PVC, cast-iron, etc. produce flows which are in the
transitional stage between hydraulically smooth and

the roughness coefficient k.
The flow in open channels has long been

characterized via experimental data and empirical
relationships. Foremost among these relationships is
the one associated with the work of Manning giving
rise to the roughness coefficient known as Manning's n
([1], pp. 96,101). This technology has since been
transferred to the flow of liquids in partially filled
conduits.

Glass Pipe (k = 0.0)

S90ul = -0-- ' 0.0 I

SW, = I . 0.005

4 6

Discharge (1us)

Figure 3-Variation of Manning's a with discharge for a fixed
roughness value.
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Glass Pipe (Siojw = 6-I0=0.017)
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Figure 4-Time of maximum depth versus distance (gradient= 1/60=
0.017).

Glass Pipe (Slope= 0 = 0.02.
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E

Q
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- ()se rv(d
---- prediieI I! 1cinJ

Mtuinig's 11 = 0.009

-_ 0)re(hle( {sing
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I Figure 6-Maximum depth versus distance for glass
1/50=0.02).

pipe (gradient=

Glass Pipe (Slope j-= = 0.006,

50

4 1 B

Distance Along Pipe (in)

Figure 5-Time
1/100=0.01).

of maximum depth versus distai

r

E 40

ace (gradient= = 21

F.

6 and 8) using Manning's n with results obtained from
running the same data through the program with the
Colebrook-White equation for calculating the normal
depth and steady-state loss. In both cases the use of
the Colebrook-White equation improves the prediction
of the velocity of the wave peak along the pipe due to
the constancy of the value of the roughness coefficient
k with changing depth of flow. Any value of
Manning's n used is only valid for one discharge and
will therefore over- or under-estimate the loss as the
wave travels along the pipe. The Colebrook-White

Cr1 i ca Dcplh 21 E.ilr!)

- observed
--- predi cted using

milnneing's Xl = 0.009

-- - jpretileod 1J tsiig

roughness k = 0.0

1 2 4 6 8 10

Distance Along Pipe (m)
1.2

Figure 7-Maximum depth versus distance for glass pipe (gradient=
1/150=0.006).

equation allows the loss to be calculated for each node
at each time-step, thus significantly reducing the error
in estimating the loss.
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Cast-iron Pipe (Sope = o= 00°

E ,,m'g; E 'ml myIlot rid n!)

. ~~~~~- observed

--- predicid using
/Manniig's a = 0.011l -,;/ > ~ -- predicted using
roughneis k = 0.2 nu

2 4 ; i ID

Distance Along Pipe (m)

i 2

a wave from a drop-valve cistern attenuating along a
cast-iron pipe, a k value of 0.2 is used and produces a
significantly better result than does Manning's
equation. The Colebrook-White equation performs far
more satisfactorily for the cast-iron pipe than does
Manning's equation, which is undoubtedly due to the
stability of k over a range of discharge values.

5. Conclusion

The Colebrook-White equation and roughness
coefficient k generally predict wave attenuation in
both glass and cast-iron pipes with greater accuracy
than does Manning's equation. The improvement is
particularly noticeable in the prediction of the velocity
of the wave peak along the pipe. The variation of
Manning's coefficient with both depth and pipe
gradient, particularly for circular small-bore pipes (i.e.
less than about one meter diameter) highlights the
utility of the empirical Colebrook-White equation.

Ilure 8-Maximum depth versus
.(gradient=l0/l00=0.0l).

distance for cast-iron pipe

4.2 Maximum Depth

Figures 6 and 7 show the maximum depth of flow as
the wave attenuates along the pipe at two different
gradients with critical depth at the entry boundary. In
both cases the Colebrook-White equation provides a
better prediction of the attenuation of the wave,
occasionally the improvement is marginal but
generally justifies the use of the roughness coefficient
k instead of Manning's n. Figure 8 shows the result of
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In this paper, we extend the notion of a circulant to a broader class of vertex.transitive graphs, which we
call multidimensional circulants. This new class of graphs is shown to consist precisely of those vertex-
transitive graphs with an automorphism group containing a regular abelian subgroup. The result is proved
using a theorem of Sabidussi which shows how to recover any vertex-transitive graph from any transitive
subgroup of its automorphism group. The approach also allows a short proof of Turner's theorem that every
vertex-transitive graph on a prime number of nodes is a circulant.

Key words: circulant; multidimensional circulant; point-symmetric; regular group; starred polygon; vertex-
transitive.

1. Introduction

Following the graph-theoretic notation of [10]' and the group-theoretic notation of [14], we
denote the set of nodes of a finite simple graph X by V(X), the set of edges by E(X), and the
automorphism group of X by (AX). Throughout, we regard G(X) as a finite permutation group
on the nodes, and sometimes the edges, of X. In particular, a subgroup J of G(X) is said to be
transitive if for every pair of nodes u,vE V(X), J contains an automorphism mapping u to v. If, in
addition to being transitive, o(J)=o(V(X)), then J is a regular subgroup of G(X). We are
interested primarily in those graphs which have a transitive automorphism group. Such graphs are
called vertex-transitive or, equivalently, point-symmetric.

A topic of recent interest in the literature involves the characterization of vertex-transitive
graphs [2,3,5,6,8-11,13]. In section 2, we present two such characterizations. The first is
elementary and perhaps known to many but we have not found it in the literature. The second is
due to Sabidussi [10] and is more substantial. In fact, we present a very slight generalization of his
result, which he stated so as to apply only to connected vertex-transitive graphs.

Though Sabidussi's characterization is useful, it involves significant conditions on the
automorphism groups of the associated graphs. Indeed, the problem of characterizing vertex-
transitive graphs in a more graph-theoretical manner appears to be very difficult. In [13], Turner
provided a partial solution to the problem by showing that a graph with a prime number of nodes
is vertex-transitive if and only if it is a circulant (or, equivalently, a starred polygon).

About the Author, Papers: F.T. Leighton is an assistant professor of mathematics at MIT and a
member of the Laboratory for Computer Science. This paper and the paper following were written
while he served as a summer intern at NBS and in part while he was an undergraduate at Princeton
University working under the guidance of Professor Stephen B. Maurer.

*AMS(MOS) Subject Classification Numbers: 05C25 20B25 20810
' Figures in brackets indicate literature references at the end of this paper.
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Unfortunately, if the number of nodes is not a prime, then a vertex-transitive graph need not be a
circulant. In section 3, we define a circulant graph and use the extension of Sabidussi's result to
show that a graph X is a circulant if and only if 0(X) contains a regular cyclic subgroup. As a
corollary, we prove Turner's result mentioned above.

In section 4, we extend the notion of a circulant to a broader class of vertex-transitive graphs,
which we call multidimensional circulants. In doing so, we broaden the class of vertex-transitive
graphs for which a nice graph-theoretical characterization is known. Moreover, we then give a
group-theoretical characterization of what is special about these graphs in relation to the class of
all vertex-transitive graphs. In particular, we prove that a graph X is a multidimensional circulant
if and only if G(X) contains a regular abelian subgroup. In addition, we derive a simple upper
bound on the dimension of a multidimensional circulant and, as an example, prove that the n-cube
is an Ln + 1)/2J-dimensional circulant for n> 1.

2. Characterizations

We now present the characterizations discussed in the introduction. Given any graph X
with nodes V(X)={v,, vI 1}, define the graph X2 for Oci<n to be the subgraph of X in-
duced by V(X)-{vl}.

THEOREM 12: A graph X with n nodes is vertex-transitive if and only if X0=X,= ... =X.-l
PROOF: Assume that X is an n-node graph such that X,=X,= ... --X.-,. From the definition, we

know that o(E(Xi))=o(E(X))-degx(vi) for 0•i< n, where o(E(X,)) is the number of edges in X,
and degx(vi) is the degree of node v, in X. Since XOX,= ... -X.-,, we know that o(E(Xo))=
o(E(X)) = ... =o(E(X ,-)) and thus that degx (v)-=deg, (v,)= ... =degx (v ,). Thus X is k-regular
where k= deg, (vo). This means that each node in X, has degree k or k- 1 depending on whether or
not the node is adjacent to v, in X. Let a-, be an isomorphism from X, onto Xj . Clearly, a-,j maps
the k nodes of degree k-l in X, (those adjacent to v, in X) onto the k nodes of degree k-l in X,
(those adjacent to v1 in X). Define the extension of r- to X by r,, (vm)= a-,1 (vy) for m=Ai and
orj(vj-)=vj. It is clear that for all 0•ij<n, or, is an automorphism of X mapping v, onto v,, and
thus X is vertex-transitive.

Conversely, if X is vertex-transitive, then for all i and j, there is a r 0 G(X) such that oa(v, ) =
vj and thus o-(X, )=X, which implies that Xi r Xj 1

In Theorem 2 of [10], Sabidussi characterizes connected vertex-transitive graphs. We now
state a slight generalization of this result to include all vertex-transitive graphs. Given any group
G, subgroup J of G and subset H of G-J, define XG,,/J to be the graph

V(X 0 1 1 /J)={aJJaEG} and

E(XGH/J)={(a J,/3J)ja jnaI3JH#0}, where

H=HUH-' and H- is the set of inverses of elements of H.

THEOREM 2: If X is a vertex-transitive graph and G is a transitive subgroup of G(X), then there is
a subgroup J of G and a subset H of G-J such that XnXG H/J. Conversely, if G is a group, J a
subgroup of G and H a subset of G-J, then XG H/J is a vertex-transitive graph with G homomorphic to
a transitive subgroup of its automorphism group.

The proof of Theorem 2 is lengthy but not difficult and is essentially that found in [10]. We
mention here one key step. Given X and G as in the first part of the theorem, choose J to be the
subgroup of all automorphisms which fix a given node v. and H to be the subset of all
automorphisms which move v. to an adjacent node.

' it has been recently discovered that a very similar result was proved by J. A. Bondy in "Reflections on the legitimate
deck problem," Combinatorial Mathematics, Lecture Notes in Mathematics, No. 686 (1977) 1-13.
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3. Circulants

A circulant (or equivalently, a starred polygon) is a graph whose nodes can be labeled so that
there exists a set SCZ, where Z is the set of integers, such that V(X)=I{v, ... , v.-l} and E(X)=
{(v,,v,)0Ii,j<n and mod(i-jn)eS}. (By mod(xy) we mean the remainder of x upon division by
y.) For such a graph, the pair (n,S) is called a symbol for X. Note that 0 5 since we are only
concerned with simple graphs. Since edges are unordered, we may restrict S so that dES if and
only if n-dES for all values of d. For example, consider the graph in figure 1. Contrary to the
claim of Turner [13], this graph is, in fact, a circulant with symbol (6,{2,3,41).

Figure 1

V4 V2

We now determine those vertex-transitive graphs which are circulants. In ([1], Proposition 2),
Alspach proves a similar result for tournaments. Henceforth, we assume all subscript arithmetic is
done modulo n=o(V(X)).

THEOREM 3: A graph X is a circulant if and only if G(X) contains a regular cyclic subgroup.
PROOF: Let X be a circulant with symbol (n,S). Define a to be the permutation (v~v, v.-,)

where V(X)={v0 , .- , v,-}. In other words, a(v,)=v1 ,, for Oi<n. Thus a(E(X))=E(X), which
means that aEG(X) and G(X) contains the regular cyclic subgroup { la-..., an-'}.

Now assume that X is an n-node graph and that G(X) contains a regular cyclic subgroup. Let
G={l,a,..., an-'} be this subgroup. By Theorem 2, we know that there exist disjoint H and J such
that XY 1XGH/J. Since o(G)=n=o(V(X))=o(V(X 0,1 /J))=o(G)/o(J), we must have o(J)= 1 and
thus J={l}. This means that we may relabel V(X)={a'IOi<n} and E(X)={(ai,aj)Iai=aJak
for some a&CD=HUH-'}. Note that a'=aiak if and only if mod(i-jn)=k. Define
S={kla kCf}. Relabeling the nodes of X once more, we have V(X)={v0 , . , v,-,} and E(X)=
{(vj,v1)Jmod(i-j,n) 8.}. Thus Xis a circulant with symbol (nS)yC

It is now easy to prove Theorem 1 of [13].
THEOREM 4: A graph with a prime number of nodes is vertex-transitive if and only if it is a

circulant.
PROOF: Let X be vertex-transitive with a prime number p of nodes. Since the subgroup of

automorphisms of X which fix a particular node has index p in G(X), p I o(G(X)). By Sylow's
theorem on groups, G(X) contains an element of order p. Without loss of generality, this element
must be a=(v, ... v,,) where V(X)={v 0,,..., v,,}, since no permutation on p elements with more
than one orbit has order p. Thus R={l,a, ... , a&`} is an order p transitive subgroup of G(X).
Equivalently, R is a regular cyclic subgroup of G(X) so by Theorem 3, X is a circulant. Since
every circulant is vertex-transitive, the converse follows trivially.l

Not every vertex-transitive graph has an automorphism group containing a regular cyclic
subgroup. For example, consider the graph in figure 2. This graph is vertex-transitive but has no
automorphism of order eight and thus cannot be a circulant.
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Figure 2

4. Multidimensional Circulants

Define a multidimensional circulant to be a graph X whose nodes can be labeled so that there
exist positive integers k, as, a 2 , ... , ak and a set SCZk such that

V(X)={v'," ikQOci,<a, for 11<k} and

E(X) = {(Vl,..,l,,vj, ,...-j)|(mod(i 1 -j,,a,), ... , mod(ik-jk,ak)ES}

In order to simplify the notation when dealing with multidimensional circulants, we will
henceforth employ vector notation. For example, we use the k-vector a to represent (a -, ... , a*), i

to represent (i,, ... , ik), j to represent (j1 *--- i.ke and so on. In particular, we represent the zero
vector (0, ... , 0) by 0 and the unit vector (0, ... , 0,1,0, ... , 0) with a one in the ith position and zeros
elsewhere by e1. In addition, it will be convenient to use mod(i-j,a) to represent the k-vector

(mod(i,-j1 ,a),-mod(ik-jk,ak)), a-' to represent the product Ho'il, and Oi<j to denote the

fact that O<i,< j, for i<lck. Thus a multidimensional circulant is a graph X whose nodes can be
labeled so that there exists an integer k, a k-vector a, and a set SC Zk such that

V(X)={vI0<i<a} and

E(X)={(v,,vj)jmod(i-j,a)ES}.

Generalizing the concept of a symbol, we define the pair (a,S) to be a k-symbol of X. As was
true in the definition of a circulant (where k= 1), it is clear that the symbol can be restricted so

k

that i a,=n=o(V(X)), OEfS, SC{iljOi<a}, and that iES if and only if mod(-ia)ES. For

example, consider the graph displayed in figure 2. Whereas this graph is not a circulant, it is a
multidimensional circulant. In figure 3a, we display the labeling of this graph which corresponds
to the 2-symbol ((2,4),{(0,1),(0,3),(l,0)}), and in figure 3b, we display the labeling which
corresponds to the 3-symbol ((2,2,2),{(O,0,1),(O,1,0),(1,0,0)}).
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Figure 3

As is evidenced by this example, multidimensional circulants may have k-symbols for several
differing values of k. We call the smallest value of k for which a k-symbol exists the dimension of
the graph. In particular, a graph is said to be a k-dimensional circulant if it is a multidimensional
circulant and k is the smallest integer for which the graph has a k-symbol. In this notation, the
class of circulants is precisely the class of 1-dimensional circulants.

We now generalize Theorem 3.
THEOREM 5: A graph X is a multidimensional circulant if and only if G(X) contains a regular

abelian subgroup.
PROOF: Assume that X is a multidimensional circulant with a k-symbol (a,S). Define the

permutation a-, on X for 1c1<k by ar (v)=vmodQie,,) for all v,(2V(X). Since mod(mod(i+eha)-

modUj+eja),a)=mod(i-j,a), we know that a,(E(X))=E(X). Thus, o-,EG(X) for 1<1<k. Further,
ora-1 ,=Q,,O Ifor 1<1,m~kand, thus, the subgroup of G(X) generated by {e,,, Ik} is abelian. It

is not difficult to show that this subgroup is also transitive and has Ila,= o(V(X)) elements.

Thus it is regular and we have shown that G(X) contains a regular abelian subgroup.
Now assume that we are given a graph X such that G(X) contains a regular abelian subgroup

R. By a well-known result concerning finitely generated abelian groups ([4], p. 101-3), we know

that we can express R as the direct product of cyclic groups. Thus we can write R = X R
i=1

where each R, is cyclic, has order a,, and is generated by aJ,. Replacing G with R in Theorem 2,
we know that there exist HCR-{1} and a subgroup J of R such that X-XR ,/J. Since R is regular,
we must have that J={ }. Thus we may label the nodes of X so that

V(X)={ar'I O<i<a} and
E(X ) = {(a ,ao) I dr = ed for some d E

Since R is abelian, r'=a-I or' if and only if o-'=Jrh and thus if and only if mod(i-j,a)=h.
Further simplifying, it is possible to relabel the nodes of X so that

V(X)={v,I0<i<a} and
E(X)={(v,,vj)jmod(i-j,a)ES}

where S= {h I aoEH}. Thus X is a multidimensional circulant with k-symbol (aS.O
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COROLLARY 1: Every multidimensional circulant is vertex-transitive.
The arguments in the preceding proof make it clear that, in principle, it is possible to

determine the dimension of a multidimensional circulant through examination of the structure of
its automorphism group. In practice, however, this may be quite difficult to accomplish. The
following theorem provides an upper bound on the dimension based solely on the number of
nodes in the graph. t

THEOREM 6: If X is a multidimensional circulant with n = f pibi nodes (primes A*=Ipj for i=Aj),
then X has dimension kfor some k<max1, 1(b,i).

PROOF: Given a multidimensional circulant X, we know from Theorem 5 that G(X) contains

a regular abelian subgroup R. Decomposing R into cyclic subgroups, we have R = X X R,
1=1 1=1

where R j is a cyclic subgroup of R with order p,'4 . Recomposing cyclic subgroups with differing

prime power orders, we can write R= X R; where R, is cyclic with order II p,6f (cq is

defined to be zero ifj>-d,) and is the product (with as many terms as exist) Rj 1X... XR, , Thus R
is the direct product of max (d,) cyclic subgroups. The result now follows from the arguments

I <i<1

in the proof of Theorem 5 and the fact that d,<b, for 1i~t.EJ
COROLLARY 2: The class of n-node multidimensional circulants is precisely the class of

n-node circulants whenever n is the product of disjoint primes.
We now demonstrate the existence of k-dimensional circulants for every k> 1. This is

accomplished by showing that the n-cube is an j5n+1)/2j-dimensional circulant for every n>l.
The n-cube is the graph X with nodes V(X)={vI0<i<2"} and edges E(X)={(v,,v)I the n-bit
binary representation of i differs from the n-bit binary representation of j in exactly one bit}. The
3-cube, for example, is displayed in figures 2 and 3. Our result requires the following lemma, the
proof of which was suggested by Lawrence [7].

LEMMA 1: If a is an element of a regular abelian subgroup of automorphisms of the n-cube, then
a has order 1, 2, or 4.

PROOF: Let R be any regular abelian subgroup of automorphisms of the n-cube X. View R as
an automorphism subgroup of the facets of X. The facets of X are the (n-l)-cubes contained in X.
There are 2n such (n-l)-cubes, one corresponding to each set of 2n-' nodes whose labels have
identical ith bits for some fixed i, 1<i<n, in the n-bit binary representation of the labels. It is not
difficult to show that the action of an automorphism on the facets of X completely determines its
action on the nodes, and vice-versa.

Let F.,..., Fk be the facet orbits of R and define R, for 1 <ick to be the restriction of R to F,

with duplicates eliminated. Then, each R, is a group of automorphisms of F, and R C X R.
k 1=1

Thus o(R) < I o(R,) and, since o(R)=2',
1=1

k

nI o(R,)>2'. (1)

In addition, each R, is regular on F,. If not, then we could find s,tEF, and af3 ER, such that a(s)=
s, a(t)#At and ,3(s)=t. By the commutativity of R, this implies t=/3(s) =a1a 1 '(s) = a(t)5 At which is

k

a contradiction. Thus o(R,)=o(F,) for 16ick. By definition, we must have yo(F,)=2n and
thus

k

Eo(R,)=2n. (2)
,=,
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It is well known that the order of an orbit is a divisor of the order of the permutation group
[14]. Thus o(R,)Io(R) for lcick. Since o(R)=2", we can define nonnegative integers r, such that
o(R,)=2'' for 1 ick. Rewriting (1) and (2), we have

k k

Er,>n and 22'=2n.
1=1 ,=,

k k

Thus X2r,>2n = ) 2". Since 2r,<2i for r,=O and r,>2 and 2r,=2" for lcr,<2, it is clear that
1=1 =

1cr,4 2 for W<ick. Thus o(R,)=2 or 4 for 1<ick. Thus for each aER, a4 leaves each facet of X
fixed and a4 = 1. Thus o(a)= 1, 2, or 4.0

We are now ready to prove:
THEOREM 7: The n-cube is an Ikn+ 1)/2j-dimensional circulant.
PROOF: We first show that the n-cube X is a k-dimensional circulant for some kckn+ 1)/2j. It

follows from the definition of X that we may label the nodes so that X has symbol (a,S) where
a=(2,2, ... , 2) and S={e,l lcicn}. By relabeling node v, with index j so that

0 if (i2 1 1 ,i2 1 )=(OO)

I if (i21 1,i,=(0,1)

il= 2 if (i2 1_j2j)=( 11) for 11cckn+1)/2j,

3 if (i 2 1_,i 2 )=(lO)

in if 24'n and 1= kn + 1)/22

it is easy to show that X has En + 1)/2j[symbol (aS) where

f (44.,44)if2ln an

a= and-4 .. 4,2) if 2tn

S={+e,l lcican+ 1)/2j}.

Thus X is a k-dimensional circulant for some kcgn + 1)/2J. k

Assume now that X has dimension k<an + 1)/2j. Then X has a k-symbol (a,S) such that fla,

k

=2 . But this means that a,>8 for at least one value of i. Otherwise, H a,

<4k4(n+l)/2-1c2n4-<2n. By the arguments in the proof of Theorem 5, G(X) must contain a
regular abelian subgroup with an element of order a,>8. But this contradicts the result of Lemma
1. Thus X has dimension En + 1)/2J.D

Not every vertex-transitive graph is a multidimensional circulant. Indeed, there are examples
of vertex-transitive graphs which do not have a regular subgroup of automorphisms. For instance,
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the smallest transitive subgroup of automorphisms of the 10-node Petersen graph, shown in figure
4, has 20 elements.

Figure 4

5. Concluding Remarks

With the introduction of multidimensional circulants, we have moderately broadened the
class of vertex-transitive graphs for which a nice graph-theoretical characterization is known. The
notational complexity, however, has increased substantially. Indeed, the problem of characterizing
graph-theoretically the entire class of vertex-transitive graphs has been unsolved for quite some
time. Maybe some of the following subclasses are easier to characterize: those with an
automorphism group containing a regular subgroup (the Cayley graphs), those with an
automorphism group containing an order o(V(X)) transitive subset, or those with twice a prime
number of nodes. The last subclass has received much attention in the literature of late [3,8,9,11],
but even so, a complete characterization has yet to be found.

In addition to Professor Maurer and Dr. Lawrence, the author would like to thank Professors
Brian Alspach, Charles Johnson, and Alan Goldman for their helpful remarks.
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In this paper, we prove that every vertex-transitive graph can be expressed as the edge-disjoint union of
symmetric graphs. We define a multicycle graph and conjecture that every vertex-transitive graph cam be
expressed as the edge-disjoint union of multicycles. We verify this conjecture for several subclasses of vertex-
transitive graphs, including Cayley graphs, multidimensional circulants, and vertex-transitive graphs with a
prime or twice a prime number of nodes. We conclude with some open questions of interest.

Key words: Cayley graph; circulant; cycle decomposition; edge-transitive graph; grouplike set; line-
symmetric graph; multicycle; multidimensional circulant; point-symmetric graph; starred polygon; symmetric
graph; vertex-transitive graph.

1. Introduction

Following the notation of [7,9],' we denote the set of nodes of a finite, simple graph X by
V(X), the set of edges by E(X), and the automorphism group of X by G(X). Throughout, we
regard G(X) as a permutation group on the nodes, and sometimes the edges, of X. In particular, a
subgroup J of G(X ) is said to be transitive if for every pair of nodes u,v E V(X), J contains an
automorphism mapping u to v. If, in addition to being transitive, o(J ) =o(V(X)), then J is a regular
subgroup of G(X). It is well known (see Lemma 16.3 of [4], for example) that G(X) contains a
regular subgroup if and only if X is a Cayley graph. A Cayley graph X0 ,, is the graph defined by
V(XG0 1 )={a~afEGI and E(XG 1 )={(a,I3)Ia,'el'EH} where G is an abstract group and H is a
subset of G-{ } closed under inverses.

We are interested primarily in those graphs with a transitive automorphism group. Sach
graphs are called vertex-transitive or, equivalently, point-symmetric. Similarly, a graph is called
edge-transitive or, equivalently, line-symmetric if G(X) is transitive on the edges of X. Graphs which
are both vertex-transitive and edge-transitive are called symmetric. As is pointed out in [4,6,8], not
every vertex-transitive graph is edge-transitive nor is every edge-transitive graph vertex-transitive.
An area of recent interest in the literature involves the relationship between the class of vertex-
transitive graphs and the class of edge-transitive graphs, and the nature of their intersection, the
class of symmetric graphs [3-6,8].

About the Author, Papers: F. T. Leighton is an assistant professor of mathematics at MIT
and a member of the Laboratory for Computer Science. This paper and the paper preceding
were written while he served as a summer intern at NBS and in part while he was an
undergraduate at Princeton University working under the guidance of Professor Stephen B.
Maurer.

*AMS(MOS)Subject Classification Numbers: 05C25 05A17 20DB1 2OB25

'Figures in brackets indicate literature references at the end of this paper.
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Of particular interest is the class of circulants [1,2,7,8,10,11] and a generalization thereof, the
class of multidimensional circulants [7,8]. A circulant or, equivalently, a starred polygon is a graph
whose nodes can be labeled so that there exists a set SCZ, where Z is the set of integers, such that
V(X)={vO,,..., v-} and E(X)={(v,vi)IO<ij<n and mod(i-jn)ES}. (By mod(xy), we mean the

remainder of x upon division by y.) For such a graph, the pair (n,S) is called a symbol for X. In [7],
we generalize this concept and define a multidimensional circulant to be a graph X whose nodes
can be labeled so that there exist an integer k, a k-vector a, and a set SCZ& such that V(X)=
{v,1Iai<al and E(X)={(v1 ,v )[mod(i-j,a)ES}. The pair (a,S) is called a k-symbol of X. (We
employ the vector notation introduced in [7] whenever discussing multidimensional circulants. In
particular, i(,. i) j=(j1,...Jk), a=(a,,...,ak, 0=(0,...,0), niodfij,a)=(mod(i1-i1,
a,), ... , mod(i4-j ,aj), and O<i<a if and only if O<i,<a, for I lck.)

In this paper, we investigate the decomposition of vertex-transitive graphs into edge-disjoint
symmetric graphs. In particular, we prove in section 2 that every vertex-transitive graph can be
expressed as the edge-disjoint union of symmetric graphs.

In section 3, we define a grouplike set and a multicycle graph and use their properties to
extend the result of section 2. We conjecture that every vertex-transitive graph can be expressed as
the edge-disjoint union of multicycles. This conjecture is verified for several subclasses of vertex-
transitive graphs, including Cayley graphs, multidimensional circulants, and vertex-transitive
graphs with a prime or twice a prime number of nodes.

We conclude by mentioning some related problems of interest in section 4. In particular, we
show how to construct a multicycle decomposition from the symbol of any multidimensional
circulant.

2. Symmetric Graph Decomposition

Let X be any graph, e an edge of X, and G a subgroup of G(X). The orbit of e under G is
defined as the subgraph Xo, of X which has nodes V(X) and edges {rr(e) I tE} GI. The orbits of X
possess several well-known and useful properties. We cite three such properties in the following
lemmas. The proofs of these lemmas are not difficult and are deferred until section 3, where we
prove similar results for a more general subset of G(X).

LEMMA 1: Xoe is edge-transitive.
LEMMA 2: G C G(Xe,).
LEMMA 3: X can be expressed as the edge-disjoint union of the distinct X,,.
With the use of these lemmas, it is not difficult to prove:
THEOREM 1: Every vertex-transitive graph X can be expressed as the edge-disjoint union of one or

more symmetric graphs, each with vertex set V(X).
PROOF: Let X be any vertex-transitive graph and let G=G(X). Consider the graphs X(,. By

definition, they each have vertex set V(X). From Lemma 1, we know that each X,, is edge-
transitive. Since X is vertex-transitive, G must be transitive, and, by Lemma 2, we know that each
X0 , is vertex-transitive. Thus, each X0 E is symmetric. Finally, we know from Lemma 3 that X can
be expressed as the edge-disjoint union of the distinct X0 6.f

3. Multicycle Decomposition

Call a graph a multicycle if it can be written as the node-disjoint union of equal length cycles.
In particular, for any pair of positive integers b and d, define the multicycle Cbd to be the graph
consisting of b node-disjoint d-cycles. Several examples are provided in figure 1. (Note that we
have adopted the convention that every edge is a 2-cycle and that every node is a 1-cycle.)

It is not difficult to show that every multicycle is symmetric. We state a partial converse of
this fact in the following lemma.

LEMMA 4: If X is a vertex-transitive graph and o(E(X))<o(V(X)), then X is a multicycle.
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Figure I

PROOF: Since X is vertex-transitive, all the nodes of X must have the same degree. Since
o(E(X))<Co(V(X)), this common degree is 0, 1 or 2. In the first case, X~Cl where n=o(V(X)). In
the second case, X consists entirely of node-disjoint edges and X=C", 2 2 . In the final case, X is the
node-disjoint union of cycles and, since X is vertex-transitive, each cycle must have the same
length. Thus X~Cbd for some b and d such that bd=n.O

We now extend Theorem 1.
THEOREM 2: Every Cayley graph X can be expressed as the edge-disjoint union of multicycles,

each with vertex set V(X).
PROOF: The proof is identical to that of Theorem I with an additional observation. Let X be

any Cayley graph and let R be a regular subgroup of G(X). By definition, R is transitive and has
o( V(X)) elements. Thus each XRe is symmetric and has at most o( V(X)) edges. Since
o(E(XR))<co(V(X))=o(V(XR)) for every eEEE(X), we know by Lemma 4 that each XR, is a
multicycle.fl

COROLLARY 1: Every multidimensional circulant can be expressed as the edge-disjoint union of
multicycles. In particular, every vertex-transitive graph with a prime number of nodes can be expressed
as the edge-disjoint union of multicycles.

PROOF: We know from [7] that every vertex-transitive graph with a prime number of nodes is
a circulant and that the automorphism group of a multidimensional circulant contains a regular
abelian subgroup. Thus, such graphs are Cayley graphs.C

There are some vertex-transitive graphs, however, with automorphism groups which do not
contain a regular subgroup. The Petersen graph shown in figure 2 is one such graph.

The automorphism group of this graph does contain a 10-element, transitive subset, however,
which is very similar to a subgroup in structure. This subset is M={a''yI0<i<2 and O<j<51
where a=(l 6) (2 8 5 9) (3 10 4 7) and y=(l 2 3 4 5) (6 7 8 9 10). Note that M is not a
subgroup as a 2=(1) (6) (2 5) (3 4) (7 10) (8 9)*M. Define X., to be the subgraph of the
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Petersen graph with ten nodes and edge set {a(e) LEM} for any edge e. The subgraph XMe is
quite similar in structure to an orbit subgraph. In fact, it is not difficult to show that the XMe
satisfy the conditions stated in Lemmas 1-3. Since M has o(V(X))= 10 elements, we may then
apply the arguments of Theorem 2 to conclude that the Petersen graph may be expressed as the
edge-disjoint union of multicycles. We now generalize this result.

DEFINITION: Given a graph X, a subset M of G(X) is grouplike if for every edge eEE(X), the
following three conditions are met:

GLI) VcrEM,3ar 2 EM such that o2(e)=oq'(e),

GL2) Va-,crEM,3o- 3 EMsuch that a 3(e)=ocr7 2 (e), and

GL3) 3aEM such that o-(e)=e.

Note that the definition of grouplike is very similar to that of a subgroup. The only difference
is that we have reversed the order of the V e and 30- quantifiers in forming the definition of
grouplike. Thus any subgroup of G(X) is grouplike but not conversely. As an example, it is easily
checked that M={a'YIOc<i<2 and Oj<5} is a grouplike subset, but not subgroup, of the
automorphism group of the Petersen graph.

Let X be a graph, M a grouplike subset of G(X) and e an edge in X. Define XMe to be the
subgraph of X with nodes V(X) and edges {a(e) I o-EM}. The following are generalizations of
Lemmas 1-3.

LEMMA 5: XM, is edge-transitive.
PROOF: Given any e,,e2EE(XMe), we know from the definition that 3B-,,a 2 GM such that

a-,(e)=e, and a2(e)=e2. By GLl, we know that 3a-3EM such that rr3(e1)=o-,' (el)=e. By GL2,
we have that 3cr4 EM such that o-4(e) = o-2o-3(eI) = a2 (e) =e 2. Thus XM, is edge-transitive.l

LEMMA 6: MC G(XM,).
PROOF: Given any eEE(X), o-IEM, and e'EE(XMe), it suffices to show that a,(e')EE(XMj.

For then it will be clear that a, preserves the edge structure of XMe and thus that a1 E G(XM,) and
that MCG(XMe). By definition, 3 a 2 EM such that o-2 (e)=e'. By GL2, 3a 3 EM such that a 3(e)=
a'a 2(e)=o-,(e'). Thus aI(e')EE(XM.) as desired.l

LEMMA 7: X can be expressed as the edge-disjoint union of the distinct XMC.
PROOF: We first show that for any e,,e 2 EE(X), either E(XMe,)=E(XMe.) or

E(X,fQ)nE(XMC2)=0. In particular, choose eEE(XMeI)RE(XMe,). From the definition, we know
that 3vlEM such that v,(e,)=e. By the transitivity of XMe2, we know that given any e3 EE(XM,,),
3a 2 EM such that o-2(e)=e3 . Again applying GL2, this means that 3a 3 EM such that cr3(e1 )=
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o-2a-1(e,)=Ga2(e)=e3 . Thus E(XMQ2)CE(XM,I,). By, reversing e, and e2 in the above argument, it is
equally simple to show that E(XMC)CE(XM,E2). Thus either E(XM,e))nE(XM,,2)=0 or E(XMe0 )=
E(XM.,).

The argument is completed by observing that every edge of X is included in some XM., by
GL3.0

We now state the corresponding generalization of Theorem 2.
THEOREM 3: If the automorphism group of a vertex-transitive graph X contains an o(V(X))-

element transitive grouplike subset, then X can be expressed as the edge-disjoint union of multicycles.
PROOF: The proof is nearly identical to that of Theorem 2 and follows trivially from Lemmas

5-7.0

As we have been unable to find a vertex-transitive graph with an automorphism group which
does not contain an o(V(X))-element transitive grouplike subset, we make the following
conjecture.

CONJECTURE: Every vertex-transitive graph can be expressed as the edge-disjoint union of
multicycles.

In Theorem 2, we verified the conjecture for all Cayley graphs, multidimensional circulants,
and, in particular, for all vertex-transitive graphs with a prime number of nodes. Using a different
approach, we now verify the conjecture in another case, one which has received attention
recently [2,8,10].

THEOREM 4: Every vertex-transitive graph with twice a prime number of nodes can be expressed
as the edge-disjoint union of multicycles.

PROOF: Let X be a vertex-transitive graph with 2p nodes where p is a prime. Since X is
vertex-transitive, the subgroup of automorphisms of X which fix a given node has index 2p in
G(X). Thus 2p j o(G(X)) and, by Sylow's Theorem, G(X) contains an element y of order p. Since
o(y) =p, y is either the composition of two p-cycles or the composition of one p-cycle and p fixed
elements. Label the nodes of X so that V(X)={vj11 0<i<2 and Ocj<p} and =(v ... v,)
(vlo ... v,, ,) or y= (v00 ... vol ) (v1,0) ... (v,,,), depending on the structure of y. We consider the two
cases separately.

CASE 1: Y=(VO0 ... V 0, 1)(VI,0) ... (V11)

Without loss of generality, we can assume that (v0, 0,vl,0)EE(X). Otherwise, X is disconnected
and consists of two isomorphic, node-disjoint vertex-transitive graphs on p nodes each. Thus X is a
multidimensional circulant and, by Corollary 1, is the edge-disjoint union of multicycles.

Since yEG(X) and (v0 0 ,v10 )EE(X), we know that y'(v0,0 ,v1 ,0 )=(v0j,v1 ,0 )EE(X), for Oc<p and
thus deg(v,)O>p. Since X is vertex-transitive, it must be a regular graph and we know that
deg(v,)>p for OCj<p. Thus for any j such that OCJ<p, there exists an i such that (v0 1,vi) EE(X).
Again applying the knowledge that yE G(X), we find that (v01,v,)EE(X) for O~ij<p. Thus r,
the complement graph of X, is disconnected and, therefore, a multidimensional circulant. In [7], we
show that X is a multidimensional circulant if and only if G(X) contains a regular abelian
subgroup. Since G(X )= G(X), we conclude that X is also a multidimensional circulant.

CASE 2: y=(v 0,0 ... v,,- 1)(vi 0 ... v,,,,).

Define Vi={v,1Ocjq<p} for Osi<2. Let E' be the set of edges of X with one endpoint in V0
and one endpoint in V,. Partition E' according to the congruence relation e,-e 2 if e,=yj(e2) for
some j. Since y is cyclic over V0 and V,, each block of the partition corresponds top node-disjoint
edges (i.e., a C,,2 multicycle).

Now consider the edges E; with both endpoints in V, for O<'i<2. In a similar fashion, partition
E. and E,. Each block of this partition corresponds to a p-cycle. Since X is vertex-transitive, it is
regular. We already know that each vertex of X is incident to the same number of edges from E'.
Thus o(E.) = o(E,) and we can pair up p-cycles in E. with p-cycles in El to form C,, multicycles.

Summarizing, if 4 has at least one edge, then X is decomposable into CP,, multicycles, C,,
multicycles, or both. If E(X )=0, thenX-C2,.,.D
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4. Related Problems

We now consider the question of what multicycle decompositions a vertex-transitive graph
can have. The graph in figure 3, for example, has three different multicycle decompositions.

U
I

Xe
a

U

b

U U

t_

C

Figure 3

Define a decomposition vector d of a graph to be the vector (d-, ..., do) where d,, ... , d, are such
that X can be expressed as the edge-disjoint union of d, C,, multicycles, d, Cc,,
multicycles-,..., and da Ca,, multicycles. By convention, we set d,=0 unless X has no edges, in
which case d,=I. We further require that d1=o for any i which does not integrally divide
n=o(V(X)). As an example, we observe that the graph displayed in figure 3 has decomposition
vectors (0,1,1,0,0,0), (0,1,0,0,0,1), and (0,3,0,0,0,0).

In the new terminology, the problem is to determine in some general way which
decomposition vectors a given vertex-transitive graph can have. We now provide a partial solution
to this problem.

THEOREM 5: Let X be a multidimensional circulant with k-symbol (a,S). For each
s=(sI' s,)ES, define p(s)=lcm(gcd( 1su,..., gcdak(k)). Let di be the number of distinct unordered
pairs {s, mod(-s,a)} such that sES and p(s)=ifor 1c4kn. If X has no edges, then define d,=d. Then
d = (d,, ... , d) is a decomposition vector for X.
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PROOF: Let X be a multidimensional circulant with k-symbol (a,S). We know from the
definition of a multidimensional circulant that E(X)={(v1,v ) mod(ij,a)ES}. For each sES,
define the subgraph X, of X to be the graph with nodes V(X) and edges
{(v,,vj)Imod(i-j,a)E{s,mod(-s,a)}}. It is clear that X,=X, if and only if {s,mod(-s,a)}=
{t,mod(-t,a)}. If XS#X,, then it is also clear that E(XjfnE(Xt)=0.Thus X can be expressed as the
edge-disjoint union of the X,.

We now complete the proof by showing that XfCl/p(,)p(,) for all sES where n=o(V(X)). By
definition, X, is a vertex-transitive graph with k-symbol (aZ,{s,mod(-s,a)}). Since
o({s,mod(-s,a)})<2, every node of X. is adjacent to at most two other nodes. By Lemma 4, we
know that X, is a multicycle. From the definition of E(X,), we know that the length of each cycle
in X, is the smallest positive integer r such that mod(rs,a) = 0. Note that mod(rs,a) 0 if and only if

akaI rs, for I <ick and thus if and only if gcd(apj) r for 1 <i~k. Thus p(s) =1cm (gcd(a14 - ,gcd( kk)) is
the smallest positive integer r such that mod(rs,a) =0 and X_-C

Note, however, that some multidimensional circulants may have multicycle decompositions
not of the form specified in Theorem 5. For example, the decompositions in figures 3b and 3c do
not correspond in any obvious way to the grouplike subsets of the automorphism group of the
graph. Thus the complete determination of which decomposition vectors a vertex-transitive graph
can have may well be a difficult problem.

Also of interest is the problem of how multicycles can be composed to form a vertex-
transitive graph. Not every graph which can be expressed as the edge-disjoint union of multicycles
is vertex-transitive. For instance, consider the graph shown in figure 4. This graph can be
expressed as the edge-disjoint union of two 7-cycles, yet is not vertex-transitive. This fact is easily
seen by observing that the complement of the graph is the node disjoint union of a 4-cycle and a
3-cycle and thus is not vertex-transitive.

U 4

Figure 4

Thus the manner in which one can combine multicycles to form a vertex-transitive graph is not
clear. A solution to the problem might well prove useful in settling the conjecture and in the develop-
ment of a combinatorial characterization of the class of all vertex-transitive graphs.

In addition to Professor Maurer, the author would like to thank Professors Brian Alspach and
Alan Goldman for their helpful remarks.
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