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A dual acceptance criterion based on the sample mean and an extreme order is used in many inspection
procedures. Computation of the acceptance probability for such a dual criterion is investigated. An ap-
proximation and a lower bound to the acceptance probability are derived and are applicable to any con-
tinuous distribution. In addition. the connection between this dual criterion and hypothesis testing of scale
and location parameters is studied. In the case of the exponential distribution the exact evaluation of the
acceptance probability yields the power of the test.
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1. Introduction

Suppose that a random sample of size n from a lot is measured with respect to a particular variable
and that the acceptance or rejection of the lot depends upon whether or not the measurements satisfy
certain criteria. "Lot" can refer to a group of individual items or to a specified amount of material
which can be sampled randomly.

There is widespread interest in sampling procedures that specify acceptance criteria involving the
sample mean and a proportion of defectives in the sample [1], 141 J5]. [91. [11] and 1141.1 Such a sam-
pling procedure might specify that the lot is to be accepted only if the sample mean is greater than a
value HO, say, and if no more than a specified percentage of the sample is less than a lower limit L. The
purpose of a dual acceptance criterion is to ensure, for example. that the lot is at least a stated amount.
po, of the specified variable on the average and that the number of so called "defectives" or items that
violate the lower limit is controlled. Obviously. depending on the application, the acceptance criteria
can be specified in the opposite direction: i.e., the lot is to be accepted only if the sample mean is less
than py and at least a certain percentage of the sample is greater than an upper limit U.

Specifically, let XI,--,X be a random sample of n measurements, and let Xt1p 6---6 X,,,l be the
corresponding order statistics. It is assumed that the random variables X 1,---,X, are independent and
identically distributed Iii.d.) with a probability density functionflx), and that the X!have finite mean
p and variance o2. Let X be the sample mean and Nt be the number of defectives or measurements
having values smaller than the specified (lower) limit L.

The sampling procedure to be considered is such that the lot is accepted whenever

rX >)oandNL k] (.L1)

where p( and h are specified in the sampling plan.

In terms of the order statistics, 11.1 1 is equivalent to the criterion

W Ž,uoand Xlk+1 >L] 11.2)

and the probability of accepting the lot is defined to be

Pn = PXŽ >p loo IL <]- 41.3)

The sampling procedure discussed above is a mixed variables-attributes acceptance criterion based
on one sample. There are various ways of designing a mixed sampling plan. The type studied by Schill-
ing and Dodge [19] is a double sampling procedure involving variables inspection in the first sample.
If the variables inspection does not lead to acceptance, a second sample is taken and an attribute in-
spection is conducted on the combined samples. In their work. Schilling and Dodge assume a normal
distribution with unknown mean and known variance.

We concentrate on a single sample plan where both the variables inspection as specified by the sam-
ple mean and attributes inspection as specified by k, the number of allowable defectives, are con-
ducted on the same sample. This causes difficulties in the computation of the acceptance probabilities
because of the lack of independence of the sample mean and the order statistics.

Investigations, of which we are aware, into the statistical properties of sampling procedures of this
type assume a normal distribution with unknown mean and known variance. For instance in a com-
pliance sampling application, Weed [21] simulates a two-stage procedure used in specifications for the
thickness of paving material in which both stages involve a variable and an attribute inspection. Elder
and Muse [8] develop a large sample approximation for the acceptance probability used in U.S.
Department of Agriculture inspection procedures (1.3) and compare the approximation to an exact
numerical procedure.

|Figumre in brackets indicate literature relerencas at the endol ths pape.
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It is noted that the dual sampling criterion leads to an acceptance region for testing hypotheses con-
cerning the mean p and the probability of item defectiveness simultaneously. The probability of a
defective is defined to bep = P[X 4 L1. The acceptance region in (1.1) or (1.2) may be used for testing
the null hypothesis

H0 : p = p* andp =p

versus the alternatives (1.4)

HI: 1A < y* orp >p

Through reparametrization, these hypotheses may be formulated in terms of the location and scale
parameters. Evidently, this depends on the properties of the distribution under consideration.

In the case of the normal distribution N(p, G2), the probability of a defective is

9= -(L ) (1.5)

where

0 (Z) = f exp{-u 2 /2}du.

Thus,

a = iL - j/4(p). (1.6)

Consequently, p = ' andp =p* if and only if

p = p* and a = o* = (L.-*)/0PI(p*l.

Accordingly, the hypothesis testing problem in (1.4) becomes that of testing

Ho: Pi= u* and o = o*

versus (1.7)

HI: 1 < u* or a < L<u-
0-1(p*)

Perusal of the literature turned up very few papers that are directly related to a joint test of the loca-
tion and scale parameters. Eisenberger [7] develops an asymptotic joint test for the mean and variance
of a normal distribution based on a quantile. Perng [18] develops a joint test for the location and scale
parameters of an exponential distribution based on Fisher's method of combining two test statistics.
Anderson [2] discusses the likelihood ratio test for simultaneously testing the mean and variance in
multivariate normal distributions; both one-sample and k-sample problems are considered. In a recent
paper, Perlman [17] shows that the likelihood ratio test is unbiased. None of these papers discusses the
computation of acceptance probabilities under alternative hypotheses. Also, unlike (1.7), the alter-
natives in the quoted papers are rectangular regions.

2. Scope of the Study

It is our intention to investigate the acceptance probability of a dual sampling procedure from
several aspects. The investigations are carried out for the normal distribution because of its im-
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portance in acceptance sampling and for the exponential and Weibull distributions because of their
application in modeling the life span distribution.

First, in section 3, we derive a large sample approximation P. for the acceptance probability P0 .
This is achieved by deriving the asymptotic joint distribution of vyn(X -M)/a and JVfL-np)/lnp
11-pli'e as the sample size approaches infinity. This approximation method applies to any distribu-
tion. We illustrate its use in the normal, Weibull. and exponential distributions. The results as given in
sections 3.1. 3.2, and 3.3 are compared with a simulation study.

In section 4 a lower bound Pis established for P. that amounts to assuming the independence of the
sample mean and the kth order statistic. This lower bound for finite samples provides some informa-
tion on the accuracy of the approximation. We attempt to determine under what conditions the ap-
proximation P, is a significant improvement over the lower bound. In this connection one notes that a
large sample approximation P. is derived by normalizing the sample mean as v3il(X-p)/o and the
number of defectives in the sample as iNL-np)/(npll-pl'1 /2 . If, instead, we convert NL to an order
statistic Xlk) and consider Xrkp (or X,-k~l as an extreme statistic. the normalized sample
mean X/I(X -pa and X}k) (or equivalently X, 0_k)} are asymptotically independent (The proof is given in
appendix B). This suggests that P serves as a possible approximation to P, when n is large and k is
small.

In other words, when comparing P. and P, one should keep in mind the relationship between k and
n4 namely, the ratio kh/n. In the case of P. we have NL /a - p and in the case of an extreme statistic we
have k/n - 0 as n - m. Clearly, one would expect that the lower bound P may be a reasonable ap-
proximation when A is relatively small compared with n. This is indeed confirmed in our numerical
study in section 4. The numerical studies show that P. is comparable to P for small kin and superior
to P for larger values of k/n.

Finally, in section 5 the acceptance probabilities are approximated for the normal and Weibull
distributions using a procedure proposed by Pearson and Hartley [16]. The exact acceptance prob-
abilities curves are computed for the exponential distribution.

3. Large Sample Approximation of the Joint Distribution of X and N1.

3.1 Derivation

Let X,,---1 be a random sample from the lot with pdff(x). Assunme that Xjhas a finite mean p and
variance A-.
Introducing indicator random variables I,
where

I if Xi < L (3.1.1)
I. =

0 if X > L

and letting the probability that an item violates the lower specification limit L be

p = PFIX < LI, (3.1.2)

we can write the number of (uniti lower limit violations NLin the sample as

n

NL = 2 I. 3.1.3)
i=l

Note that NVL has a binominal distribution B(n,p). and the event !NL 4 kI is equivalent to the event
IXtk+l > L]. In order to develop an approximation formula for the acceptance probability

Pa = P[fX ou NL < p
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we consider random variables W. and Yn defined as

and (3.1.4)
Y = (NL-np)/(np(ll-p)) 112 .

Let (WI., Y.) be a row vector. We prove the following result.

THEOREM 3.1. As n-> oo, the random vector (W., Y.)) converges in distribution to a bivariate nor-
mal distribution with mean (0,0)' and covariance matrix

2 = ~~~~~~~~~~(3W15)
'K7

where

Q = E (X1 -s)Ijo/(p(l-p))", 2 . (3.1.6)

PROOF: Let t1 and t 2 be arbitrarily chosen but fixed real numbers. Form the linear combination of Wn

and Y, tI W, +t 2 Yw 

Direct computation and application of the central limit theorem give

D
t1 Wn.+ t2 Y1 I N (0, t1

2 + t2
2 + t1 t2 Q) as n- 0 3

It then follows from application of the Cramer-Wold device that

(IW N(( ), x) as n *c

where >: is given in (3.1.51.

Making use of the asymptotic distribution in Theorem 3.1, we note from (3.1.4) that

X = n /2oWa+;

and

NL = (np(l-p)) 1 /2 Y+np.

Thus the random vector (X, NL' has asymptotically a bivariate normal distribution with mean and
covariance matrix r given by

u / n-~~0 E(XF-ujlj\
and = = (3.1.7)

np)E(Xj-ullIj npQ -p)

respectively.

For convenience in computation, write the acceptance probability P. as

Pa = PIX >Po]-P[X_ o, NL > k]

-PX >;A - P[W0 > \Fn(p0.- P)lo, Y,, > b?(lp( )1-p /2(k-np)]. (3.1.8)
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Making use of 13.1.7) and the continuity correction factor 0.5 for the random variable NL, we see that
for sufficiently large n, P. may be approximated by

P. = I JeXp(-z2/2)dz- I g(xyQkdxdY (3.1.91
v2n a a

where
a = \5yo-filla, (3.1.10)

b = (np(l-p))-1"2 (k +0.5-np1, (3.1.11)

g(x,yQ) = (2nS)- (1-Q2 F1 2exp(-(x 2 +y 2 - 2Qxy)/2(1-Q2)}, (3.1.12)

and Q is defined in 13.1.6).

In order to compute the P [X 3 p0 N NL 4 k] using the approximation P., we need to know the
mean p and the variance o2 of the distribution in question, the proportion defective p as defined in
(3.1.2) and the correlation coefficient e as defined in (3.1.6). The computation of the bivariate normal
term is described in more detail in Appendix A.

3.2 Normal Distribution

Assume that the sample comes from a normal distribution N(puCr2 ).
The item defective probability from (3.1.2) is

p = PP X ( L] = O{(L-MI/u}, 13.2.1)

where @{(L-p)Io} is the cdf of theN(0,1) given in 11.51.
In order to compute the approximation P. given in (3.1.9), we need to compute the correlation coef-

ficient given in 43.1.61.
The expectation E ( (X-P)I[x,<L} is evaluated as

E{(X-p)IrX<Lj} = - exp {-(L-u12/2021.

Consequently the correlation coefficient is

Q = -(2npp(1-pV)-" 2exp {-(L-') 2 /2g 2}.

In order to compare the approximation Pa in (3.1.9) with an approximation developed by Elder and
Muse [8J, the lower limit L is chosen under the assumption that P = 0, o = 1, and according to the
criterion

PINL 6 kj = I-as (3.2.2)

where 0< a <1.
Because AVL is B(np), the lower limitL is determined from

k

where p = OIL).
Values of L as tabulated by Elder and Muse for a = 0.10, 0.05, and 0.01 are shown in table I. Once
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TABLE L Lower Limits used in Computation of Acceptance ProbabilitiesforNornalDistribution

Lower LimitL

n k a=0.10 a=0.05 a=0.01

5 0 2.036 2.319 2.877
1 1.215 1.429 1.843
2 0.685 0.881 1.250

10 0 2.309 2.568 3.089
1 1.602 1.789 2.157
2 1.196 1.358 1.670

20 0 2.559 2.799 3.289
1 1.928 2.095 2.428
2 1.586 1.726 2.001

30 0 2.696 2.928 3.402
1 2.100 2.258 2.574
2 1.783 1.914 2.172

L is determined the correlation coefficient of X and NL can be evaluated as

Q = -[2np( lp)1- 1 2 exp{-L 2/2}. (3.2.4)

The'Elder-Muse approximation along with their exact results are compared with the corresponding
values of Pa in table II where L is chosen such that a = 0. 10.

The comparison with the exact values derived in [8] shows that even for small sample size P. pro-
vides an excellent approximation to the acceptance probability P., and its effectiveness increases as k
gets larger. When k = 0, the percent error in P. as compared to the exact results is approximately 3
percent. For k = 1, it is about I percent and for k = 2, it is less than 1 percent. The percentage errors
in both P. and the Elder-Muse approximation when p = 0 are shown below.

Percent Error in Approximations

k=0 k= Ik=2

Elder Elder Elder
n P Muse P Muse P. Muse

5 3.3 1.0 1.0 1.8 0.6 1.2
10 3.1 0.6 1.0 1.0 0.6 1.2
20 3.0 0.2 0.8 0.6 0.6 0.8
30 2.6 0.2 0.8 0.8 0.4 0.6

3.3 Weibull Distribution

Assume that the sample Xl,.. .,X comes from a two parameter
scale parameter A, shape parameter 6 and pdf

Weibull distribution W(AO) with

fix) = (o/A) (x/A)- 1 exp {- (xlAi°} forx > 0, A > 0, 8 > 0

The mean and variance are

and
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p = AFr1+ 1/o)

02 = A2 {r(1+2/) - [fr(1+ 1/8)]2}

(3.3.2)
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respectively where F(-) is the gamma function.
For 0 < B 4 1, X has a decreasing failure rate (DFR) distribution; for 0 >s 1, X has an increasing

failure rate (IFR) distribution. For further information see Johnson and Kotz 113].
In the case of the Weibull distribution, the proportion defectivep is defined from (3.1.2) and (3.2.2)

as

p = [X < LI = I - exp {-(L/A)0 }. (3.3.4)

The expectation

EXI[X<LJ
O L

=-A f0
x(x/AM0-lexp {- (x/A)0}dx

= AI{(L/A° 0,1/0}

and I(c,d) is related to the incomplete F-function [12].
Combining (3.1.6). (3.3.4) and (3.3.5), we find that the correlation coefficient is

TABLE 11. Comparison of Approximation Pa with
Elder -Muse Values for

PIXptu *,N1 4;kwhereP(N, •k)= 0.90
for Normal Distribution N.O I)

(3.3.5)

k=0 k=l k=2
Elder Elder Elder

a 1 Exact P. Muse Exact Pa Muse Exact P. Muse

5 -. 8 0.035 0.034 0.032 0.036 0.036 0.034 0.037 0.036 0.037
-. 6 0.087 0.082 0.085 0.089 0.088 0.089 0.089 0.089 0.091
-. 4 0.180 0.168 0.181 0.184 0.181 0.188 0.185 0.184 0.189
-. 2 0.318 0.300 0.323 0.324 0.320 0.332 0.326 0.325 0.333

.0 0.488 0.472 0.493 0.496 0.491 0.505 0.499 0.496 0.505

.2 0.659 0.667 0.663 0.669 0.672 0.674 0.671 0.672 0.674

.4 0.801 0.814 0.802 0.811 0.814 0.811 0.813 0.814 0.812

.6 0.899 0.910 0.899 0.908 0.910 0.906 0.909 0.910 0.906

.8 0.956 0.963 0.955 0.962 0.963 0.959 0.963 0.963 0.959

10 -. 6 0.027 0.026 0.026 0.028 0.028 0.026 0.028 0.028 0.027
-. 4 0.098 0.091 0.097 0.100 0.098 0.099 0.101 0.101 0.101
-. 2 0.252 0.236 0.253 0.257 0.252 0.261 0.260 0.257 0.264

.0 0.480 0.465 0.483 0.490 0.485 0.495 0.494 0.491 0.500

.2 0.713 0.732 0.714 0.725 0.735 0.728 0.731 0.736 0.733

.4 0.876 0.897 0.876 0.888 0.897 0.887 0.893 0.897 0.891

.6 0.956 0.971 0.956 0.966 0.971 0.965 0.969 0.971 0.967

.8 0.956 0.994 0.985 0.992 0.994 0.991 0.993 0.994 0.993

20 -. 4 0.034 .0.032 0.034 0.035 0.034 0.034 0.036 0.035 0.034
-. 2 0.174 0.162 0.174 0.178 0.173 0.178 0.180 0.177 0.181

.0 0.474 0.460 0.475 0.483 0.479 0.486 0.488 0.485 0.492

.2 0.781 0.811 0.781 0.795 0.814 0.795 0.802 0.814 0.802

.4 0.937 0.963 0.937 0.950 0.963 0.950 0.956 0.963 0.955

.6 0.981 0.996 0.981 0.991 0.996 0.991 0.994 0.996 0.993

30 -. 4 0.013 0.012 0.013 0.013 0.013 0.013 0.014 0.014 0.013
-. 2 0.127 0.118 0.127 0.130 0.126 0.129 0.131 0.129 0.131

.0 0.470 0.458 0.471 0.479 0.476 0.480 0.484 0.482 0.487

.2 0.824 0.861 0.824 0.839 0.863 0.839 0.847 0.863 0.846
.4 0.958 0.986 0.958 0.972 0.986 0.972 0.978 0.986 0.977
.6 0.985 0.999 0.985 0.995 0.999 0.995 0.997 0.999 0.997

= 0
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e = [AI{(L/A)8 , l/1}0-p]/o(p(1-p))1/ 2

where St and a are defined by (3.3.2), and (3.3.3) respectively.
The limits of integration for the approximation (3.1.9) are

(3.3.7)
A{F(L+2/0)-[Frl+ 1/e)]2}1/2

andb as defined in (3.1.11.
As is the case in the normal distribution, the lower limit L is determined according to (3.2.3) and

(3.3.4) for specified values of k and a.
Explicitly

L = A [-log, (I-p)] /. (3.3.8)

The proportion defective p is tabulated in table Ill for a = 0.10, 0.05 and 0.01, n = 5,10, 20, 30 and
k = 0, 1, 2, 3. Corresponding lower limits L where A = I are shown in table IV.

TABLE 111. Proportion Defectives p used in Computation of
Acceptance Probabilities

Proportion Defective p

n A a0=.l0 a=0.05 ,= 0 .01

5 0 0.0208 0.0102 0.00200
I .112 .076.5 .0330
2 .247 .1890 .106
3 .416 .3425 .222

10 0 0.0105 0.00511 0.00100
l .0545 .0365 .0155
2 .1155 .0870 .0475
3 .1875 .1500 .0930

20 0 0.00525 0.00256 0.000500
1 .0269 .0180 .00759
2 .0564 .0422 .0227
3 .0902 .0713 .0435

30 0 0.00350 0.00171 0.000335
I .0178 .0120 .00500
2 .0373 .0278 .0149
3 .0594 .0468 .0285

The approximation P. is compared to a simulation study where the acceptance probability was com-
puted from 5,000 random samples. Simulation for the Weibull distribution was done by generating in-
dependent uniform random deviates Ui using a congruential random number generator and making
the transformation

X= A(-log U')1 8/

The Xi are independent W(AB) r.v.s with pdf as shown in (3.3.1).
Values of P. and simulated acceptance probabilities are tabulated in table V for Weibull distribu-

tion W(1,0) for 0 = 1,2, 3.5.
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The accuracy of the approximation Pa as gauged by the simulation results is dependent on several

factors; i.e., namely, the value of the shape parameter 0; a. the probability that the sample will contain
more than the allowable number of defectives; n, the size of the sample; and k, the number of
allowable defectives or number of measurements less than the lower limitL.

The worst accuracy is for a Weibull distribution with 0 = I where a is small. a = 0.01, and n is
small, n = 5. The error is 9 percent for this case but drops to 2 percent when the sample size is in-

TABLE IV. LowcerLimms Usedin Computation of Acceptance Probabilities for WeibuliDistribution

I | k |Lower Limi 1: 

0=1 5 0 0.0210 0.0103 0.0020
5 1 .1188 .0796 .0336
5 2 .283T .2095 .1120
5 3 .5379 .4193 .2510

10 0 .0106 .0051 .0010
10 I .0560 .0372 .0156
10 2 .1227 .0910 .0487
10 3 .2076 .1625 .0976
20 0 .0053 .0026 .0005
20 1 .0273 .0182 .0076
20 2 .0581 .0431 .0230
20 3 .0945 .0740 .0445
30 0 .0035 .001 7 .0003
30 1 .0180 .0121 .0050
30 2 .0380 .0282 .0150
30 3 .0612 .0479 .0289

0=2 5 0 .1450 .1013 .0447
5 1 .3446 .2821 .1832
S 2 .5326 .457. .3347
5 3 .7334 .6475 .5010

10 0 .1027 .0716 .0316
10 1 .2367 .1928 .1250
10 2 .3503 .3017 .2206
10 3 .4557 .4031 .3124
20 0 .0726 .0506 .0224
20 1 .1651 .1348 .0873
20 2 .2409 .2076 .1515
20 3 .3075 .2720 .2109
30 0 .0592 .0414 .0183
30 1 .1340 .1099 .0T08
30 2 .1950 .1679 .1225
30 3 .2475 .2189 ITO0

0=3.5 5 0 .3317 .2702 .1694
5 1 .5441 .4852 .3791
5 2 .6977 .6398 .5351
5 3 .8376 .7801 .673T

10 0 .2724 .2216 .1390
10 1 .4390 .3904 .3047
10 2 .5492 .5042 .4216
10 3 .6382 .5950 .5144
20 0 .2233 .1818 .1140
20 1 .3573 .3181 .2482

20 2 .4434 .4013 .3402
20 3 .5097 .4752 .4109
30 O .1988 .1620 .1017
30 1 .3171 .2831 .2202
30 2 .3929 .3607 .3013
30 3 .4502 .4198 .3633
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TABLEVV Comparison of ApproximaiionPA with Simulationfor
P(X 1P4'*. NL< k) whereP(NL k)=1-a

for Weibull Distribution W(1.6).

Probability of Acceptance

__________ _____ I k 0 =0 5m=P 0.01

n ~k I Pa Sicul I P. Simul I P. Simul

0.634
.652
.664
.674
.707
.724
.734
.743
.195
.801
.807
.810
.826
.837
.838
.841

.703

.723

.736

.740

.764

.780

.794

.800

.827

.839

.848

.851

.860

.866

.867

.872

.829

.844

.855

.853

.864

.868

.884

.889

.890

.894

.899

.894

.893

.896

.894

.898

0.698
.698
.699
.702
.768
.768
.766
.767
.848
.846
.844
.843
.893
.890
.887
.886

0.663
.673
.680
.684
.755
.763
.768
.772
.828
.836
.840
.841
.872
.879
.878
.881

.720 .731

.729 .734

.733 .737

.736 .739

.788 .807

.803 .808

.808 .808

.812 .810

.865 .885

.876 .884

.884 .882

.884 .882

.897 .924

.903 .922

.909 .919

.914 .918

.864

.865

.868

.869

.931

.930

.928

.928

.968

.964

.960

.958

.974

.970

.966

.964

.859

.873

.875

.878

.911

.915

.922

.925

.938

.946

.946

.947

.938

.947

.948

.956

0.712
.-12
.711
.711
.785
.785
.785
.784
.868
.868
.867
.867
.914
.914
.914
.913

0.672
.672
.674
.675
.773
.776
.778
.779
.875
.877
.879
.878
.914
.918
.915
.917

.744

.744

.744

.744

.824

.824

.823

.823

.906.

.906

.905

.905

.946

.946

.946

.945

.880

.880

.880

.879

.951

.951

.951

.951

.990

.990

.990

.989

.998

.998

.997

.996

.738

.739

.740

.740

.822

.825

.826

.827

.903

.905

.907

.907

.947

.950

.949

.952

.872

.875

.876

.877

.942

.947

.946
.950
.983
.984
.987
.986
.984
.989
.990
.990
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0=1

8=2

0=3.5

3

a
5
3

10
10
1 0
1 0
20
20
20
20
30
30
30
30

a
5
5
3

1 0
1 0
10
10
20
20
20
20
30
30
30
30

5
5
5
5

1 0
1 0
1 0
1 0
20
20
20
20
30
30
30
30

0

2
3
0

2
3
0

2
3
0

2
3

0

2
3
0

2
3
0

2
3
0

2
3

0

2
3
0

2
3
0

2
3
0

2
3

0.645
.668
.678
.688
.705
.726
.733
.738
.775
.795
.798
.801
.815
.835
.837
.838

.681

.709

.721

.729

.743

.768

.777

.784

.810

.832

.837

.840
.844
.865
.867
.869

.801

.830

.839

.843

.853

.877

.882

.885

.882

.902

.903

.903

.887
.908
.907
.907

*#o = 0.75



creased to n = 10. For other Weibull distributions and combinations of a and n, the worst accuracies
occur when k = 0, and in this case the errors are as large as 6 percent for n = 5 and 4 percent for n =
30. However, the approximation P. works very well when k > 0. The disagreement between Pa and
the simulation is less than 1 percent for a large proportion of the points when i > 0.

3.4 Exponential Distribution

Assume that the sample Xl,...,X, 1 comes from an exponential distribution E(A43) with location
parameter P3 and scale parameter A and pdf

f(x) = (Ilk) exp{-(x--f)/k) x > 3, A > 0 3.4.1)

The mean and variance of X are given by i = A + ,3 and ,2 = A2 respectively.
We have

p = I-exp(-(L-/3)/A) (3.4.2)

and

EXI[Xc L] = Ap - (1-p)lL--/3) + Pfp. (3.4.3)

Combining (3.4.2) and 13.4.3), we get

Q = -(l-p)l /2 (L-/3)/Ap 1 2 . l3.4.4)

Using values for the proportion defective p that are given in table III, the corresponding limits L as
determined by

L = 3 - A log (l-p) (3.4.5)

are found in table VI for i = 0 and A = 0.5, 1, 2.
The values a and b appearing in the approximation P. (3.1.9) are given by

a = n1/2Ar 1 (Ho-A-f-) (3.4.6)

b = (np(l-p))- 1 /2 lI + 0.5 -np)

and e is defined by 13.4.4.)
Values of P. and simulated acceptance probabilities are tabulated in table VII for the exponential

distribution EIA,0) for A = 0.5,1,2.
The accuracy of the approximation P. is more dependent on n, the sample size and less dependent

on i, the number of allowable defectives for the exponential distribution than for Weibull distribu-
tions. The worst accuracy-is for an exponential distribution with A = 1, where i = 0 and n = 5. The
disagreement with the simulation in this case is 7 percent, dropping to I percent when the sample size
is increased to n = 10. In general, the accuracies are not dependent upon the parameter A but are
somewhat dependent upon the way in which the lower limit L is chosen, and the accuracies tend to
worsen as the probability of the sample containing more than the allowable number of defectives in-
creases. Accuracies of about 2 percent are characteristic of the results over all values of k.

4. A Lower Bound for the Acceptance Probability

A lower bound for the acceptance probability is provided by the following lemma.

LEMMA 4.1: Let X 1 ...,Xn be i.i.d random variables from a continuous distribution. Let X be the
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sample mean and X(r) be the rt' smallest order statistic of X ,...,X. . Then for arbitrarily fixed
real numbers a, b and positive integer,, I < r <ns

P[X >aX(r)>blP[X >,alP[X(r)>-bl (4.1)

P[)C < a, X (r)< b] > P[-X < a] P[X(r) < b]y (4.2)

The lemma is an easy consequence of a general theorem (Esary, Proschan, and Walkup 1101). For easy
reference, we quote the theorem below, as well as the definition of "associatedness." Random

TABLE VI. Lower Limits used in Computation of Acceptance Probabilities for Exponential Distribution

| I Lower Limit L

I_____IIt k I a0.10 j a0.05 e=0.0I

A=0.5 5 0 0.0105 0.0051 0.0010
5 l .0594 .0398 .0168
5 2 .1418 .1047 .0560
5 3 .2689 .2097 .1255

10 0 .0053 .0026 .0005
10 1 .0280 .0186 .0078
10 2 .0614 .0455 .0243
10 3 .1038 .0813 .0488
20 0 .0026 .0013 .0003
20 1 .0136 .0091 .0038
20 2 .0290 .0216 .0115
20 3 .0473 .0370 .0222
30 0 .0018 .0009 .0002
30 1 .0090 .0060 .0025
30 2 .0190 .0141 .0075
30 3 .0306 .0240 .0145

A= 1.0 5 .0210 .0103 .0020
5 l .1188 .0796 .0336
5 2 .2837 .2095 .1120
5 3 .5379 .4193 .2510

10 0 .0106 .0051 .0010
10 l .0560 .0372 .0156
10 2 .1227 .0910 .0487
10 3 .2076 .1625 .0976
20 0 .0053 .0026 .0005
20 I .0273 .0182 .0076
20 2 .0581 .0431 .0230
20 3 .0945 .0740 .0445
30 0 .0035 .0017 .0003
30 l .0180 .0121 .0050
30 2 .0380 .0282 .0150
30 3 .0612 .0479 .0289

A=2 5 0 .0420 .0205 .0040
5 l .2376 .1592 .0671
5 2 .5674 .4190 .2241
5 3 1.0757 .8386 .502 1

10 0 .0211 .0102 .0020
10 1 .1121 .0744 .0312
1 0 2 .2455 .1820 .0973
10 3 .4153 .3250 .1952
20 0 .0105 .0051 .0010
20 l .0545 .0363 .0152
20 2 .1161 .0862 .0459
20 3 .1891 .1479 .0889
30 0 .0070 .0034 .0007
30 l .0359 .0241 .0100
30 2 .0760 .0564 .0300
30 3 .1225 .0959 .0578

I
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TABLE VII. Comparison of Approximation P. with Simulation for P[X aO, N, < k1 where P. N,1 < k] = I-a
for Exponential Distribution E/ A.0)

A=0.5, M=0.25

a
5
S
5

1 0
1 0
1 0
1 0
20
20
20
20
30
30
30
30

A= 1.0, a= 0.75

5
5
5
S

1 0
N 
1 0
1 0
20
20
20
20
30
30
30
30

A=2.0, pa= 0.75

5
5
5
5

1 0
1 0
1 0
1 0
20
20
20
20
30
30
30
30

Probability of Acceptance

0.781
.804
.811
.819
.842
.862
.865
.867
.878
.898
.898
.898
.886
.906
.906
.906

.645

.668

.673

.688

.705

.726

.733

.738

.775

.795

.798

.801

.815

.835

.837

.838

.825

.846

.851

.856

.870

.889

.891

.891

.887

.906

.906

.906

.889

.909

.908

.908

0.825
.846
.857
.869
.875
.889
.893
.897
.902
.905
.907
.899
.901
.904
.903
.903

.632

.657

.665

.676

.712

.726

.734
.745
.789
.800
.804
.806
.839
.846
.842
.846

.872

.883

.891

.894

.894

.889

.898

.894

.902

.903

.905

.904

.907

.906

.902

.901

0.850
.841
.846
.847
.922
.919
.915
.913
.964
.960
.956
.953
.973
.969
.965
.962

.698

.698

.699

.702

.768

.768

.767

.767

.848

.846

.844

.843

.893

.890

.887

.886

.899

.895

.893

.892

.954

.950
.945
.942
.974
.970
.965
.962
.976
.972
.968
.965

0.853
.871
.874
.885
.929
.927
.933
.935
.948
.954
.955
.948
.952
.951
.948
.950

.651

.660

.667

.674

.754

.761

.766
.769
.846
.849
.849
.851
.890
.887
.884
.891

.915

.927

.929
.935
.944
.944
.948
.945
.952
.956
.956
.955
.956
.949
.948
.952
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0.868
.868
.867
.866
.943
.943
.942
.941
.987
.987
.986
.985
.997
.997
.996
.995

0.893
.896
.897
.899
.957
.958
.958
.956
.985
.984
.984
.984
.981
.990
.990
.989

.712

.712

.711

.711

.785

.785

.785
.784
.868
.868
.867
.867
.915
.914
.914
.913

.919

.919

.918

.916

.976

.976

.975
-974
.997
.997
.996
.995

1.000
.999
.999
.998

.686

.689

.690

.691

.776

.777

.777
.778
.873
.876
.875
.873
.920
.921
.922
.921

.950

.954
.953
.955
.987
.987
.986
.985
.991
.989
.991
.992
.990
.991
.991
.990



variables X 1 ...,Xn are said to be associated if

Cov(f(T), g(T)) > 0

for all non-decreasing functions f and g in each Xi for which EffT), Eg(T), Ef(T)g(T) exist and T
denotes {X1 ,...,X,}.

THEOREM 4.1. Let T = {Xl-,...,Xn be associated, SI = fi(T) and f; be nondecreasing for i=l,...,k.
Then

k

PIS I 1< SI,---,SI, Ad SkI > .. n P[Si -< Si] (4.3)

k
P[S1 >S ... Sk >Sk] > F1 P[Si>sJ (4.4)

i= 1

for ail SI.. "s-'k

PROOF OF LEMMA 4.1: In our case the Xi's are statistically independent and hence associated. Let
SI = X and S2 = X(,). Clearly, S1 and 52 are non-decreasing functions in each of the Xi's; hence (4.1)
and (4.2) hold. Moreover, Cov(S1 , 52) = Cov (X, X(,)) > 0. This completes the proof.

From Lemma 4. 1, we have a lower bound P to the acceptance probability

P = P[X ->a] P|Xjk+ 1l > LI < Pn= P[X_ :a, Xfk+ II>L], (4.5)

where A + I corresponds to r.
The r.v. Xfk+ ) can be transformed to a r.v. Z with Beta distribution with parameters n-k and k+ 1.

Thus

F(n+ 1) Ip
P[X~k~)>L1=PZ~l-FXL~j=~~f z-k- (l-z)kdz. (4.6)

F(k+1)FWn-h) 0

The lower bound P in (4.5) can be computed using the marginal distribution of the sample mean and
the Beta distribution.

Because the computation of the lower bound P is much easier than the computation of the accep-
tance probability P. it would be an immense simplification if the lower bound could serve as an ap-
proximation for Pn.

Therefore, it is of practical importance to determine the sample size n and values of k that are
necessary in order that the lower bound be an acceptable approximation for P.. In other words, it is of
interest to know the smallest value of n and the range of k values which makes the independence of X
and X(k+ 1) acceptable.

5. Comparison of the Exact Probability of Acceptance with the
Approximation and the Lower Bound

5.1 Acceptance Probability Curves

The acceptance probabilities computed using either simulation or numerical integration along with
the corresponding lower bound P and the approximation Pa are plotted as a function of one parameter
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of the distribution in question. This provides a comparison of the relative accuracy of P. to P as a
technique for approximating Pa. The curves are varied over n and k in order to examine the effect of
sample size and number of allowable defectives k on P., P. and P.

5.2 Normal Distribution

Assuming that XI,_., X.~ are i.i.d. N(p.1I). the acceptance probability

P.= PJ[X ,IoX(k+l I>

for L chosen according to (3.2.3) and p, = 0 was computed using a technique for simulating random
normal deviates due to Box and Muller [3]. The resulting acceptance probabilities as a function of iA

are shown as the solid line in figures 1-4.
The corresponding lower bound P was computed from (4.5) and the approximation P. was com-

puted for (3.1.9).
The relationships among the probability of acceptance P., its approximation P., and its lower

bound P as a function of sample size n and allowable number of defectives k is depicted in figures 1-4
for samples of size n = 10 and n = 30. The following convention is used for all figures; namely, P. is
shown as a solid line; P. is shown as a heavy dashed line; and P is shown as a lighter dotted line.

From figure I it is obvious that when k = 0 and n is small, P. is a better approximation to the ac-
ceptance probability than the lower bound as long as pA < 0.25. As n increases the superiority of P. to P
increases as k is allowed to become larger. For example, when k = 3 as in figure 4, the lower bound
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allowable defectives /r = 3 and n observations are drawn

does not give a satisfactory approximation for the smaller sample size, and P. is clearly preferable.
Even for n = 30, P. is at least as accurate as P over the entire range of M.

5.3 Weibull Distribution

Assuming that Xl,...,X, are i.i.d. W(1,0), and that pO = 0.75 and that L is chosen according to
(3.3.8) with 0 = 1, the acceptance probability was computed by simulation and is shown as the solid
line in figures 5-8. The corresponding lower bound P was also computed using simulation and is
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FIGURE 5. Acceptance probabilities when the number of allowable defectives k = 0 and n observations are drawn
from a Weibull distribution Wf,1 0).
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from a Weibull distribution Wi,. 0).
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FIGURE 8. Acceptance probabilities when the number of allowable defectives k = 3 and n observations are drawn

from a Weibull distribution W191,6).

represented by the dotted line in the same figures. The approximation P. is shown by the heavy
dashed line in the figures.

The figures show that P. is not a particularly good approximation to P. when k = 0, and one would

do much better using the-lower bound P. However, P. shows the same characteristic for the Weibull
distribution as for the normal distribution; namely, that as k/n increases the accuracy of the approx-
imation increases. For n = 10 and k = 3, P. is superior to P, for n = 30, P is indistinguishable from
the simulated acceptance probability.
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5.4 Exponential Distribution

5.4.1 Comparison with a UMP Test

As discussed in section 1, we may view the problem of finding an optimal sampling procedure as a
hypothesis testing problem formulated in (1.4). In general there exists no uniformly most powerful
(UMP) test for (1.4). However, it is interesting to note that in the exponential distribution the dual ac-
ceptance criterion for k = 0 corresponds to a test which is UMP for a subset of alternatives specified
in (1.4). Specifically, suppose the sample comes from the exponential pdf given in (3.4.1).

The UMP acceptance region for testing

HO: A = A* and = Ps*

versus

HI: O<A<A*andO<P<P*

is given by

(5.4.1)

This testing problem is equivalent to testing

HO: A = A* andp = p*

versus

H1:O<A<A* andp > I-( I-P*)A*/k

where

or

A* = L + A* log (l-p*).

Under Ho, P 8*,p* [X(1) > #*1 = 1, and 80 is determined by the equation

PA*p* [X Ž jol = I-a, (5.4.2)

where a is a predetermined level of significance (Lehmann [15]).
If we set L = ,0* and k = 0, the test specified by (5.4.1) clearly is the same test specified by (1.3),

and the acceptance probability

Pn= PAP { X>HOX Xl)l > ,P*) (5.4.3)

can be computed either by the approximation shown in section 3.4 or by numerical integration using
an exact formula for the distribution of X and NL as shown in the next section.

5.4.2 Exact Distribution of X and NL

The joint distribution of X and NL can-be obtained from the order statistics.
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Let

Z, = nX0)

Zi = (n-i+ I)iX~jj-Xjj-j).

We have the pdf of Zfl>,

gj(zj) = A-1 exp {-(zj-n3)/A},z1 >(3 (5.4.4)

and for i > 2, Z; has a pdf

gj(zj) = AK1 exp (-zj/A), zg>O.

To compute the acceptance probability P. for an arbitrary k, we make use of the fact that the Z's
are independent r.v. 's, and that

s X- = Z = X- and proceed as follows:

Pn = PAp IX > yo, NL < kI
n ~~k+] II k+1lgz)Idz.=f ~-fP[ I 4i> Žnyn, I Zi/(n-i+1) >LzI,"r', zk+lI in g-zjdgdzkI

n k+1 + k+1
= f £-- | P [I zj > n 0O- I zJ I n gi(zi) dzg---dzk+I (5.4-5\

k+1 k+1
whereA = f(zl,---, zk±+ 1): zi/(n-i+ 1) > L and npAO - zi >z 0).

1 I

The expression in (5.4.5) is the exact probability of acceptance, P.

When k = 0, the computation of P. reduces to

P. = f p P I 2Z > nPO-z1] glizl~dzl+j gl(zl)dzl. (5.4.6)nL 2 Z-up, 1]g( 1)z+

Note that the sum Y = I Zi has a gamma density.

f(y) = (1/k)n-I rn-2 exp(-y/A). (5.4.7)
rUn-1)

Substituting (5.4.4) and (5.4.7) in (5.4.6) we obtain

P. =r1 J e-0 vn"2 exp{-(zl-np)/A}dvdzl + exp (-n(y0 7--f3)/A} (5.4.8)

where

a = nL
b = npO
c = (nuO-z1 )/A

The lower bound for P. is

P =fxdx | dx (5.4.9)
-/A 2n(L-p)iA
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where fix) is the pdf of the X2(2n) and g(x) is the pdf of the X2(2).

5.4.3 Acceptance probabilities

If we assume that X1 ,---,X, are i..d. E(A,O), the acceptance probability for k = 0

P= PJ[X > M0, NL < 0] = P[X > po, X111 > LI

is computed from (5.4.8) using a numerical integration technique that takes advantage of the fact that
the inner integral is an incomplete F-function. Note that y0 is determined from X2(2) according to
(5.4.2), and L is determined according to (3.4.5). The acceptance probability P. is shown as the solid
line in figure 9.
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FIGURE 9. Acceptance probabilities when the number of allowable defectives k =
from an exponential distribution Ek, 0).

"-30 r-0

0 and n observations are drawn

The acceptance probabilities fork = 1,2,3, for MO = 0.75 and L chosen according to (3.4.5) were com-
puted by simulation as were the corresponding values of P. The approximation P. was computed from
(3.4.6). Results are shown in figures 10-12.

The graphs show that P. is a better approximation to P. than the lower bound P for small sample
size where the superiority of P. over P increases as k increases. For large sample size, say n = 30, the
two methods give almost identical approximations to Pa.

Values of . used in Computation of
Acceptance Probabilities for UMP Test for

Exponential Distribution

Values of p0

n a=0.10 a=0.05 aO=0.01
5 0.48652 0.39403 0.25582
10 0.62213 0.64254 0.41302
20 0.77626 0.66273 0.55411
30 0.77431 0.71998 0.62475
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6. Synopsis

The problem of computing the acceptance probability P. has been addressed by an approximation
P. that relies on the asymptotic joint distribution of the sample mean and number of defectives in the
sample. P. has the advantage that it is applicable to any continuous distribution. It is computed using
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a N(0,1) cdf and a bivariate normal cdf which in turn can be reduced to a single variable integration.
The approximation P. compares very favorably with another published approximation for the nor-

mal distribution and with a lower bound P. Graphs of the acceptance probability as a function of one
parameter of the distribution are used to compare the relative accuracies of Pa and P. The graphs
show that for the normal distribution P. and P have comparable accuracies with k = 0. As k/n in-
creases, P. quickly becomes superior to P, and even for large n and k > 0 P, is superior. In other
words, the best results for the normal distribution are obtained with P when k = 0 and with P8 for all
other values of k.

In the case of Weibull distribution P is superior for k = 0. As k/n increases, P8 gains in accuracy,
and for large n, P continues to have an edge over Ps. The difficulty in computing P for the Weibull
distribution may make it desirable to use P. for all applications.

In the case of exponential distribution, the exact joint distribution of the sample mean and number
of defectives in the sample has been derived for k = 0. The computation of the acceptance probability
P4 in this case involves a two-variable integration. Graphs of the acceptance probabilities show that
the lower limit P gives a consistently good approximation to the acceptance probability. The approx-
imation Pa and the lower limit P have also been computed for the exponential distribution for I < k <
3. The graphs for these tests show that P is comparable or superior to Pa for large n(n id 301 with P. be-
ing somewhat superior when n is small, say n < 10.

The numerical integrations for this study were performed using the NBS software package
DATAPLOT developed by Dr. J.J. Filliben, and the graphs were prepared using the same package.
The authors wish to acknowledge the helpful suggestions for changes in the manuscript made by Dr.
P. Smith and Mrs. M. Natrella.
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8. Appendix A

The approximation Pa given in (3.1.9) involves the computation of Lla,b,Q) defined as

L(ab,Q) = f fg(zy,e0dydz.

The computation of Lla,be) can be reduced to a single variable integration. When a and b are both
positive 1181,

L(a,b,Q) = exp I- !a2+b2-2ab cos w) cosec2wjdw2n ac cosQ 2

The following recursion relations hold:

L(-ab.e) = -L(a,b,-e) + - [1-hbb)]

L(ar-b,e) = -L(a,b,-e) + 2 [1-h(a)]

L(-a,-b,e) = L(a,b,Q) + 2 Jh(a)+h(b)]
x~~~~

where hlx) = I exp(-t 2 /2)dt.

The approximation Pa can be computed for all values of a,b and e using the foregoing equations.

Pa = 4$-a)-L(a,bQa>Ob>O

P. = 4$-a) -si-b) + L(-a,b,-e), a < 0, b > 0

P. = LIa,-b,-p). a > 0. b < 0

P8 = ib) - L(-a,-b,Q), a < 0, b < 0

where Oix) = f expi-t2/2)dt.

9. Appendix B

Asymptotic independence of the sample mean and the in-k)th extreme statistic.

Let X,---, X, be i.i.d with a p.df. fix). Denote the c.d.f. of the X's by Fix). Assume that X's have a
finite mean It and finite variance o2. Let XI,) < .*. < X() be the order statistics.

The conditional density of X(, 1,---, XI. given that X(.-k) = x(nkl is given by
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A-k-I
(n-k-l)! f fixol))

JF(x(-k)n-k-

n
k! fi fi x(s)

n-k+ I

11-Flxn.-kf)l I

Clearly, given that XI.-k) = Xln-k). the joint conditional density may be regarded as the joint density
of two dependent samples IYl,---, Yn-k- _I and {W 1,---, WkI, where the Y-sample has a p.d.f.

hAx) -fix) I 2 >
Fix)J.-k))

(2)

= 0 I if x > X(n-k)

and the W-sample has a p.d.f.

(3)

ifX<XIn-k)

THEOREM. For every fixedk, I n v(X-M) is asymptotically independent of X(n-k) as n ' oo

PROOF: Rewrite X in terms of the Y's and the W's. We obtain

V\iX -p) -

a

\ - (Y- Vi -

a /-
+

iW-p) k
ov\F

+ Xln -k)-y
+V5

From (2) we have

X (n-k) °I xdF(x) JdF(x)
0 x (n-k)

EYp-y = -fxdFix)
X(n-k)

Making use of (4) and (5), and letting A be the value of EYi with XI.-k) replaced by X(.fk), we get

VWX -,/) -

a
v~---I= F -EY,) \F-a ii

a \/ni n-k-1) (A -p) iW-p k 
Vt a \a o+ a

Since k is fixed, clearly (Wi-pt) kloi O in probability as n - c. To prove the theorem we need the
following two lemmas in which we show that the second and the fourth terms tend to zero in probabili-
ty. Then the theorem follows from the fact that the first term converges in distribution to N(O,1) which
is the "unconditional" limiting distribution of v\i(X-p).
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LEMMA l.As n - o,

Xln-k) - 0 in P.

vir

PROOF: For every e > 0 and for a fixed k, it follows from the Chebychev inequality that

pI In-k)I >E <
I V

I E(max X.2 )
.nE 16j'<n

Let YV = X 12 and H(y) - P[Yj > y].

Following a proof in Chung (I960),

P[max YV > y] = I - [H(y)Jn > n[1-H(y)]
1 6j$n

and

n E imax X1 2F =
1 6jn

. W W
-1 rf {1-[H(yf]l} dy > I [1-Hy)l]dy < °
a 0 0

On the other hand,

n

cMI
'max Xj2) = I I
16jl n 0 H(y)

un-] du dy.

Since the expectation is finite, we can take the limit as a - oo under the integral sign. As a result

lim
ncc

1
a

E [max Xf21
1 6j<n

o 1
= H i

O H(j
lim un-I du dy = 0

Y) n -oo

LEMMA2. Forafixedk,06k 6n-l1

Wo

4P-FI f x dF(x) - O in P as n - x.
Xln-k)

PROOF: Since

oo

+ f--
x dF(x) = vFi Xfn-k) [1-F(Xl.-.kj

oo

f [1-Fix)] dx,
Xza-k)

we will show that each term on the right side of (8) converges in probability to zero.
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Set

xZ= 1- n-k-I

Then

R
P{(n-k-I)[1-F(X(flk)J >xl = I

i=n-k

We see that X(n-k)/V / nk- 0 in P as shown in Lemma 1 and (n-k-i II-F(X(fn-k))] converges in
distribution as shown in (10). Thus, the first term on the right side of (8) tends to zero in P.

Finally, to show that the last term in (8) tends to zero in P, write this term as

,/i-k-1 I [I-F(X) dx = v(n-k-1) (1-F(X{-k)) f ([I-FWx)]dx)1/V1-F(X(fl A)}
X(.-k) { Xln-k)

Clearly, the part in brackets tends to zero in P can be seen by the application of the L'Hospitals's
rule to it.
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(10)( i ) Zi (I -z~n-i rea = 0
i=O


