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1. Introduction

Suppose that a random sample of size n from a lot is measured with respect to a particular variable
and that the acceptance or rejection of the lot depends upon whether or not the measurements satisfy
certain criteria. *'Lot™ can refer to a group of individual items ar to a specified amount of material
which can be sampled randomly.

There is widespread interest in sampling procedures that specify acceptance criteris involving the
sample mean and a proportion of defectives in the sample [1], [4], [5]. [9], [11] and [14].} Such a sam-
pling procedure might specify that the lot is to be accepted only if the sample mean is greater than a
value u , say, and if no more than a specified percentage of the sample is less than a lower limit L. The
purpose of a dual acceptance criterion is to ensure, for example. that the lot is at least a stated amount.
wy, of the specified variable on the average and that the number of so called **defectives’” or items that
violate the lower limit is controlled, Obviously. depending on the application, the acceptance criteria
can be specified in the opposite direction; i.e., the lot is to be accepted only if the sample mean is less
than ug and at least a certain percentage of the sample is greater than an upper limit U,

Specifically, let X;.***,.X  be a random sample of n measurements, and let X ;, €< X, be the
corresponding order statistics. It is assumed that the random variables Xl."-,Xn are independent and
identically distributed i1.i.d.) with a probability density function f{x), and that the Xj have finite mean
u and variance 02. Let X be the sample mean and /N; be the number of defectives or measurements
having values smaller than the specified {lower) limit L.

The sampling procedure to be considered is such that the lot is accepted whenever

[X Zpyand Ny £k] (1.1
where uj, and k are specified in the sampling plan.
In terms of the order statisties, [1.1)is equivalent to the criterion
(X 2ugand Xy 5> L] 1.2
and the probability of accepting the lot is defined to be
P, =P[X 2 py. N, <kl (1.3)

The sampling procedure discussed above is a mixed variables-attributes acceptance criterion based
on one sample. There are various ways of designing a mixed sampling plan. The type studied by Schill-
ing and Dodge [19] is a double sampling procedure involving variables inspection in the first sample.
If the variables inspection does not lead to acceptance, a second sample is taken and an attribute in-
spection is conducted on the combined samples. In their work. Schilling and Dodge assume a normal
distribution with unknown mean and known variance.

We concentrate on a single sample plan where both the variables inspection as specified by the sam-
ple mean and atuributes inspection as specified by k, the number of allowable defectives, are con-
ducted on the same sample. This causes dilficulties in the computation of the acceptance probabilities
because of the lack of independence of the sample mean and the order statistics.

Investigations, of which we are aware, into the statistical properties of sampling procedures of this
type assume a normal distribution with unknown mean and known variance, For instance in a com-
pliance sampling application, Weed [21] simulates & two-stage procedure used in specifications for the
thickness of paving material in which both stages involve a variable and an atiribute inspection. Elder
and Muse [3) develop a large sample approximation for the acceptance probability used in U.5.
Department of Agriculture inspection procedures ¢1.3} and compare the approximation to an exact
numerical procedure.

'Figurea in brackets indicate lilerature relerences at the end of this paper.

486



It is noted that the dual sampling criterion leads to an acceptance region for testing hypotheses con-
cerning the mean p and the probability of item defectiveness simultaneously. The probability of a
defective is defined to be p = P[X < L]. The acceptance region in (1.1) or (1.2) may be used for testing
the null hypothesis

Hy: u=p*andp=p"

versus the alternatives (1.4)
leu<p*orp >p"c

Through reparametrization, these hypotheses may be formulated in terms of the location and scale

parameters. Evidently, this depends on the properties of the distribution under consideration.
In the case of the normal distribution N{g, a2), the probability of a defective is

where
1 z
P (z) = exp{—u2/2}du.
=4
Thus;
o= (L — w/o 1p. (1.6}

Consequently, u=p*and p =p”if and only if
p=p"and g =" = (L—u")/®~1p".

Accordingly, the hypothesis testing problem in (1.4} becomes that of testing

¥

H01p=p* and ¢ = ¢

versus (1.7

Hi:p<u oro <;ILT—'T(;T*}'

Perusal of the literature turned up very few papers that are directly related to a joint test of the loca-
tion and scale parameters. Eisenberger [7] develops an asymptotic joint test for the mean and variance
of a normal distribution based on a quantile. Perng [18] develops a joint test for the location and scale
parameters of an exponential distribution based on Fisher’s method of combining two test statistics.
Anderson [2] discusses the likelihood ratio test for simultaneously testing the mean and variance in
multivariate normal distributions; both one-sample and k-sample problems are considered. In a recent
paper, Perlman [17] shows that the likelihood ratio test is unbiased. None of these papers discusses the
computation of acceptance probabilities under alternative hypotheses. Also, unlike (1.7), the alter-
natives in the quoted papers are rectangular regions.

2. Scope of the Study

It is our intention to investigate the acceptance probability of a dual sampling procedure from
several aspects, The investigations are carried out for the normal distribution because of its im-
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portance in acceptance sampling and for the exponential and Weibull distributions because of their
application in modeling the life span distribution.

First, in section 3, we derive a large sample approximation P, for the acceptance probability P,.
This is achieved by deriving the asymptotic joint distribution of va{X —ul/o and N, —npl/(np
(Y=ph* as the sample size approaches infinity. This approximation method applies to any distribu-
tion. We illustrate its use in the normal, Weibull. and exponential distributions. The results as given in
sections 3.1, 3.2, and 3.3 are compared with a simulation study.

In section 4 a lower bound P is established for P, that amounts to assuming the independence of the
sample mean and the k" order statistic. This lower bound for finite samples provides some informa-
tion ou the accuracy of the approximation. We attempt to determine under what conditions the ap-
proximation P, is a significant improvement over the lower bound. In this conneetion one notes that a
large sample approximation P, is derived by normalizing the sample mean as vi{X—u)/0 and the
number of defectives in the sample as {N] —nrp)/(rpl1—pIH /2. 1f, instead, we convert /¥ to an order
statistic X and consider Xy, lor X, _,) as an extreme statistic, the normalized sample
mean \Vr(X —ut and Xy, (or equivalently X, ..} are asymptotically independent (The proof is given in
appendix B). This suggests that P serves as a possible approximation to P, when n is large and k is
small.

In other words, when comparing P, and P, one should keep in mind the relationship between k& and
n; namely, the ratio & /n. In the case of P, wehave V; /n == p and in the case of an extreme statistic we
have k/r = O as n — o, Clearly, one would expect that the lower bound P may be a reasonable ap-
proximation when k is relatively small compared with r. This is indeed confirmed in our numerical
study in section 4. The numerical studies show that P, is comparable to P for small k/r and superior
to P for larger values of k/n.

Finally, in section 5 the acceptance probabilities are appraximated for the normal and Weibull
distributions using a procedure proposed by Pearson and Hartley [16]. The exact acceptance prob-
abilities curves are computed for the exponential distribution. '

3. Large Sample Approximation of the Joint Distribution of X and N,,
3.1 Derivation
Let X|,»+«. X be a randoem sample from the lot with pdf ffx). Assume that X has a finite mean p and
variance g2,
Introducing indicator random variables Ij,
where
1i# X; €L (3.1.1)
0 if X}- > L
and letting the probability that an item violates the lower specification limit L be

p = PIX; < L] 3.1.2)

we can write the number of (unit) lower limit violations N, in the sample as

n
Ny= 2 1L 3.1.3)
=1

Note that /V; has a binominal distribution Blr,p), and the event [IV; < k] is equivalent to the event
[X 441} > L]. In order to develop an approximation formula for the aceeptance probability

PJ’I=P[X Qﬂa,N[“gk],
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we consider random variables ¥, and Y, defined as

W, /X /e
and {3.1.4)

Y {Ny=np)/(np(1-pH1/2.

n

Il

Il

Let (W _, Y ) be a row vector. We prove the following result.

THEOREM 3.1. As n—> o, the random vector (W, Ynir converges in distribution to a bivariate nor-
mal distribution with mean (0,0)’ ard covariance matrix

1 e
2 - (3.1.5)
o) 1
where
o = E {Xi—p)li/o(p(l—plillz. 3.1.6)

PROOF: Lett; and ¢, be arbitrarily chosen but fixed real numbers. Form the linear combination of ¥
and Y, ¢, W, +¢, Y.

Direct computation and application of the central limit theorem give

D
t] Wn+t2Yﬂ - N(O, t12+t22+t1t2Q) as p—*o0

It then follows from application of the Cramer-Wold device that

14 D 0
g - N (), z as np—~o

Y 0

n

where X is given in (3.1.5).
Making use of the asymptotic distribution in Theorem 3.1, we note from (3.1.4) that
X = nVioW, +yu
and

(np(1-p)}/2 Y _+np.

Ny,

Thus the random vector (X, N, )’ has asymptotically a bivariate normal distribution with mean and
covariance matrix I given by

o? E(X;~wl;

u n
andIN = (3.1.7)
np E(X;—uM; np{1-p)

respectively.
For convenience in computation, write the acceptance probability P, as

= P[X 2u] - PIW, > Valu,~w/ o, Y, > ap1—p)~1/2(k~np)]. (3.1.8)
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Making use of (3.1.7) and the continuity correction factor 4.5 for the random variable N, we see that
for sufficiently large n, P, may be approximated by

o] o oo
p, = —— [expl—z2/2ida— [ 5( gle.y idxdy (3.1.9)
in a 2
where
& = Valgg—ul o, {3.1.10)
b = (rpil=ph~1/2(k + 0.5 — apl, 3.1.11)
glxy.ol = (207! (1-g27 1/ 2exp{—(22 + y2 ~ 20%y)/ 2(1—-02)}, {3.1.12)

and o is defined in (3.1.06).

In order to compute the P [X 2 By N € k] using the approximation P,, we need to know the
mean ¢ and the variance o? of the distribution in question, the proportion defective p as defined in
(3.1.2) and the correlation coefficient g as defined in (3.1.6). The computation of the bivariate normal
term is described in more detail in Appendix A.

3.2 Normal Distribution

Assume that the sample comes from a normal distribution N{u,o2).
The item defective probability from (3.1.2) is

p=PIX< L] = &{(L—p/a}, (3.2.1)

where ®{(L—ul/ o} is the cdf of the NV({,1) given in {1.5).

In order to compute the approximation F, given in (3.1.9), we need to compute the correlation coef-
ficient given in {3.1.6}.

The expectation E{(X—u)f [X< L]} is evaluated as

E{(X—HPI[XQL]} = - exp {—(L—u2/20°}.

o
v 2n
Consequently the correlation coefficient is

e = —(2ap(1—pl~1/ 2exp {—(L—1)2/20%}.

In order to compare the approximation P, in (3.1.9) with an approximation developed by Elder and
Muse [8], the lower limit L is chosen under the assumption that g = 0, 0 = 1, and according to the
eriterion

PIN, <ki=1-a, (3.2.2)

where 0 <o < 1.
Because /V; is Bfn,p), the lower limit L is determined from

k
2 (}') pill=plii = 1-a, (3.2.3)
j=0
where p = &(L}.
Values of L as tabulated by Elder and Muse for a« = (.14, 0.05, and 0.0} are shown in table I. Once
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TABLE I. Lower Limits used in Computation of Acceptance Probabilities for Normal Distribution

Lower Limit £.
n k a=0.10 a=0.05 a=0.01
5 0 2.036 2.319 2.877
1 1.215 1.429 1.843
2 0.685 0.881 1.250
10 1] 2.309 2.568 3.089
1 1.602 1.789 2.157
2 1.i96 1.358 1.670
20 0 2.559 2,799 3.289
1 1.928 2.095 2.428
2 1.586 1.726 2.001
30 0 2.696 2.928 3.402
1 2.100 2.258 2.574
2 1.783 1.914 2,172

L is determined the correlation coefficient of X and N can be evalnated as
o=—[2np(1-p)j~1/% exp{—L2/2}. (3.2.4)

The’Elder-Muse approximation along with their exact resnlts are compared with the corresponding
values of P, in table IT where L is chosen such that « = 0.10.

The comparison with the exact values derived in [8] shows that even for small sample size P, pro-
vides an excellent approximation to the acceptance probability P, and its effectiveness increases as k
gets larger. When k& = 0, the percent error in P, as compared to the exact results is approximately 3
percent. For &k = 1, it is about 1 percent and for k = 2, it is less than 1 percent. The percentage errors
in both P, and the Elder-Muse approximation when u = 0 are shown below.

Percent Error in Approximations
k=0 k=1 k=2

Elder Elder Elder

n P Muse P, Muse P, Muse
5 3.3 1.0 1.0 1.8 0.6 1.2
10 3.1 0.6 1.0 1.0 0.6 1.2
20 3.0 0.2 0.8 0.6 0.6 0.8
30 2.6 0.2 0.8 0.8 0.4 0.6

3.3 Weibull Distribution

Assume that the sample X,...,X, comes from a two parameter Weibull distribution #7(2,8) with
scale parameter A, shape parameter § and pdf

flx) = (8/4) (x/A8 1 exp {— (x/4)%} forx>0,1>0,6>0 {3.3.1)
The mean and variance are

u=Ar(1+1/6) {3.3.2)
and

0?2 =22 {r(1+2/6) — [F1+1/8)]%} (3.3.3)
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respectively where '(+) is the gamma function.

For 0 < 6 £ 1, X has a decreasing failure rate (DFR) distribution; for = 1, X has an increasing
failure rate (IFR) distribution. For further information see Johnson and Kotz [13).
In the case of the Weibull distribution, the proportion defective p is defined from (3.1.2) and {3.2.2)

as
p=[X<L]=1—exp {—-(L/18)}. (3.3.4)
The expectation
8 L
EXIIx<r) = 1 [ e/ exp {— (x/1)P}dx
0
= AL{(L/M8,1/6} (3.3.5)
and I{c,d) is related to the incomplete -function [12].
Combining (3.1.6), (3.3.4) and {3.3.5), we find that the correlation coefficient is
TaBLe . Comparison of Approximation P, with
Eider —Muse Values for
P{X2u * N, <k|lwhere P(N, € k}= 0.90
for Normal Distribution N(0,1}
k=0 k=1 k=2
Elder Elder Elder
n H Exact P, Muse Exact P, Muse Exact P, Muse
5 -8 | 0.035 0.034 0,032 0.036 0.036 0.034 0.037 | 0.036 0.037
-.0 | 0.087 0.082 0.085 0.089 0.088 0,089 0.089 | 0.089 0.091
-4 | 0.180 0.168 0.181 0.184 0.181 0.188 0.185 | 0.184 0.189
-2 (0318 0.300 0.323 0.324 0.320 0.332 0.326 | 0.325 0.333
.0 | 0.488 0.472 0.493 0.496 0.491 0.505 0.499 | 0.496 0.505
.2 | 0.639 0.667 0.663 0.609 0.672 0.674 0,671 | 0.672 0,674
4 | 0.801 0.814 0.802 0.811 0.314 0.811 0.813 | 0.814 0.812
O | 0.899 0.910 0.899 0.908 0.910 0.906 0.909 | 0.910 0.906
.8 | 0.956 0.963 0.955 0.962 0.963 0.959 0.963 | 0.963 0.959
10 -6 | 0.027 0.026 0.026 0.028 0.028 0.026 0.028 | 0.028 0.027
-4 | 0.098 0.091 0.097 0.100 0.098 0.099 0.101 | 0.101 0.101
-2 | 0.252 0.236 0.233 0.257 0.252 0.261 0.200 | 0.257 0.264
A0 | 0.480 0,465 0.483 0.490 0.485 (.495 0.494 | 0.491 0.500
21 0.713 0.732 0.714 0.725 0.735 0.728 0.731 | 0.736 0.733
4 | 0.876 0.897 0.876 0.888 0.8§97 0.887 0.893 | 0.897 0.891
6 | 0.950 0,971 0.956 0.906 0.971 0.965 0.969 | 0.971 0.967
.8 | 0.956 0.994 0.985 0.992 0.994 0.991 0.993 | 0.994 0.993
20 -4 | 0.034 .0.032 0.034 0.035 0.034 0.034 0.036 | 0.035 0.034
-2 | 0.174 0.162 0.174 0.178 0.173 0,178 0.180 | 0,177 0.181
0 [ 0.474 0.460 0.475 0.483 0.479 0.486 0.488 | 0.485 0.492
.2 [ 0.781 0.811 0.781 0.795 0.814 0.795 0.802 | 0.814 0.802
4 0,937 0.963 0.937 0.950 0.963 0,950 0.956 | 0.963 0.955
.6 | 0.981 0.996 0.981 0.991 0.996 0.991 0.994 | 0.996 0.993
30 -4 1 0.013 0.012 0.013 0.013 0.013 0.013 0.014 | 0.014 0.013
-2 0.127 0.118 0.127 0.130 0.126 ¢.129 0,131 | 0.129 0.131
.0 | 0.470 0.458 0.471 0.479 0.476 0.480 0.484 | 0.482 0.487
.2 ] 0.824 0.861 0.824 0.839 0.863 0.839 0.847 | 0.863 0.846
4 | 0,958 0.986 0.958 0.972 0.936 0.972 0.978 | 0.986 0.977
.0 | 0.985 0.999 0.985 0.995 0.999 0.995 0.997 | 0.999 0.997
"y = 0
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o =[M{{L/}8, 1/0}—up]/aip(1—-p)1/2 (3.3.6)

where p and o are defined by (3.3.2), and (3.3.3) respectively.
The limits of integration for the approximation (3.1.9) are

L2y —AT{(1-+1/8)
n Tl ] (3.3.7)

MT(1+2/0-[r1+1/6)2}1/2

and b as defined in (3.1.11}.

As is the case in the normal distribution, the lower limit L. is determined according to (3.2.3) and
(3.3.4} for specified values of k and a.

Explicitly

L =x[-log, (1-p)|}/8. (3.3.8)
The proportion defective p is tabulated in table III for « = 0.10, 0.05 and 0.01,n =5, 10, 20, 30 and

k=10,1.2, 3. Corresponding lower limits L where A = 1 are shown in table IV,

TasLEILL. Proportion Defectives p used in Computation of
Acceptance Probabilities

Proportion Defective p
n k a=0.10 a=0.05 a=0.01
3 0 0.0208 0.0102 0.00200
1 A12 0765 0330
2 .247 .1890 106
3 416 5425 .222
10 0 0.0105 0.00511 0.00100
1 0543 L0363 0155
2 1153 .0870 0473
3 1875 A500 0930
20 0 0.00525 0.00256 0.000500
1 L0269 L0180 00759
2 L0564 L0422 0227
3 .0902 0713 0433
30 0 0.00350 0.00171 0.000335
1 0178 0120 00500
2 0373 .0278 L0149
3 0594 0468 .0285

The approximation P, is compared to a simulation study where the acceptance probability was com-

puted from 5,000 random samples. Simulation for the Weibull distribution was done by generating in-
dependent uniform random deviates U; using a congruential random number generator and making
the transformation

X; = M~log, U}/ 9
The X, are independent F(1,6) r.v.s with pdf as shown in (3.3.1).

Values of P, and simulated acceptance probabilities are tabulated in table V for Weibull distribu-
tion F(1,6) for 6=1,2, 3.3.
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The accuracy of the approximation P, as gauged by the simulation results is dependent on several
factors: i.e., namely, the value of the shape parameter 8; a. the probability that the sample will contain
more than the allowable number of defectives; n, the size of the sample; and k, the number of
allowable defectives or number of measurements less than the lower limit .

The worst accuracy is for a Weibull distribution with 8 = 1 where o is small, ¢ = (.31, and »n is
small, # = 3. The error is 9 percent for this case but drops to 2 percent when the sample size is in-

TABLE IV. Lower Limits Used in Computation of Acceptance Probabilities for Weibull Distribution

Lower Limit L

n k a=0.10 a=0.05 a= .01
=1 3 0 0.0210 0.0103 0.0020
3 1 .1188 795 03306
3 a 2837 2005 120
3 3 53379 4193 251
10 0 (01406 A0351 0010
10 ; 60 0372 RO
10 3 1237 0910 JAMET
10 3 20706 1625 097h
20 0 0033 00206 Q003
20 1 0273 0l1e2 A0TH
20 2 0581 U431 230
20 3 0945 R U445
30 o] .0035 D017 L0003
30 1 0180 0121 L0050
30 2 0380 .0282 U150
30 3 0012 0479 L0289
=2 3 0 L1430 L1013 0447
5 1 3446 2821 .1832
3 32 53326 4377 L3347
3 3 7334 5473 a01¢
10 0 1027 D710 0316
10 1 L2367 1928 1250
10 2 3503 BO0LT 2206
10 3 45357 4031 3124
20 4] 0726 03006 0224
20 1 1631 1348 873
20 2 2400 2076 1515
20 3 3073 27 L2109
30 0 0392 0414 0183
30 1 1340 1099 0708
30 2 1950 1679 1225
30 3 2475 2180 1700
6=3.5 3 1} 3317 2702 1694
3 1 5441 4859 3791
3 2 6977 .0398 2351
3 3 8376 L7801 6737
10 1} 2724 2216 1390
10 1 4390 3904 3047
10 2 0492 L3042 42148
10 3 6382 L3950 5144
20 0 2233 L1818 1140
20 1 3573 3181 2482
20 2 .4434 4073 3402
20 3 5097 4752 4109
30 0 .1983 1620 1017
30 1 Al17l L2831 2202
30 2 .3029 L3607 3013
30 3 4502 .4198 3633
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TABLE V. Comparison of Approximation P, with Simulation for

P(X 2u* N < k)where PIN, < k)=1-a
for Weibull Distribution W(1.6).

Probability of Acceptance
a=0.10 a=1,05 0.01
n k P, Simu] P, Simul P, Stmul
=1 3 \] 0.645 0.634 (.698 0.663 0,712 0,672
3 1 068 652 698 673 112 672
3 2 678 664 699 680 711 674
3 3 .688 674 .T02 684 L7 073
10 0 705 707 768 L7155 85 773
10 1 726 724 168 .763 785 L1706
10 2 133 134 766 768 785 .778
10 3 .138 743 167 .772 .784 .179
20 0 175 795 .848 .828 .868 875
20 1 793 801 .846 836 .868 877
20 2 .708 807 844 .840 867 879
20 3 .801 810 843 841 807 878
30 0 815 826 893 .872 914 014
30 1 835 837 890 .879 .914 918
30 2 837 .38 .87 878 914 913
30 3 838 841 .886 .881 013 917
=2 3 Q .681 .703 L7120 731 144 .738
3 1 .709 .723 .729 .734 144 .739
3 2 L721 736 733 737 744 740
3 3 .729 .740 .736 .739 744 740
10 0 .743 .764 .788 807 824 822
10 1 768 7180 .803 808 824 825
10 2 177 794 808 .808 823 820
10 3 784 .800 812 810 823 827
20 ¢ 810 827 865 .885 906 903
20 1 832 .39 876 .884 906 005
20 2 837 .348 .384 .882 905 007
20 3 840 851 .884 .882 905 907
30 0 .844 860 897 924 940 047
30 1 863 866 903 022 946 930
30 2 867 867 .909 919 946 .949
30 3 .809 872 914 9018 045 952
8=3.5 3 0 801 .829 864 859 .880 872
S 1 830 844 .865 .873 .880 873
S 2 .839 8535 .68 .873 .880 876
S 3 843 853 .869 .878 .879 877
i0 0 853 864 931 L0911 .951 942
10 1 8717 .868 930 0135 951 947
10 2 882 884 928 922 051 946
1} 3 885 .889 028 925 051 930
20 0 882 .890 968 938 990 983
20 1 002 .894 064 946 .960 984
20 2 903 .899 060 946 990 987
20 3 .903 .894 - 958 947 989 9806
30 0 .887 .893 974 .038 908 984
30 1 908 .896 970 947 968 989
30 2 907 .894 966 048 997 .990
30 3 007 .8938 964 936 906 990
*uy = 0.75
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creased to r = 10. For other Weibull distributions and combinations of a and r, the worst accuracies
occur when k = 0, and in this case the errors are as large as 6 percent for o = 5 and 4 percent forn =
30. However, the approximation P, works very well when k > 0. The disagreement between P, and
the simulation is less than 1 percent for a large proportion of the points when k > 0.

3.4 Exponential Distribution

Assume that the sample X....,X, comes from an exponential distribution E(A,8} with location
parameter § and scale parameter A and pdf

fitx} = (1/0 exp {—{x—p)/1} x>3A>0 {3.4.1)
The mean and variance of X are given by u = A + p and o2 = 12 respectively.
We have
p = l—expl—(L—B)/}) (3.4.2)
and
EXIjx<1)= W — (1=pIL=p) + fip. (3.4.3)
Combining (3.4.2) and (3.4.3), we get
o= —(1-pl/2(L-p}/ Ap!/2, {3.4.4)

Using values for the proportion defective p that are given in table III, the corresponding limits L as
determined by

L=8-Xlog(1-p) {3.4.5)

are found in table VI for =0and A= 0.5, 1, 2.
The values 2 and b appearing in the approximation P, {3.1.9} are given by

a = al/Z371 (u-1-p) (3.4.0)

b

trp(1=p)~V2{k + 0.5 —np)

and ¢ is defined by (3.4.4.)

Values of P, and simulated acceptance probabilities are tabulated in table VII for the exponential
distribution E(A,0) for A = 0.5,1,2.

The accuracy of the approximation P, is more dependent on n, the sample size and less dependent
on k, the number of allowable defectives for the exponential distribution than for Weibull distribu-
tions. The worst accuracy+is for an exponential distribution with A = 1, where k = 0 and n = 5. The
disagreement with the simulation in this case is 7 percent, dropping to 1 percent when the sample size
is increased to n = 10. In general, the accuracies are not dependent upon the parameter A but are
somewhat dependent upon the way in which the lower limit L is chosen, and the accuracies tend to
worsen as the probability of the sample containing more than the allowable number of defectives in-
creases. Accuracies of about 2 percent are characteristic of the results over all values of k.

4. A Lower Bound for the Acceptance Probability
A lower bound for the acceptance probability is provided by the following lemma.

LEMMA 4.1: Let X,,....X be i.i.d random variables from a continuous distribution. Let X be the
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sample mean and X ) be the ™M smallest order statistic of XX, . Then for arbitrarily fived
real numbers a, b and positive integer ., 1 < . <n,

P[Y?a,X(r)Bb]BP[YBa]P[X(r)Bb] (4.1}
The lemma is an easy eonsequenee of a general theorem (Esary, Proschan, and Walkup [10]). For easy

reference, we quote the theorem helow, as well as the definition of “associatedness.” Random
q

TABLE VI. Lower Limits used in Computation of Acceptance Probabilities for Exponential Distribution

Lower Limit L
n k a=0.10 a=0.05 a=0.0]
A=0.5 5 0 0.0503 0.0051 0.0010
5 1 .0594 0398 0168
ES 2 .1418 1047 L0560
5 3 2689 2097 L1255
10 1] 0053 L0026 0005
10 1 0280 L0186 L0078
10 2 0614 0435 0243
10 3 1038 L0813 0488
20 0 026 L0013 0003
20 1 L0136 L0091 .0038
20 2 0290 0216 0115
20 3 0473 0370 0222
30 0 0018 0009 L0002
30 1 0090 L0060 L0025
30 2 0190 0141 00735
30 3 0300 0240 0145
A=1.0 3 0 0210 0103 0020
3 1 1188 0796 0336
3 2 .2837 2095 1120
3 3 2379 4193 L2510
19 g 0106 0051 00190
10 1 L0560 0372 01506
10 2 1227 0910 0487
10 3 L2076 .1625 0976
20 0 L0033 0026 0005
20 1 0273 0182 0076
20 2 0581 0431 L0230
20 3 0945 0740 L0445
30 ] 0035 L0017 L0003
30 1 0180 0121 L0050
30 2 0380 .0282 0150
30 3 0612 0479 0289
A=2 3 ] 0420 L0205 L0040
5 1 2376 .1592 0671
5 2 5074 4190 2241
5 3 1.0757 .8380 5021
10 0 L0211 0102 0020
10 1 L1121 0744 L0312
10 2 2455 1820 0973
10 3 4153 3250 1952
20 1] 0105 0051 bolo
20 1 0045 0363 0152
20 2 1161 08062 L0439
20 3 1891 1479 -+ .0889
30 0 U070 0034 7 L0007
30 1 0359 L0241 L0100
30 2 0760 05364 0300
30 3 1223 0959 0578
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TaBLEVIL. Comparison of Approximaiion P, with Simulation for PIX 2y, Ny < hkjwhere PIN, k| = 1-a
for Exponential Distribution Ef 1,0/

Probability of Acceptance

a=0.10 a=0.05 a=0.01
n k P, Simul P Simul P Simul
2=0.5,p,=0.25
5 0 0.781 0.825 0.850 0.853 0.868 0.893
5 1 804 846 847 871 .8638 .896
5 2 811 831 846 874 867 8917
3 3 819 .869 .847 .885 866 .899
10 0 842 875 922 929 943 957
10 1 8602 .889 919 927 943 958
10 2 .865 .893 915 933 942 958
10 3 867 .897 913 935 941 956
20 0 878 902 964 948 987 985
20 1 898 905 960 954 987 984
20 2 .898 907 L9506 955 986 984
20 3 .898 .899 .953 948 985 984
30 0 .886 901 973 952 997 987
30 1 900 904 969 951 997 990
30 2 906 903 .965 948 996 990
30 3 906 903 962 950 995 989
A=1.0,4,=0.75
5 0 645 632 .698 651 712 086
5 1 6068 637 .698 660 112 689
5 2 673 665 .699 667 11 690
5 3 .088 676 702 674 711 .691
10 0 L7056 712 168 154 785 176
10 1 726 126 768 L7161 785 i
10 2 733 134 767 166 .185 77
i0 3 .738 745 767 .769 .784 118
20 0 rirts .789 .848 846 .868 B73
20 1 .795 800 846 .B49 .868 876
20 2 .798 804 844 .B49 8671 875
20 3 .B01 806 843 851 867 873
30 0 815 .839 .893 .800 915 920
30 1 .835 .846 .890 .B87 914 921
30 2 831 842 .887 884 914 922
30 3 .838 846 .886 .891 913 921
A=2.0, 2, =0.75
5 0 .B25 872 .899 915 .919 950
5 1 846 .883 .895 927 919 954
5 2 851 .891 .893 929 .918 953
5 3 8506 .894 .892 935 0916 955
10 0 870 .894 954 .944 976 987
10 1 .889 .889 950 944 976 987
10 2 .891 .898 945 .048 975 986
10 3 .891 894 .942 945 974 .985
20 0 887 .902 974 952 997 991
20 1 906 .903 .070 950 097 989
20 2 906 905 965 956 996 991
20 3 906 904 962 955 995 992
30 0 .889 907 976 956 1.000 990
30 1 909 906 972 949 .999 .991
30 2 908 902 068 948 .999 991
30 3 908 901 965 .952 9038 990
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variables X {,....X, are said to be associated if

Covift T), g(T) > 0

for all non-decreasing funetions f and g in each X; for which EffT), EgiT), EffT)g(T) exist and T
denotes {X,....X, }.

THEOREM 4.1. Let T = {X{,....X} be associated, 8, = 1,(T} and {, be nondecreasing for i=1,... k.
Then

(<5 (4.3)

. k
P[5, >s,...,5,>s8]2 0 P[S;>s] (4.4}
forall sp,....s.

PROOF OF LEMMA 4.1: In our case the X;’s are statistically independent and hence associated. Let
S;=X and §, = X(,.). Clearly, 5| and §; are non-decreasing functions in each of the X’s; hence (4.1)
and (4.2) hold. Moreover, Cov(S|, S3) = Cov (X, X () = 0. This completes the proof.

From Lemma 4.1, we have a lower bound P to the acceptance probability
P=P[X 2] P[Xy, ;> LI<P,=P[X 2a, Xy, >Ll. (4.5)

where k + 1 corresponds to r. 7
The r.v. X4+ ;) can be transformed to a r.v, Z with Beta distribution with parameters n—k and k+1.
Thus

7 Ma+1) 1-p
PiXpt+y>LI=PZL1-Fx L= ———— [ 2 k" 1(1—z)dz (4.6)
Fe+1rin—k) 0

The lower bound P in (4.5) can be computed using the marginal distribution of the sample mean and
the Beta distribution.

Because the computation of the lower bound P is much easier than the computation of the accep-
tance probability £, it would be an immense simplification if the lower bound could serve as an ap-
proximation for P, . \

Therefore, it is of practical importance to determine the samplé size n and values of k that are
necessary in order that the lower bound be an acceptable approximation for P, . In other words, it is of
interest to know the smallest value of n and the range of & values which makes the independence of X

and X, | 1acceptable.

5. Comparison of the Exact Probability of Acceptance with the
Approximation and the Lower Bound

5.1 Acceptance Probability Curves

The acceptance probabilities computed using either simulation or numerical integration along with
the corresponding lower bound P and the approximation P, are plotted as a function of one parameter
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of the distribution in question. This provides a comparison of the relative accuracy of P, to P as a
technique for approximating . The curves are varied over n and k in order to examine the effect of
sample size and number of allowable defectives k on P, P, and P.

5.2 Normal Distribution
Assuming that X,..., X, are i.i.d. V(y,1}, the acceptance probability

for L chosen according to (3.2.3) and uy = 0 was computed using a technique for simulating random
normal deviates due to Box and Muller [3]. The resulting acceptance probabilities as a function of u
are shown as the solid line in figures 1-4.

The corresponding lower bound P was computed from (4.5) and the approximation P, was com-
puted for {3.1.9).

The relationships among the probability of acceptance P,, its approximation P,, and its lower
bound P as a function of sample size n and allowable number of defectives k is depieted in figures 1-4
for samples of size n = 10 and n = 30. The following convention is used for all figures; namely, P, is
shown as a solid line; P, is shown as a heavy dashed line; and P is shown as a lighter dotted line.

From figure 1 it is obvious that when & = 0 and » is small, P, is a better approximation to the ac-
ceptance probability than the lower bound as long as < 0.25. As n increases the superiority of P, to P
increases as k is allowed to become larger. For example, when k& = 3 as in figure 4, the lower bound

o —————————
&8 9.8 |
P N
R 1 R
e.6 [~ a 0.6 |-
g ¢
< 4 c 4
£ B
$ 0.4 T a.4 |-
a A
N J B 4
¢ ¢
€ .2 #"Lower bound P 0.2 |-
o Ly L 1 ¢.0 ] — ——
-1.0 8.5 0.0 e.s 1.0 -1.0 1.0
u
{a) * Hete Koo {b) He30 K-e
FIGURE1.  Acceptance probabilities when the number of allowable defeetives k = 0 and r ohservations are drawn
from the normal distribution Ny, 1)
1.9 1.0
T Approximation Py A
e.8 - 3 0.8
P - P ]
R R
A 9.6 A 2.6
¢ ¢
¢ J ¢ 4
: :
; 0.4 - T 0.4
A a
N 4 /. I J
E /“Lower bound £ g
0.2 |~ d 2.2 |
0.0 o ——l———t— 0.0 T
-1.0 -0.8 0.9 0.5 1.0 -1.0 1.9
B
(a) * nnte Kot (b} N=30 K-
FIGURE 2. Aceeptance probabilities when the number of allowable defectives k = 1 and r observations are drawn

from the normal distribution Niy, 1.
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Acceptance probabilities when the number of allowable defectives & = 2 and n observations are drawn
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F1GURE 4.
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9.6
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n
H=30
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Aceeptance probabilities when the number of allowable defectives 5 = 3 and a observations are drawn

from the normal distribution My, 1),

does not give a satisfactory approximation for the smaller sample size, and P, is clearly preferable.
Even for n = 30, P, is at least as accurate as P over the entire range of .

5.3 Weibull Distribution

Assnming that X,...,.X,, are i.i.d. W(1,0), and that gy = 0.75 and that L is chosen according to
{3.3.8) with 8 = 1, the acceptance probability was computed by simulation and is shown as the solid
line in figurcs 5-8. The corresponding lower bound P was also computed using simulation and is

“Appraoximation Py

1.0
0.8 |-
P n
R
A 8.6
<
¢ J
E
B e |-
A
H m
H
€ e.2 -
0 L
2.0
FIGURE 3.

(a) H=10 (<)

Acecptance probabilities when the number of allowable defectives & = 0 and n observations are drawn

from a Weibull distribution W11, 8).
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FIGURE 6, Acceptance probabilities when the number of allowable defeciives K = 1 and 7 observations are drawn
Irom a Weibull distribution F(1, 8).
1.0 1.0
0.8 0.8
_ 4 P |
E Approximalion Fa R
a 0.6 - V4 A 0.6 [
'] a c
c 4 4 ¢ J
E E
B e |- T oes |
A / A
o E 7 Lower bound P p b
E 0.2 £ 0.2 |-
0.0 T ey e L
0.8 8.5 1.0 1.8 2.9 0.0
e [}
(a) N~10 K=2 (b} he30 K2
FIGURE 7. Acceptance probabilities when the number of allowable defectives k = 2 and a observations are drawn
from a Weibull distribution F{1, 8.
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FiGuRE 8. Acceptlance probabilities when the number of allowable defectives = = 3 and n observations are drawn
from a Weibull distribution F{1, 6).

represented by the dotted line in the same figures. The approximation P, is shown by the heavy
dashed line in the figures.

The figures show that P, is not a particularly good approximation to P, when k = 0, and one would
do much better using the lower bound P. However, P, shows the same characteristie for the Weibull
distribution as for the normal distribution; namely, that as k/n increases the accuracy of the approx-
imation increases. For n = 10 and k = 3, P, is superior to P; for n = 30, P is indistingnishable from
the simulated acceptance probability.

502



5.4 Exponential Distribution
5.4.1 Comparison with a UMP Test
As discussed in section 1, we may view the problem of finding an optimal sampling procedure as a
hypothesis testing problem formulated in (1.4). In general there exists no uniformly most powerful
(UMP) test for (1.4). However, it is interesting to note that in the exponential distribution the dnal ac-
ceptance criterion for £ = 0 corresponds to a test which is UMP for a subset of alternatives specified
in (1.4), Specifically, suppose the sample comes from the exponential pdf given in {3.4.1).
The UMP acceptance region for testing
Hy A= A¥and § = p*
versus
Hi:0<A<i*and 0 < B < p*
is given by
[7 ?P{]’ X“] ?ﬂ*]. (5.4.1}

This testing problem is equivalent to testing

Hy: 2= A*and p = p*

versus
H:0<A<}*andp > 1~ (1 — p¥}A*/4
where
p¥ = l—exp{—(L—p%)/1*}
or

f*¥ =L+ i*log (1—p#*).
Under Hy, Pya g+ [X (1) > *] = 1, and p is determined by the equation
Pl*,,ﬂ* [X— ? Hol = 1_0, (5.4.2'
where ¢ is a predetermined level of significance (Lehmann [15]).
If we set L = p* and k = 0, the test specified by (5.4.1) clearly is the same test specified by (1.3},
and the acceptance probability

P, =Py {X >pg X(q) > %} (5.4.3)

can be computed either by the approximation shown in section 3.4 or by numerical integration using
an exact formula for the distribution of X and IV} as shown in the next section.

5.4.2 ExactDistribution of X and N,

The joint distribution of X and IV;, can be obtained from the order statistics.
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Let
Zy = nXy,
Z; = (n—i+ X H—X5-p)-
We have the pdf of Z|)),
g1z = Il exp {—{z,~nB)/A}, 2, >8 (5.4.4}
and fori > 2, Z; has a pdf
gz) = 2~ lexp (—z;/4), z;20.

To compute the acceptance probability P, for an arbitrary k, we make use of the fact that the Z’s
are independent r.v.’s, and that

n
: X, =

n n
: Z.= % Xw and proceed as follows:
j=1 =1/ j=1

f =
P, =Py (X > pg, ¥ < k]

n k1 _ k+1
= J':{--fP[ IE Z; 2 npy, ;2: Z/ln—~i+1) > L lz'l,'", zk+1]1 Il'l glz) } dzyedz,
n k41 1k+1 } ,
=S T PLZy ZiZznig= 2 2l T sils) [ deyrdzey (5.4.5)

k+1 k+1
where A = l‘zl’".' zk_'_ ]); 2 z,-/ln—H— ” > I and upo - .i‘: z; = OI.
1
The expression in (5.4.5) is the exact probability of acceptance, P,.

When k = 0, the computation of P, reduces to

P = '}“0 P [% Z: 2 npy — 2] gl{z]idzl-}-? g1lz dz ;. (5.4.6)
nkL 2 CIT
Note that the sum ¥ = Z)Z Z;has a gamma density.
fiy) = @/l a2 exp(—y /2. (5.4.7)
Fn—1)

Substituting (5.4.4) and (5.4.7} in (5.4.6} we obtain

b w .
P, = 1 [ [ e v"~2 exp{—{z;—np)/A}dvdz, + exp {—nlu,—B}/A} (5.4.8)
Mn-1) * ¢

where

a = nlL

b = nyg

¢ = (npy—2z)/1
The lower bound for P,_ is

oo o
P

- ﬁx)dx ‘/g-(x]d_x (5.4.9)
2alp —B}/3, Sntl—pi/a
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where flx) is the pdf of the x2(2n) and gix) is the pdf of the x2(2).
5.4.3 Acceplance probabilities
If we assume that X{,*+*,X, are i.i.d. E(2,0), the acceptance probability for £ = 0
P, = PX 2 pp. N, € 0] = PIX 2 py, X, > L]
is computed from (5.4.8} using a numerical integration technique that takes advantage of the fact that
the inner integral is an incomplete Ifunction. Note that u; is determined from x%(2) according to

(5.4.2), and L is determined according to (3.4.5). The acceptance probability P, is shown as the solid
line in figure 9.

1.0 1.0
““Lower bound £

0.8 0.8 -
P i P i
! R
A 9.6 - a a.6 [~
c c
c R ¢ ]
B g
T @4 |- T 8.4 -
A A
N 4 N ]
c ¢
£ 0.2 [ € e.2

e by’ L V) L A o S—

0.e 0.5 1.0 1.5 2.0 0.0 9.5 1.0 1.5 2.0
A A
() H-1@ K=0 (b} Ne3e [<)

FIGURE 9. Aceeptanee probabilities when the number of allowable defeetives k = 0 and n observations are drawn
from an exponential distribution E(A, 0).

The acceptance probabilities for k = 1,2,3, for uy = 0.75 and L chosen according to (3.4.5) were com-
puted by simulation as were the corresponding values of P. The approximation P, was computed from
(3.4.6}). Results are shown in figures 10-12.

The graphs show that P, is a better approximation to P, than the lower bound P for small sample
size where the superiority of P, over P increases as k increases. For large sample size, say n = 30, the
two methods give almost identical approximations to P,,.

Values of pyused in Computation of
Aceceptanee Probabilities for UMP Tesl {for
Exponential Distribulion

Values of u,,
B a=0.10 a=10.05 a=0.01
5 0.48652 0.39403 0.25582
10 0.62213 0.64254 0.,41302
20 0.77626 0.66273 0.55411
30 0.77431 0.71993 0.62475
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FIGURE 12. Acceptance probabilities when the number of allowabie defectives 2 = 3 and n observations are drawn
from an exponential disiribution E(4, 01,

6. Synopsis
The problem of computing the aceeptance probability P, has been addressed by an approximation

P, that relies on the asymptotic joint distribution of the sample mean and number of defectives in the
sample. P, has the advantage that it is applicable to any continuous distribution. It is computed using
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a V(0,1) cdf and a bivariate normal cdf which in turn can be reduced to a single variable integration.
The approximation P, compares very favorably with another published approximation for the nor-
mal distribution and with a lower bound P. Graphs of the acceptance probability as a function of one

parameter of the distribution are used to compare the relative accuracies of P, and P. The graphs

show that for the normal distribution P, and P have comparable accuracies with k = 0. As k/n in-

creases, P, quickly becomes superior to P, and even for large n and £ > 0 P, is superior. In other

words, the best results for the normal distribution are obtained with P when k = 0 and with P, for all
other values of .

In the case of Weibull distribution P is superior for & = 0. As k/n increases, P, gains in accuracy,
and for large n, P continues to have an edge over P,. The difficulty in computing P for the Weibull
distribution may make it desirable to use P, for all applications.

In the case of exponential distribution, the exact joint distribution of the sample mean and number
of defectives in the sample has been derived for k = 0. The computation of the acceptance probability
P_ in this case involves a two-variable integration. Graphs of the acceptance probabilities show that
the lower limit P gives a consistently good approximation to the acceptance probability. The approx-
imation P, and the lower limit P have also been computed for the exponential distribution for 1 < & <
3. The graphs for these tests show that P is comparable or superior to P, for large n(n 2 30) with P_ be-
ing somewhat superior when n is small, say n < 10.

The numerical integrations for this study were performed using the NBS software package
DATAPLOT developed by Dr. J.]. Filliben, and the graphs were prepared using the same package.
The authors wish to acknowledge the helpful suggestions for changes in the manuscript made by Dr.
P. Smith and Mrs. M. Natrella.
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8. Appendix A

The approximation P, given in {3.1.9} involves the computation of L(a,b, ) defined as
Lla,b,g) = J—Jg(z,y,e}dydz.
4

The computation of L(a,b,p} can be reduced to a single variable integration. When 2 and b are both
positive [18],

Labo= 5 |

T
IC co8

o XP = %(az-l— b2—2ab cos w) cosecw!dw
The following recursion relations hold:

Li-a.b,)

Il

~Lia,b,~¢) + 3 [1-h(b)]
Liar~bo) = —Liab,~¢ + §[1-hial]
L-a,—b,0) = Liab.g}+ Lha)+hib)]
where kel = T o290,
The approximation P, can be computed for all values of 2,b and ¢ using the foregoing equations.
P, = ®(—a)— Lia,b,p),a>0,b>0
P, = &{—a) -®(-b) + Li—a,b,~},a<0,b>0
P, = Lla~b,—0ha>0,6<0
P, = olb)—L(-a,~b,0),2 <0,b <0

where ®lx) = | exp(~z2/2dr.

=00

9. AppendixB

Asymptotic independence of the sample mean and the (r—k)th extreme statistic.
Let X,,**+, X, be i.i.d with a p.d.f. flx). Denote the c.d.f. of the X's by Fix}. Assume that X's have a

finite mean y and finite variance 0. Let X (1) < **» < X, be the order statistics.
The conditional density of X(j),***, X\, given that X,_4) = x,_,,is given by
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n—k-1

r~E=1)! T flx;y) El T filxp
L.r = 1 . n—k+1
in—k) p—— E {1
!F(x(n_k,}} {1 —F(x(n_“”

Clearly, given that X, ., = x(,_), the joint conditional density may be regarded as the joint density
of two dependent samples [¥(,=*+, ¥, 1| and |F,*=+, 7|, where the Y-sample has a p.d.{.

flx) .
ha) = ————» Hx<xyp
Flejp)
(2)
= 0 N x> x(n_k)
and the W-sample has a p.d.L.
(x) A
gx) = —— , ifx>x _
1=Flx, ) tn—k)
(3)
=0 B ifx <X[n_k'
THEOREM. For every fixed k, \/a{X—p) is asymptotically independent of Xip—k)asn > =.
PROOF: Rewrite X in terms of the ¥’s and the #’s. We obtain
o o v oyt ovir
From (2) we have
Xkl %
JxaFw) f dFix) (5)
0 x (n—k) ®
EY—u = — | xdFix)
' Flay, ) fx(u_,‘,

Making use of (4} and (5), and letting A be the value of EY; with X, replaced by X, _,), we get

VAX —u)_ VhTE-T (Y -EY) va—k-T
o o vn

(nk-1) (A-p) W-u  k + Koow

+ Vhao a \; ovh

Since k is fixed, clearly (F—pu) k/ a\/"_-"'O in probability as r = co. To prove the theorem we need the
following two lemmas in which we show that the second and the fourth terms tend to zero in probabili-
ty. Then the theorem follows from the fact that the first term converges in distribution to N(0,1} which
is the “unconditional” limiting distribution of vR(X —p).
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LEMMA 1. Asn = =,

PROOF: For every £ > 0 and for a fixed k, it follows from the Chebyehev inequality that

pl Xm) Sl EXpy)? L Etmax X7
Y7 D R L 1€j<n

LetY; = Xj2 and Hiy) = P[Y; > y].
Following a proof in Chung (1960),

Plmax YJ zyj=1-[Hyl|* = n[1-Hiyl]

1<j<n
and
lg X2 i T
pEmax X7 = 2 f (1-[Hy)ry dy > [ [1-Hiplldy <
1<j<n 0 0
On the other hand,
1 = 1
= E max ijl = [ [ u"!dudy.
1<j<n 0 Hly)

Sinee the expectation is finite, we can take the limit as # = < under the integral sign. As a result

o ]
km 1 EfmexX? = [ [ Lmuldudy=0
n—+rwo 1<i<n 0 Hiy) n—e=

LEMMA 2. Forafixedk, 0 €£k<n—-1,

o0
k-1 f xdF(x) = 0in Pasn —~ <,
xin—kl

PROOF: Since

o

Xin-k)
[= o]
+ vﬁ—k—l J [1-Fix)] dx, (8

(n—Fk)

we will show that each term on the right side of (8) converges in probability to zero.
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Set

=1 * (
= n—k—1 )
Then
n n . . k .t"
Plla—k-D1-F(X_;)] >z} = > ( i) ' (1—zjp7 e~ m (10)
i=n—k i=0

We see that X, _,/v n—k—1—~ 0 in P as shown in Lemma 1 and (n—k—1) [1-F{X ;)] converges in
distribution as shown in {10). Thus, the first term on the right side of (8) tends 1o zero in: P.
Finally, to show that the last term in (8} tends to zero in P, write this term as

o e =]
vik=1 [ I-FXVdx = \(o—k—1) (1-F(X,,) 1 J(1=Fleldz) /V1-F(X ) }

Xin—k) Xin-k)

Clearly, the part in braekets tends to zero in P ean be seen by the application of the L'Hospitals’s
rule to it.
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