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Clothoids, i.e. curves Z(s) in R* whose curvatures xis) are linear fitting functions of arclength s, have
been used for some time for curve fitting purposes in engineering epplications. The first part of the paper
deals with some basic interpolation problems for clothoids and studies the existence and unigueness of
their solutions. '

The second part discusses curve fitting problems for clothoidal splines, i.e. C2-curves, which are com-
posed of finitely many clothoids. An iterative method is described for finding a clothoidal spline Z(s) pass-
ing through given points Z, ¢ R? ., ; = 0,1,..., -+1, which minimizes the integral £ xls)2ds.

This algorithm is superlinearly convergent and needs only 0in) operations per iteration. A similar
algorithm is given for a related problem of smoothing by clothoidal splines.
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Freanel-integrals; interpolation; splines

Introduction

The characteristic property of curves known as Cornu-spirals or clothoids is that their curvature x(s)
is a linear function of the arc length, x(s) = x, + 1s. Straight lines (x, = 0, A = 0} and circles (A == 0)
may be considered as limiting cases. We are interested in constructing C2-curves in the plane R2 which
are composed of finitely many Cornu-spirals; that is, C%-curves whose curvature is a continuous
piecewise linear function of their arc lengths. We will call such curves clothoidal splines. Typical
elementary problems encountered in such an effort are to construct a clothoid joining a given straight
line and a given circle, or joining two circles. Composite curves of this type have been used by
engineers, for instance, for the construction of highway sections, some of which are specified to be
straight lines and circles. A more complex problem is to construct a clothoidal spline Z through a se-
quence of finitely many points (x;, y} ¢ R2,i = 0,1,. .. ,n + 1 such that the integral

K = [x(s)ds
A

along the curve is minimal. This problem can be considered as an approximation to the “true” prob-
lem of curve fitting in RZ, namely that of finding a curve Z(*) miimizing this integral among all
C2-curves passing through the given points. The latter problem has been studied by several authors
{Lee, Forsythe [7],! Mehlum [8]), and its exact solution leads to a multipoint boundary valie problem
for elliptic functions (Reinsch [14]). Mehlum [8] also proposed to approximate its solution by solving
the corresponding multipoint boundary value problem for clothoidal spline furctions, however the
resulting clothoidal spline does in general not minimize the integral K among all interpolating
clothoidal splines {see also Pal and Nutbourne [10] for a related use of clothoidal splines in computer
aided geometric design).

There is also the problem of smoothing: for given points {x;, y;),i = 0, 1,...,n + 1, the problem is
to find a clothoidal spline Z in such a way that its deviation {in the least squares sense) from the given
points is not greater than a prescribed tolerance and the integral K along Z is minimal (compare
Reinsch [13] for the related problem for spline functions).

*NBS Guest Warker with the Operations Rescarch Division, Center for Applied Mathematics, National Engineering Laboratory.
Figures in brackets indicate literature references at the end of this paper.
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Cornu-spirals can be easily computed in terms of Fresnel integrals, though admittedly not as easily
as the cubic polynomials generally used for spline functions. In contrast to the latter, however,
clothoidal splines are represented in terms of the natural parameter of plane curves; namely, the curva-
ture as function of arc length, Furthermore, we hope that they do not exhibit the drawbacks observed
with other schemes for curve fitting which have been observed in practice, namely, a tendency toward
oscillations.

In the first section we list some elementary properties of Cornu-spirals and Fresnel integrals, mainly
taken from Abramowitz and Stegun [1]. The second section deals with simple interpolation problems
for a single Cornu-spriral. Section 3 is devoted to interpolation with clothoidal spirals; section 4 to the
problem of smoothing.

1. Elementary properties of Cornu-spirals

By definition, a Cornu-spiral or clothoid is a curve,
x(s)
Zis) = ,SER,
yls)

whose curvature x(s) = x3 + As is a linear function of arc length s. If its tangent vector is

. cos $(s)
Zis) = .
sin $(s)
then
xls) = :ﬂs) )
so that
¢{8) = *0 + 3{lt(T)dT = ¢0 + xps + %S2 s
(1.1)
s | co8 $(e)
Zisk = Zy+ 6 de.
sin $(z)

According to the sign of A, Z is called positively or negatively oriented. In the sequel, we restrict
ourselves to the case of 1 > 0. Similar results will hold for 1 <0.
Using the Fresnel integrals,

C(}-—j' el de. S —T' ntl dt. Flz) = Ciz)
z.—ocosT t, (z).-—osm 3 t, Flz}:= Sz |

Z(s) can be expressed in closed form by [see [1], formulas (7.4.38), (7.4.39)]

_ : xo2) (xo+ls)_ ( X0 ) #1>0
Z(s)—-Zo+\/W7.V(+0 a1 F m. F m / ’ ' (1.2)

where V {a) is the orthogonal matrix,
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cosa —sina
Flal :=[ }

sin o cos ¢

Note that F{s) also describes a Cornu-spiral with are length s, curvature x{s) = ns and phase angle $(s)
= {n/2)s. The Fresnel integrals have the following properties [see [1], (7.3.17), (7.3.20})] which we list
without proof:

F(z) = ~F(-z)
. . 1fa
lm  Fl)= 2[1], lm__Flz) = ZH. (1.3)

Moreover, F(z) can be expressed in the following way [see [1], (7.3.9), (7.3.10)):

111 n
= - — —2
Fiz) 5 [1] V(zz )h(z} s (1.4)

where the component functions glz) and f(z) of

satisfy [see [1], (7.3.5), (7.3.6), (7.3.21), (7.3.27)47.3.31)],

111
(a) RO = - [ i|, lim h(z)=0
2|1} z~4w
(b)  glz) and fiz) are strictly monotonically decreasing for z £ [0, + ]
(¢ f'(z}= —nzglz), g'(z) = nzf(z}— 1, forze R {1.5)

{d)  For z > 0 the following estimates hold for g(z) and f(z):

1 1 - 15 < olg) < L
2.3 ( Y ) gz 20
1 3 1
— (1 - — )< fa< =

3 -3 -2
3z fz nz mizs (nz2)2

Approximations of f(z), g(z) suitable for the calculation of Fiz) are given in [1], (7.3.32), (7.3.33), and
in Boersma [2].

As a simple consequence of {1.5d) we note the following estimates for the euclidean norms of the vec-
tors h(z) and

{z)
Btz := | &
{z) flz) — 1/{nz)
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to be used later on:

-1
5 1
(a) 1- W < |[th(z)ll (1/nz) \/l+ W €lforz>0,

35 \/ 9
_ 2,3 +
(b' 1 (ﬂzzjz < “B(Z)” (1/" 4 ]. ("_zz)z- < 1forz>0,

. 0 . o~ _ 0
(c) ll_lp+m zhlz)l = [0:| ,‘-!lim_*_w n_zh(z) = [1:|

{1.6)

By (1.5a), (1.5b), {lh(z}|] decreases strictly monotonically toward 0 for z + 4 ©, The same holds for
h(z):

[1h(z)1| decreases strictly monotonically toward 0 as z = + .

The following is a consequence of (1.6) and (1.5):

1 d 1 1
= L hn2 = - ;
3 dz“ {z)l "zz(ﬂz) )<0 forz>0

It follows from (1.3), (1.4) that F(z) has the form shown in figure 1.

at
.‘ F
i w(z
F{z)

o5t

=3 -0.5 . , -

) 0.5 1 x

+ -05

-1

FIGure 1. Positively Oriented Comu-Spiral with Z, = X, = o and
A=n

For z 2 0 the vector

sin o(z)

hiz} = k) » [“"’" °“”] >0, olz):= arctan (z)/ glz))
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stays in the interior of the first quadrant of R2

0<olz) < g ol0) =~ , ol+ o) =n/2 .

A

Moreover, the vector
1 o o) cos glz)
r— [ — -— 2 =: h -
ri(z):= F(z) 5 [;l Vv (2 % )Mz) 1Azl [sin Q(zl]

elz) := O(Z)+gzz+ﬂ.%z2+ n<t?‘z)<'—:;z2+%n

where

rotates counterclockwise for z 2 0 as z tends to + <. This follows from (1.5}

. . d it
olz) =olzb + nz = % arctant(f(z)/g(z)) + nz = W >0forz20
Therefore, the curve F(z) crosses any fixed ray
d 1(1 + cosall >0
121 ? sin ?
infinitely often at abscissae 0 € z3 <z3 <..., for which
lim zi - + oo
i o
()2 + 4n~1 € (g4 P2 < ()2 + 4n+1 , i21n21 {1.8)

4n—1 < (z,)2 € 4n+1

These estimates easily imply the following bounds

4n—1 { an-1\"1 4n+1 / a1\l
1+ 1+ @ ﬁzH_n —'z,-€ ]-+ ]-+ (zl-)?' !!ln31

Zi

Vin-1<z, <V 4n+1 , {1.9)

which we note for later reference. ‘ ‘
Upon inserting (1.4} inte (1.2), we get the following representation of Z(s) in terms of the vector ks

— zi0)- «] T {matshn (ZY _ Yo 1.10
Zish = Z(0) \/: ( ($ls ( Ve Vit |~y (1.10)

where {see (1.1))
x(s): =xp+ ks,  $lsh=¢p+ xps + %s2
Note that because of A > 0 and (1.5} (a), (1.3)
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(@) 20+ @) = ZI0)+ ] T Vidghh ( \/—1)

(b) Zi— ) = Z(+ ) — \/ (+ O (1.11)
v o 1 .
(s}
Zis) = Zl+ o) = = 4] ~ V36l (=
(e} Zis)~ Z{+ ) ~Vidts) ( \/ﬁ)

The evolute of Z, that is the locus of all centers of curvature Mis) of Z(s) for s ¢ R, is given by

] p—
Ms)= Zis) + —— [ oin ‘“3’} = Zis) + —(—) V(@)an

x(s) | cos (s x(s

(1.12)

= Z{0) - \/7 (Vmsnﬁ( ”) —moyh( X0 ))
v

Ve

0
because hi(z) = hl(z) - ol Again, the evolute M is a spiral type of curve with the following properties:

(a} M+ ») = Z(+ )
(b} M{(— ). = Z(—x)

(¢} Mis}—M(+ =)=~ \/‘ VidisD (;‘;;) {1.13)
(d) Milsy) # Msy) for s; # 89 )

(a) follows directly from (1.7) and (1.11), (b} and (c) follow from (1.11), and {d) from (1.7), since F{$(s)}
is an orthogonal matrix. Furthermore,

if x(s) > 0, 1> 0, then for every s > 5

1 1

IME -Mis)l € — -~ — (1.14)
x(s)  xls)

HHM(s) — Zishil < —
<3

that is, for s > 5 the osculating circle of Z at s and Z(s) are contained in the interior of the osculating cir-
cleof Z ats.

Indeed, according to a well-known result of differential geometry (see, e.g., [15}), the arclength a(s)
of the evolute Mis) of any curve Z(s) is given relative to the curvature x(s) of Z{s) by

ols) = — %x(s}'l

so that in our case fors > 5
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1

ols)—al3s) = e - R

Since M(1), T £ [3,s] is not a straight line, we have the additional inequality
I Mis) —M(3)I| < ols) ~ o(8) = x(3)~1 — xis)~?
which proves the first part of (1,14). The second part follows from the first, as
HZis) — M(s)ll = x{s)~1
2. Interpolation properties of Cornu spirals

In this section we study some simple interpolation problems for Cornu spirals. In stating the results
we make use of oriented circles

Kta,r) := {s+ r [:?s ]
gin ¢

whose orientation is determined by the sign of the radius r # 0, and of oriented lines

g=glbal = {b+a|:c?sajllaeR} .
gin a

whose orientation is deterined by the direction of the vector (cos a, sin @)T. We say that the orientations
of an oriented line g and of an oriented circle K(a,r) not meeting g are coherent, if K{a,r) lies in the
same helfplane determined by g which contains the point

—sin a
b+r [ ]
cos

l0€¢$2"} [

Coherent orientation Incoherent orientation
FiGure 2

A first simple result refers to the problem of joining a line to a circle by a Cornu spiral.

{2.1) THEOREM:

1. For any given oriented circle Kla,r), r # 0, not meeting a coherently oriented line glb,a) there ex-
ists exactly one oriented Cornu-spiral Z(s) which joins g to K{a,x) (in this order) such that the resulting
composite curve is 8 C2 curve with a coherent orientation.

2. If g meets K or the orientation of g and K are not coherent, then there is no such interpolating
Cornu-spiral,

Of course, a similar result holds for joining an oriented circle X to an oriented line (in this order) by
an oriented Cornu-spiral which we do not state explicitly.
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PROOF: 1. Without loss of generality we may assume that r=1/x > 0 and g is the x-axis in R? with its
usual orientation. Since K(a,r) is coherently oriented with g, the center a == (xq,y)7 of X is such thaty
=yp/r=ygx > 1.

Any positively oriented Cornu-spiral touching the x-axis at (0,0)T with s = 0 {i.e., g = 0, Z(0) = 0)
with a curvature x{0) = x5 = 0 has the form (see (1.2})).

[« (/1) [xm}
Zis) = -F -s]=:
i n yls)

with some 1 > 0. In order to solve the problem it suffices to determine s > 0 and A > 0 such that Z has
at s the curvature x and (xy,y,)T as center of curvature (see fig. 3).

* Z{$)
e

Xe
FIGURE 3

This leads to the conditions
x(s) = s=x > A=x/s,
$(s) A 2=xs2

2
cos $(s) ={y0—y{sl)x=7—x,[1 SA(\/T—s>
A T

Hence s must satisfy the equation

cos;—s+ ‘V_HHS( x—s)ﬂ?_ oy

n

or the variable

must solve

cosV24+¥V2n § (\/3 'P) =y
n
p¥) : =cos¥2+W¥WV2n S (1{3 ‘~P>
n
b4

= cos W2 + 2V¥ [ sin t2dt
0

Now the function

is strictly monotonieally increasing for W > 0 because

W
p (W =2[sine2de>0 for ¥> 0.
0

Since ¥ > 1, p(0) = I and lim plt) = + <o, there exists therefore a unique solution Y >0 of (2.2),

T =+
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which can be found by Newton’s method. In terms of ﬁ; the solution of the problem is
s =2¥%/x , A=x/s
Z(s) =\/A£_ F (\/g:}) , g = x(s) —xl:sin y2
The proof of (2} is straightforward.
We now turn to the problem of joining two oriented circles,
K;fa;,1/x), i=12, ,
by an oriented Cornu spiral,
We first show an auxiliary result for the family of Cornu spirals Z, (s}, A>0 with
xg=10, ¢=0, Z,(00=0

x(s) = s, ¢(s)=;—sz

o=~ () (3)-3[))

For their center of curvature M, (s) taken at arclength s: = % /A for which x(s) = ¥, the following

holds:
moon=—JE ((Z)r( 21 [1)

so that because of (1.6} (c), (1.11} and (1.13)

) _ 0.5
(8 limM,{&/N - |~ =0 x>0
e X N1 los x

given by [see (1.10), {1.5a)]

b limM, (/A ‘/.’1 050 — i

(b) ;-IBI L /A + 3 |t05:| 0if x<0 (2.3)
. — 0

{ limM, (x/A) =

c' l-ln-l-.i-oo l(x ' [I/Y:I,

As an easy consequence, we get

{2.4) THEOREM: Let K; (a;, 1/xy), i = 1,2 be two oriented circles.

1. IfK; and K 2 are coherently oriented, i.e. if x; * x2 > 0, then there exists an oriented Cornu spiral
joining K to K3 (in this order) and having both K] and K3 as osculating circle if and only if their
centers a; are different and one of the circles contains the other in its interior.

2. Ifxy - xa <0, then there exists an orfented Cornu spiral joining K| and K (in this order) and hav-
ing both K1 and K as osculating circles if and only if neither circle contains the other, i.e. /la] -ag)! >
K117+ 1IKalI7.

PROOF: (1) Assume x > x; > 0 without loss of generality and let K, contain K ; in its interior; that is,

0< |l ay—as Il <1/x%—1/x . (2.5)
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Then by (2.3) (a), (c)
]il‘ll Il M)‘(II/M—MA(ngl) =0
A 40

lif I M, 1 /8) — M (x2/2) I} =1/x1=1/x2
Ao

Since M, (x/1) depends continuously on A > 0, there is a A’ > 0 such that
Il M)L' (xlll'l—Ml-(lel') =1l 4~ as [ y

that is the Cornu spiral Z,, has two osculating circles of radii 1/x; and 1/x; respectively, whose
centers M,+ (x;/1’), i = 1,2 have the desired distance. This proves the "if”’ part of (1). To prove the
“only if”’ part, note that by (1.13)(d), the centers of curvature of any Cornu spiral are different for dif-
ferent arclengths, so that a; # a, is a necessary condition for the existence of a Cornu spiral joining two
different circles K|, K y. The rest follows from {1.14).

{2.) Assumex;>0>xyand || ay—ay |l >1/x) — 1/x5. Then, because of (2.3)

].il'i ” MA(II/“_MA(Xz/)J II - 1/!1_1/12
A—. [- -}

lim 11 M1 /4) = My ep/A) 1| =+ o0
A0

Hence by a continuity argument there exists A’ >> 0 such that
I M, (/A7) =M, ee/2") || = |l ay—ag |l
which proves the “if”” part of (2}, The “only if” part is trivial. We next turn to the following problems;

{2.6) PROBLEM: For a given oriented circle K and two points Py e K and Py ¢ K find an oriented
Cornu-spiral connecting P to P| (in this order) which has K as osculating circle at P, (see figs. 4(4),
(B)).

{2.6) is equivalent to the problem of connecting a point P, ¢ K to a point Py ¢ K (in this order} on an
oriented circle K by an oriented Cornu spiral which has K as osculating circle at Py, Using suitable
reflections and changes of orientation [compare fig. 4 (B), (C)], (2.6) is seen to be equivalent to the
following, which involves only positive orientations:

[
7 oy 5
(A (8 (c)

FIGURE 4
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(2.6°) PROBLEM: For a given positively oriented circle K = K(Mg, 1/x), x > 0, and two points Pg e

K and P} ¢ K find a positively oriented Cornu-spiral with K as osculating circle at Pg, which leads
from Py to Py, if P, isinside, K and leads from P to Pyif Py, if P, is outside K.

Clearly, (2.6") depends only on x and the relative positions of Py and P; so that we may assume
without loss of generality

0 0 sin o
M = ] P = ] P = ’ 2 0 [
0 I:Ojl =0 I:—l/;l =1 r [—cos a] d

(see Fig. 5.

N

FIGURE 5

N

By (1.10) the class of positively oriented Cornu spirals Z with

Z(0)=P0=[21/x], x0)=x , $(0) =0

is given by
_ |0 T X\ _ l‘t_’-\ ;
Cils) = 1/ij + \[)«_—h(\fn:f) V\)_‘, Vidishhix, (s} /¥md )
=\[ﬂ§ /YD) — Vs bejls)/ Vi)
A
where

als) := x+ s, §ls) 1= xs+ (/22
Essentially, we will show [Thecrem (2.25])] that for r # 1/x, i.e. P; ¢ K, there are countably many

numbers A; > A3 > ... > 0 and arclengths s;, i > 1, such that C;, (s;) = P; for all i 2 1. To prove this,
we need some auxiliary results. From (1.5) (a) and {1.14) follow

G+ = = \/:-_H(x/'\’ﬁ) LG 1 <1/x . 2.8)

W e show next:

{2.9) For any fixed bounded interval I = [sy, sa] such that for all A>0and allsc 1, x(s) = x + s >0
there holds

limsup Il C; (8111 =1/x . (2.9)
MO sel N
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PROOF. It follows from (2.7k

_ x;(S)) _ 0
Cyls) \/_ (h (c/ Vek) ~ V{wsllh( ) Vit [1/;;1(5} :

By (1.6)(c}, the first two terms tend to 0 uniformly insefasitQ. Hence,

limsup [|C(s)ll = hmsup 1/x0s) = 1/x ,QED.
MO sel MO sed

With the abbreviations
By = JLE= R (x/¥ad) , hyls) :=\f:: hxy(s)/ md)

o= Ry 1L, rls) == 1l Ryls) 11,

we have from (2.7)
Cyls) =k = Vig,(s) hyls) (2.10)

and from (1.6), (2.8), the estimates

2 35A2\ _ _ 9,2 3 -

1 15A2 A2 1
11— i< /4|14 < 2.11
x1;(s) ( xﬂs}“) s x(s)* x,is) @11

for all s with x;ts) = x+1s > 0.

Two cases are possible with respect to the location of the target point
sin a
Pi =r
—cos a

Case(1): 0< r<1/x , Py liesin the interior of K
Case(2):r>1/x , P lies outside of K.

which will be treated somewhat differently.

In Case (1) there is a sufficiently small 1 > 0 such that
Cyl+ @) =R # P forall 0<A<X (2.12)
Note this is exactly true if r = 0, P} = 0, for then by (2.8),
Cy -+ ) =h, #0 forallA>0 .
If r> 0, a suitable » > 0 can be found because of (2.11). With X > 0 satisfying (2.12), consider the rays
dy:={b+ o{P,~R)l 020} , 0<a<T

extending from iln,‘ towards Py (see fig. 6).
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Pa

FIGURE O

Because of (2.10} and using the same reasoning as with (1.8), every Cornu spiral Cy{s) , 0 <A <4

cuts d, infinitely often at abscissae 0 < 5(A) <sy (3) <..., which satisfy estimates of the form [cf.
(1.8)].

4’1(31.1(”' + 3n/2 < +l(sn+l (”)

L~ ] (2.14)
2{n-1jn € 2(n - T ) m < $als,A) < 2(n+a— Jn € 2(n+1n
forn =21, sothat
Sap M-8 = _ 3% (14 14 [ Sm
x+4s,(3) fx+ s, (A)]2
{2.15)

Sl € s, € Tppq (0

;m(“:: 4mn 1 + 1+ 4mnd
x x2

is the solution of the quadratic equation,

where

$yls) =xs +§-‘~ s?2=2mn

As a consequence,

Smsl) =+ G = F

and therefore there exists an IV such that for all n > IV (see fig. 6),
Cits,(X) & [hy,Pyl:={hy+ o(P-hy) | €0<1},

that is, Cy intersects dj between h T and P; at the abscissae s,(%) , n < N. Consider any fixed n < N.
By (2.14}, 5,(3) is bounded

m,$s,(M<M, forall0<A<2 (2.16)
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by some positive constants m_, M. Hence by (2.15), also the differences
Sptr10) = 5,0 = m, > 0forall 0<AS T (2.17)

are bounded below by a positive m ;, > 0. Moreover, for each n > N, s_{1) is a continuous function of 1,
hence also C,is,(3)), for 0 <1< 1. Since s,,(A) is bounded above (2.16}, (2.9) gives for every fixed n

lim 11C, s, () Il = 1/x
MO

that is, the points P; , := C,(s,(3)) £ d tend to the boundary of the circle K as A tends to 0. Therefore,
by the continuity of P) , and because of

Pi.ae [h P
T 1
thereis a Ay, 0 <i, <X suchthat Py ,=P.
Because of (2.17),
I Cln {sn+1 (Aa)) — H).n I = rl.,,,[sn+1 )] < Tin [s, ()] = Il P1— hlnH ’
so that

P1#Cy, (sn+1 () € [y P1l
and therefore 4, | <4,

This proves that in case (1) there are indeed countably many positively oriented different Cornu-
spirals G A" 2 1, and abscissae s, , namely

sp =3, ),
having K as osculating circle at s = 0 and passing through P,

Gy, sp) =Py, foralln>1.

In case {2), r > 1/x, a similar reasoning applies: Here we consider the Cornu-spiral C, (s) for 0 > s >
—x/A, that is for all s € 0 for which

xis)=x+1s>0
is still positive. We will show that:
{2.18) To every integer n = 1 there exists a 1> 0 and an integer N 2 1 such that for every 0 < i < A
the Cornu-spiral Ci(s) , 0 > s > — x/A, cuts d, at abscissae 0 2> s—1 (A} > s-2(d)...>
B_pN.p(A) such that
{a) 8NN >—x/% >—x/1 ,
() s ;M-8 (N =m;>0 for i=12,...,N+n-1, 0<A€1, {2.19)

() rylsopq A]Zr+ -E

{c) means that for A = 1, C, (s) has at least n cutting points, namely
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Cxls-N-i 0N ¢ {Fy + o Pk 021}, i=1,2,...,n
with dy which lie beyond P;.

Once (2.18} is proved, then as in case (1), a simple limiting argament M0 gives the existence of n
values A, A 24 > Ay > ... >4, > 0such that

Cys-n=i () = Pi1,

gince for M40 by (2.9) each C; {s-N-i{A)}, i 1, tends to the circle K and so, by the continuity of s—pn.;(4)
has to pass the point P, for a certain parameter value ;.

Since by (2.18) r is arbitrary, this gives the existence of countably many Cornu-spirals satisfying the
interpolation requirement.

For the proof of (2.18} let y be defined by y/x := r + 1/x, so that y > 2. Let n 2 1 be an arbitrary
positive integer. Choose any numbers o and ff such that

0<a<l , Y1-a<1/(2y)

(2.20)
af<1, p>1.
Choose a natural number NN so large that
N+nt+1<pN
(2.21)
az < 1

NEZ(l—a)Z 2
and set

ax?

~4Nn

Consider the solution 5_, , N € m < N of the quadratic equation

47 ()= xs + 252 = —2mn
2

- 7 Y-l
s__m=_4mn (1+ 1_4m21r)t )
x x

4mﬂl m
0<as
a 3 —a N—< aff <1

given by

Since by {2.20)

every such s_,, is real. Moreover,
Ts.y =—ax/l+ l-a)=-x-(1- l-a

Ts_gy =—x(1- 1-pa)
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so that by (2.20)

N =x + Ty = x vV T—a > xi(s_gy) = x VI >0 (2.23)
Since by (2.21)
1522 1542 1
aq(s_p)* 16N2n2(1—a)? 2

we get from (2.11) and (2.20) the estimate

F1Gon) > 0.5 _ 0.5 SY +1 2.94)
C-NM2> g = T ox - " Txe 2.

Since by (2.21)

$1G5-pv) = —28Nn < =2(N+n+1n ,
C;(5) cuts dj at least N+ n times within the interval [§—gv, 0] at abscissae

0>s_; M) >s0)>. .. >s_NA)}
satisfying the estimates

=2(i—1ln 2 $3(-;2) = -2(i+1)n fori=1,2,...,N+n
so that
Sojp1 2 8- 25—
In particular, we have 0 = 5_p > s——1(%), so that because of {2.24) and the monotonicity of ri{s),

we get (2.19)(c].- (2.19)ta) follows from s_y_,(1) 2 5-pN-g-1, (2.21) implying S-N-p-1 > 5-pN end
(2.23). (2.19) (b) is proved as in case (1). All in all, we have shown the following:

(2.25) THEOREM: For all oriented circles K and two points Py ¢ K and P} £ K there are countably
many different Cornu-spirals connecting Py to P (in this order) and all have K as osculating circle at

Pg.
3. Interpolation by Clothoidal Splines

A clothoidal spline is & C2-curve in R? whose curvature x(s} is a continuous piecewise linear function
of arclength s. More precisely, such a curve Z(s) is given by a finite collection of parameters

0=30<31<"'<5n+1
(Z,-,cbi,xi,l,-), ZI'ERZ, i=0, 1,....,1’1

such that for eachi = 0,1,....,n, Zis} := Zisls;, s;11] is a Cornu-spiral with curvature xi(s) and
phase $i(s) given by
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xils) = x;+ Afs—sy)
$i(s) = $; + x;ls—8;) + A—E(S_-ﬂ')z
2 {3.1)

sin

Zifs} := z,-+? [cmj ($(e)) de
$;

so that Z(s) is a c2-curve; that is, the Zi(.), $i(.) , xi(.} satiafy the following continuity conditions for all
i=01,...,n—1:

_ 7| cos| .
Zis; 3 —Z;+1 Z;+ ‘g |: . j]wl(-?,""T” dt~Z;11=0
s1n

. A;

lsit1) — i1 ¢t +xT+ 5’—“? —$i+1=0 (3.2)
Alsp) =41 =gt hTxH =0

with 7; := 8,17 — s;. Of course, the parameters s; are determined by the 7;,s; .1 =19+ 11+ ...+ 7

30 that instead of the s;, we may take the 7; > 0 as parameters. Note that we do not require A; # 0, so

that Z(s) may contain linear or circular segments.

In this section we study the interpolation problem of finding a clothoidal spline passing through a
finite number of given points. In this form, the problem is not very meaningful, since by Theorem
(2.25) it has arbitrarily many different solutions. More interesting is the problem of finding an inter-
polating clothoidal spline with minimal [ x(s)2ds, in analogy to cubic spline interpolation.

(3.3) PROBLEM: For & given family (Zl;—q 1,..., n+1 of different points Z; £ R? find parameters PT
= (§;, x5, A, 1), i =0, 1,. . . , 0 with 1; > 0 such that these parameters together with the Z; determine a
clothoidal spline Z(s) by (3.1) satisfying (3.2} and Z{s, 1) = Z, 1.1 so that
3n+1 n S4+1
[ x(8)2ds = I [ xils)2ds
0 i=0 s
is minimal.
With the notation
al := (4, %), b := (W, )
PT:= (P, PT,....PD, PT:=(x;, x;, bty 1), i=0,1,...,n (3.4)
the objective function to be minimized is the function
n Ti
F(P):= X [ I+ y1)%dt
i=0 0

which is separable in variables P;.

The transpose F’ (P) of its gradient and its Hessian F"(P} are
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F' (P = (g, vgy 1y U190 0 o s Uy, Ug)

F, 0'
Fy
Frp) =
0 F,
with the R2 row vectors
w = [0, 2 + Afl
v = [+ %1,«:.-)(1{,- + 472
and the 4 x 4 square matrices
[0 . 0 0 : 0
0 17
s T E ! . X + AsT;
F!' =2
1 1
0 -é'r,z 3713 v gt Ay
0 g+ Any | gHAanny o, g+ AT

{3.5)

(3.6)

3.7

Also, the conditions (3.2) to be satisfied by P are highly structured. They have a staircase-like form

G(P)=Glag, by, . ..., a, by =

—
Jiag, bot+2Zg—Z;
Kieg , by rv=ag .
s Jlay by )42 22,

+ Kiay by) , —aa

» Jag gy b1+ 2oy -2,
» Kiay 3 by )
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where

T| cos | —~ A ¢ A
Jia, b) = [ b+xrt+Zetdr, .= b:=
0{ sin |~ 2 Tk ’ T

¢+x'r+§ 12
x -+ Ar

(3.9}

K(a, b) =

Note that the integral in J{a,b) is easily computed in terms of Fresnel integrals (see 1.2) for A; # 0 and
elementary integration rules for A; = (. The Jacobian G ' of G has a similar structure
G'(P). EG"&Q, bo,. Y bn)E

Ay, By, 0
Co . Do N _I
4,,B,
Cy.D, -1
= (3.10)
An—l L] Bn-‘l
Cn—l »Dn-1,—1
0 An E BB
with partial derivative 2 x 2 matrices
Ai = Dﬁ,‘,_)] (4,7t P.
1
B; := Du_ﬂ](({i,x.l,‘r)lp_
i
(3.11}
c 1,1 /2, x + vy
CTle L 1) TN Ty,
In terms of the notation just introduced, (3.3) is equivalent to the minimization problem,
Minimize F(P) subject to G(P) = 0 (3.12)

Let

LiP, A) := F(P) + ATG(P)
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be the Lagrangean of (3.12) and suppose that (3.12) satisfies the usual first order necessary and second
order sufficient conditions at the optimal point P {which we assume to exist):

1. The Jacobian G’ (P) of G at P has full row rank and there exists & A such that (P, A) is a sta-
tionary point of L:

- - A _L(PA
$PA) =0, with$(P,A):= [PG:P} j =L'{P,AT (3.13)

2. For the Hessian Lpp (P, A) of L with respect to P
PTLpp(P,A}P >0
holds for all P # 0 satisfying G' (P)P = 0.

Then P and A can be found as the solution of the nonlinear equations (3.13). The Jacobian ¢ of $ is
a highly structured matrix of the form

L (PN , GPT
: = 'pp
$' (P, A) [G,‘P} o ] (3.14)

where G is given by (3.10). It is seen from (3.5}, (3.10) that L, has the same block-structure as F"
l3 5). In solving {3.13), Newton’s method can be applied to generate iterates (P®), A®), k =
. . by solving at each iterate {P () Mk)) the linear equations

P (k)
$7 (P, Alk)) l:j/\”" :l = —(plk) Alk) (3.15)
plk)

dA(kl] , with $* given by (3.14).

for the Newton direction {

Since computing the Hessian Lpp(P*), Akl may be too costly, we may replace Lpp within ¢’ by a
sufficiently close approximation H'{n as it is done in the minimization algorithms of Han [4, 5] and
Powell [11, 12]. One may choose as H'¥), e.g. a matrix of the same block structure as Lpp, namely
{(compare 3.5)

Hk) = (3.16)

0 Hr_

with 4 x 4 blocks H¥),i = 0,1, . . ., n. One then solves (3.15) with L pp replaced by H'%}, namely

ik , (P KT [5pw
l:G - G 0( ):H:d/\fk?:l = —§(P k), Alk)) (3.17)
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and computes a new iterate of the form

P&+1D P Jp ik
—_ + ak .
Ale+1) Alk) JAlk)

by choosing a step size 0; , 0 < o4 < 1, for example as in Han [5], by minimizing a certain penalty func-

tion along the ray
Pt 4Pk}
2 -
Alk) + o AR 020

After having computed the new iterate (P k1) Alk+1)  one may use a rank-2 update formula, say
the PSB-update formula, on each 4 x 4 block H) in order to generate another matrix H{**1 for each i
=0,1,...,n, and thereby H*+ 1), having the same structure (3.16) as H*) and satisfying the usual
Quasi-Newton equation:

Hik+D{plet1) — Pk =v P:L(P(k+1), Ale+1) — VP,-L‘P{H’AH”)

(3.18)

When solving (3.17), the structure of H¥ (3.16) and G '(Py) (3.10} can be exploited to reduce the .
number of operations drastically. For ease of notation, let us drop the superscripts and arguments in
(3.17) and write briefly

C
H

for the right hand side —¢(P%%), Ak)) of (3.17). The problem then is to solve an equation of the form

m e -1

where H and G’ have the block structure {3.16} and (3.10), respectively.
We first reduce G’ by a series of Givens reflexions Q,, 9;3 =Q;, 912 = I, to a lower triangular
matrix of the form {compare its structure with {3.10)]:

G'_]_.Qz s .QN = (.L, 0)=

4n+2

(3.20)

where all blocks indicated have size 2 x 2 and L is a (4n + 2) x {(4n + 2)-lower triangular band matrix.
Again, because of the band-structure of (3.10), the number N = 0{n) of Givens reflexions needed is

337



linear in n, so that the unitary matrix

Q= 91'92 ...... QN {3.21)

where

o=9 | . .
1 0 1 0
01 01
are the last two columns of Q, which are computed using the product form of (3.21}, Q is not needed
explicitly. Introduce new variables

viadP=Qt= §t1 + Etz.

Then becaunse of

the second set of equations (3.19)
G'dP= Ltl = d"'tl

can be solved for ¢, in 0(r) steps using the structure of L (3.20}, and the vector

Pl:=0t = ,Q,...y 0
0
is computed using {3.21}.
Now we turn to the first set of equations (3.19)
HoP+ G'Tdr=¢ (3.22)

I;/ITulti%lying these equations by QT and introducing ¢) and t, instead of dP, we get because of
QiGg'I'=9¢

OTHO!, + QTHRty = §Tc
or

(@THQ)ty = QTc ~ QTHP1 - ¢, (3.23)
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Again, the 2 x 2 matrix OTHQ and the vectors QTHP! can be computed with 0(n) operations using the
block structure of H (3.16}. ¢, is obtained by solving the two linear equations (3.23) and dP is
calculated by

P2

Qty,6P:= Pl + P2

Finally, we multiply {3.22) by QT in order to get dA. Observing (3.20) we obtain a triangular system of
linear equations

LTtén = QTc — QTHSP

the right hand side of which can be easily computed with 0(n) operations using the structure of H and
the product form of QT:

1 000
§T = . QNQN—-I asa Ql
0 100
All in all, we can compute the solution of (3.19) with 0(n) arithmetic operations, 8o that the Han-
Powell method is quite effective in our case. The method has been realized and successively tested by
Huckle [6]. With respect to a convergence analysis of the above method (the method converges locally
superlinearly under some mild assumptions) we refer to the literature Han [4,5], Powell [12], Tapia
[16).
4. Smoothing by Clothoidal Splines

We consider the following generalization of (3.3) (compare Reinsch {13]):

PROBLEM: For a given family{z}bo’l‘ ....n+1of different points

¥i

and numbers S > 0, Ax; > 0, Ay; > 0,i = 0,1, . .., n+1, find parameters

{imlli=o,... .0 {Zhi=01,....0+ 1,2 Zi =|:;'] eR?

(4.1)
which determine a clothoidal spline Z(s) via (3.1) satisfying the conditions
8) (3.2} and Z‘ﬂn+1) = zn+1
(4.2)
2 2
n+1 =% =T
bz (_i’_).i. SR +22=8
1=0 Axi Ayi

8
(z is a slack variable) such that n%-l A(s)2ds is minimal.
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Again with the notation [compare (3.4)]
aT = (bpx), b;T = A1)
i=0l1,...,n
PT = (§x;h;y)
Pn+‘1T = [Zo',Z]T, e v ey Zn+1T, z]
= (X0:Y0s X1Y1s - - + » Xnt 1Yn+1, 5 € RIS

PT = [PoT,PlT, cees P,,T,P,,.H’I] ¢ R6n+9

the objective function F(P) to be minimized is separable in the P;

n T
FP:= X f O+ 002 (4.3)
i=0 0
and has a Hessian of the form [compare (3.5)]
’_Fo OT
F,
F (P = . (4.4)
.F,
= 0 Fn+l

with the same 4 x 4 matrices F, . .. , F, as in (3.7) and a (2n-+5) by (2n+ 5) matrix F,+; := 0.

The constraints (4.2) now have the structure [see (3.8)]:

Jagbo) + Zg~2Z, |
K(ag,bg) -a,

Jay b))+ 2, - Z,
K(ay,b)) - a2
GPp= . =0 (4.5)
J(an-lqbn—l) + Zn-l - Zn
K‘an-lnbn—l) ~an
J(anvbn) + Zn - Zn+l
Q(ZO!Zl'"-vZn“l'lvz)

b

where L and K are again given by (3.9) and the scalar function ¢ is defined by [compare (4.2) b))
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I n+1 [/x-%\2 —5 \2
eZy,...,Z,41,2):=|- X ( e + YV ¢ oa2-s .
2 i=0 \ Ay By;

With these new definitions of F and G, problem (4.1) has the same structure as (3.12), namely
minimize F(P)subjectto G(P)= 0 (4.6)

Consider again the Lagrangean of (4.6)
L(P,A) := F(P)+ ATG(P)

We again assume that (4.6) has an optimal solution P and that at P the optimality conditions (3.13) are
satisfied.

By (3.13), (3.14) the optimal solution (P, A) solves

$(PA):=L'(PA) = =0 4.7)
G(P
whose Jacobian is again
LpplP,A) , G'T
"(PA) = (4.8)
$'(P,A) [G , o }

but its structure is slightly more complicated than in section 3 because of our new definitions of F(P)
(4.3) and G(P) (4.5). It is easily verified that in the present case ¢’ (P,A) has the following form
(illustrated for n=2)

~
AgsBg 0 1,-1, o, o0 Jo]}2
CO'DO."I o, o0, O, Y Y
Al'nl o, I, ~-I, (4] 0
G'(P) =
¢;,D;, -1 0, 00 0, 0 |oO (4.9)
0 Ay.By 0, 0, 1,-1 Jol}2
0 0 r z|}1
—— —— ~——
2 2 2 1

where the 2 by 2 matrices 4;, B;, C;, D; are again given by (3.11) and the vector ris

x0~%p Yo~Yo Xn+1 ~En+1 Yn+1"Yn+1
r:= ’ yocey ’
Ax)? (Ayo)? (Axp41)? (Ayn+1)?

Likewise Lpp (P,A) has the structure [compare (4.3), (4.4)]
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LpplP,A) = . (4.10)

0 Lyt

where the L; i € n, are symmetric 4 by 4 matrices and Lp+) is the {2r+5) by (2n+5) diagonal
matrix.
Lyt := A, diaglAxg,bAyg , .oy Axypy, 172, (4.11)

where A, is the last component of A.

As in the previous section, one has to solve (4.8) by Newton’s method (compare (3.15) — (3.17}
where at each iteration point [P%}, A®)] the Hessian Lpp is approximated by a positive definite matrix
H%) having the same structure as L pp (4.10),

[, 0
Hy )
HE) = . {4.12)

Hﬂ(k}
0 H, ®

with certain 4 by 4 matrices Hf*) for i < n and the diagonal matrix (see 4.11)

H, . ® = Ak » diag{Axo.Ayo, - - - » Ata+1,Ayn+1,1072 . {4.13)

After having computed P¥+1), Ale+1) (see previous section) H*+1 is obtained from H'*} by updating
each H{%), i € n, individually by some update method {e.g., the PSB-method) which guarantees the
same quasi-Newton relation (3.18) as in section 4; H,,;.1)s 1Y is computed by (4.13).

Of course, for large numbers n the efficiency of the algorithm outlined erucially depends on the
number of operations needed to perform one Newton step [P¥), At¥)] = [ P+1}, Atk+1)], that is to solve
a linear system of equations [see (3.17), {3.19)] of the form

e e

for 6P, dA, where H and G’ are given matrices with the structure (4.12) and (4.9), respectively. An
algorithm of the type considered at the end of the previous section leads to difficulties inasmuch as it
would take 0(n3) operations to solve (4.14) because it requires the computation and storage of a large
dense matrix of the order 0(r).

Another numerically stable way to solve the linear system (4.14), which exploits the symmetry of the

matrix
H , G'T
(4.15)
r , 0
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would be to use the Bunch-Parlett decomposition of {4,15) {see Bunch, Parlett [4]). However, this
method requires a pivot selection in each basic elimination step, which, though preserving the sym-
metry, will in general destroy the specific block structure of the matrix in (4.15). This method,
therefore, also requires 0(n3) operations to solve (4.14). A cheaper method for solving (4.14) might be a
variant of the conjugate gradient algorithm for solving linear equations

Ax = b

with a symmetric nonsingular, but perhaps indefinite matrix 4, which is described in Paige and
Saunders [9]. This method can take the block structure (4.12), (4.9) of H and G’ into account and
therefore requires only 0{n2) operations and 0{n) storage to solve (4.14).

It is interesting to note in this context that the system (4.14) can be solved with only 0(n) operations,

if the block-diagonal matrix L pp(P, A) {4.10) would be positive definite at the solution (P, A) of (4.7). In
this case, it can be shown that the matrices H*} (4.12) generated by the usual update technigues (PSP-,
DFP-, or BFGS-methods) will be positive definite, at least locally, if the starting values [P0, A, and
H') are sufficiently close to (P, A) and L pPIP, A), respectively.

If H is positive definite, then a numerically stable method of solving (4.14) requiring only 0(n)
operations runs as follows:

In a first step compute the Cholesky decomposition of
= RTR
which requires 0{n) operations and gives an upper triangular R of the form [compare (4.12)]

R, 0
R,

R = . (4.16)

Y Rn+l

(S —d

with 4 x 4 upper triangular R; for i < n and diagonal R, 4 . Premultiplying (4.14) by

RT , 0
-G'R7IRT |
gives the equivalent system

R, (G'RYT 6P| [RTe w1
[0 ~G'RHGRYT| [6A] |d-G'RIRTe '

So the next step is to compute
¢':=RT¢,4:=G'R"!

which again requires only 0(n) operations because of the simple structure of R (4.16) and G’ (4.9).
Note, moreover, that the product matrix 4 = G ‘R~ has a form very similar to (4.9), namely (illustra-
tion for n=2}:
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- R
X XXX 4} X0 Xo ajo
X XXX oxox
XXXXXO0
X XXXXX
xX X xX XoXxo
A = A XXX 0OX0X (4.18)
XXXXXO0
XX XXXX
X XXX X 0o X ofo
0 XX XX 0 o x o xjo
0 X X X X X X X x{x

We next reduce 4 to “lower triangular” form by multiplying 4 from the right by suitable Givens
reflexions 4, Q,, . . . , Qy = 0(n) matrices Q; and only 0(n) operations are needed and the structure of
(4.16) is essentially preserved and fill in will occur at most 0(n) places. Each will annihilate a particular
above diagonal element of 4; the resulting matrix is of the form

A1Q5...9y= (L, 0) (4.19)

where “0” denotes a (4n+ 3} by (2n+6) zero matrix and L is a (4n+3) by (4n+3) lower triangular
matrix with the structure

A 0 }2
L = L
- I\
._T\
ol I L. ] sael !\ }‘I
7 a0

Note that the dense (6r+9) by (6n+9) product matrix Q=2,Q, , . .., 2y need not be computed.
Its storage in product form requires only O(n) places. Concurrently with the elimination process for
finding L, we can compute the vector

¢ =Qn. .. R’
Now it is easy to solve (4.17) for dP and dA. The second equation (4,17) gives by (4.19) at once
AATIA = LLToA = —d + Ac’ = —d + (L,0)c" {4.20)
so that
dA = —L~TL-1d + (L~T,0)c" (4.21)

i.e. dA can be found by solving three linear equations with triangular matrices, The first equation(4.17)
now gives by (4.21)

344



RéP= R T¢-ATgA

L,
= ¢'-Q 1«\ (4.22)
0

-—L‘1d+(I,0)c':]
=c'—-Q 0

Unfortunately enough, the computation of

L-1d—(I,0)c" L-1d—(1,0)c"
c¢''i=Q 0 = 9192,...,91\[ 0

requires the storage of all Q; (this was not needed in computing ¢"). Note that L~!d has already been
obtained during the calculation of dA (4.21). Finally, by (4.22), dP is obtained by solving one more

triangular system of linear equations

RéP=c¢'—¢''"'—>dP , (4.23)

again requiring only 0(n) operations.

At the expense of numerical stability one may get around the elimination process to find L and the

storage of the orthogonal matrices Q; in the following way:
Having computed the Cholesky decomposition of H = RTR, the matrix A = G'R™!, the product
AAT and its Cholesky decomposition 447 = LLT, computing ¢éA and JP from (4.20), (4.22) is

straightforward:

LLTOA = —d +Ac’ — A~ AToA
RSP =’ ~ AToA —~ 4P

(4.24)

Note in this context that the product AAT has a simple sparse structure needing only 0(n) places for
storage:

O

| I—

*

_Jun o [ Y

Both algorithms require only 0(n) operations for solving (4.14} in each Newton step, but the former
will be numerically more stable, as it avoids the calculation of AAT and cancels products such as
LL~1, RR™1, which arise inherently during the solution of {4.24), as often as possible.
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