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Clothoids, i.e. curves Z(s) in RI whoem curvatures xes) are linear fitting functions of arclength ., have
been nued for some time for curve fitting purposes in engineering applications. The first part of the paper
deals with some basic interpolation problems for lothoids and studies the existence and uniqueness of
their solutions.

The second part discusses curve fitting problems for clothoidal spines, i.e. C2-carves, which are com-
posed of finitely many clothoids. An iterative method is described for finding a clothoidal spline Z(aJ pass-
ing through given Points Z1 cR2

. i = 0,1L.. n+ 1, which minimizes the integral frX(S)2 ds.

This algorithm is superlinearly convergent and needs only 0(n) operations per iteration. A similar
algorithm is given for a related problem of smoothing by clothoidal spines.

Key words: Approximation; clothoida; computer-aided design; Comuspirals; curvatuire curve fining
Fresnel-integrals; interpolation; spines

Introduction

The characteristic property of curves known as Cornu-spirals or clothoids is that their curvature x(s)
is a linear function of the arc length, i(s) = Xo + As. Straight lines (Io = 0, A = 0) and circles (A = 0)
may he considered as limiting cases. We are interested in constructing C2 -curves in the plane R 2 which
are composed of finitely many Cornu-spirals; that is, C2-curves whose curvature is a continuous
piecewise linear function of their arc lengths. We will call such curves clothoidal splines. Typical
elementary problems encountered in such an effort are to construct a clothoid joining a given straight
line and a given circle, or joining two circles. Composite curves of this type have been used by
engineers, for instance, for the construction of highway sections, some of which are specified to be
straight lines and circles. A more complex problem is to construct a clothoidal spine Z through a se-
quence of finitely many points (xi, yi) E R2, i = 0, 1, .. , n + I such that the integral

K = x(s)2ds

along the curve is minimal. This problem can be considered as an approximation to the "true" prob-
lem of curve fitting in R 2 , namely that of finding a curve Z(*) minimizing this integral among all
C2-curves passing through the given points. The latter problem has been studied by several authors
(Lee, Forsythe 171,1 Mehlum 181), and its exact solution leads to a multipoint boundary value problem
for elliptic functions (Reinsch [14]). Mehlum [81 also proposed to approximate its solution by solving
the corresponding multipoint boundary value problem for clothoidal spline functions, however the
resulting clothoidal spline does in general not minimize the integral K among all interpolating
clothoidal splnes (see also Pal and Nutbourne [101 for a related use of clothoidal splines in computer
aided geometric design).

There is also the problem of smoothing: for given points (xi, yn, i = 0, 1,. . . , n + 1, the problem is
to find a clothoidal spline Z in such a way that its deviation (in the least squares sense) from the given
points is not greater than a prescribed tolerance and the integral K along Z is minimal (compare
Reinsch 1131 for the related problem for spline functions).

NBS Guest Worker with the Operations Research Division, Centr for Applied Matheaatics, National Engineering Loratory.
1Figures im brackets indicate literature references at the end oi Wm paper.
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Cornu-spirals can be easily computed in terms of Fresnel integrals, though admittedly not as easily
as the cubic polynomials generally used for spline functions. In contrast to the latter, however,
clothoidal splines are represented in terms of the natural parameter of plane curves; namely, the curva-
ture as function of arc length. Furthermore, we hope that they do not exhibit the drawbacks observed
with other schemes for curve fitting which have been observed in practice, namely, a tendency toward
oscillations.

In the first section we list some elementary properties of Cornu-spirals and Fresnel integrals, mainly
taken from Abramowitz and Stegun [1]. The second section deals with simple interpolation problems
for a single Cornu-spriral. Section 3 is devoted to interpolation with clothoidal spirals; section 4 to the
problem of smoothing.

1. Elementary properties of Cornu-spirals

By definition, a Cornu-spiral or clothoid is a curve,

x(sl
Z(s) = ,SER,

y(s)

whose curvature x(s) = xO + As is a linear function of arc length s. If its tangent vector is

Z(s) = ,I
sin +(sJ

then

x(s) = +(s)

so that

+(s) = to + x(T)dT Y 2

(1.1)

cos +(t)
Z(s) = Z0 + sin+(t] dt.

According to the sign of A, Z is called positively or negatively oriented. In the sequel, we restrict
ourselves to the case of A > 0. Similar results will hold for A < 0.

Using the Fresnel integrals,

itt
2

iTt
2 C(zi)c(z) Cos - dt , Sz) sin - dt, F(z) := (.

0 2 o 2 Li
Z(s) can be expressed in closed form by [see [1], formulas (7.4.38), (7.4.39)]

Z(s) =Z0 +yV57l V ( - in02){IF ( co+As ) F( xO )Ji>O(.)
(+ 2A )(Ft 6 ) F( ) if A > O (1.2)

where V (a) is the orthogonal matrix,
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V(a) Cos a -Sm a]
sin a cos a

Note that F(s) also describes a Cornu-spiral with arc length s, curvature x(s) = us and phase angle +(s)
= (n/2)s 2 . The Fresnel integrals have the following properties [see [11, (7.3.17), (7.3.20)1 which we list
without proof:

F(z) = -F(-z)

lim F(z)- -= [ lim F(z) = -- (1.3)
z-+ oo 2 1U Z--X 2L1J

Moreover, F(z) can be expressed in the following way [see [1], (7.3.9), (7.3.10)1:

Flz) =I - V((-!Z2) h(z), (1.4)

where the component functions g(z) and f(z) of

h(z) =gz

satisfy [see [1], (7.3.5), (7.3.6), (7.3.21), (7.3.27)-(7.3.31)J,

(a) h(O) = - I [ i]' (z) = 0

(b) g(z) and f(z) are strictly monotonically decreasing for z E [0, + '

(c) f '(z) = -rzg(z), g'(z) = Rzf(z) -1, for z E R (1.5)

(d) For z > 0 the following estimates hold for g(z) and f(z):3 (- ( <z2)2 ) g(z) < R~~~~z3 7~~~~~~12z3

nz ( (n2i )< <

-3 1 3 35

113 5 < f Tz) nz < n3zS ( (nz2 )2 )

Approximations of f(z), g(z) suitable for the calculation of F(z) are given in [1], (7.3.32), (7.3.33), and
in Boersma [2].

As a simple consequence of (1.Sd) we note the following estimates for the euclidean norms of the vec-
tors h(z) and

hl ): [6(z) ]
319z) = jZ -1/(UZ
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to be used later on:

15
(a) I (=2)2

(b) I - 35__

(c) lim Ai(z)
Z- + W

< Ilh(z)II ( (1I/nz) 

4 11ThZz)l ((1/n2z3

I

V I1+
9

(NZ2)2

= : 1 , Gom C zh(z) = [
=° to -+. rl]

7]

I7

CIforz>0,

S Iforz>0,

By (1.Sa), (1.5b), I lh(z) I decreases strictly monotonically toward 0 for z - + -. The same holds for
NI():

I I(z)1 I decreases strictly monotonically toward 0 as zs + oo. (1.7)

Thefollowing is a consequence of (1.6) and (1.5):

I dI lsh(z)J12= -(^z) - 15<a
2 dz Inz2 nz

for z > 0.

It follows from (1.3), (1.4) that F(z) has the form shown in figure 1.

4

O's

-L

-t

f 17.)

0.s

FIGURE 1. Positively Oriented Cornu-Spiral with Z. = X. = o and
= N

For z > 0 the vector

h(z) = I 1h(z)II [Con o(z)1
kin I~~

>0, o(z) := arctan (fz)/g(z))
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stays in the interior of the first quadrant of R 2

O<a(z)< -2 o(O) = , o(+co)=n/2
2 4

Moreover, the vector

r(sh= Rs)- ~ j- V (!CSZ2)h.~W Ih.Szm [:ICoz]
2 M1 (.2 3h [SinQz

where

Q(z) a(Z) + TX Z2 + n, S z2 + n < Q(Z) < TIz2 + 32 n

rotates counterclockwise for z > 0 as z tends to + -. This follows from (1. 5):

azs) = a(z) + nz = d- arctant(f(z)/g(z))+nz= ) > > for+ its
dz f(sP2+g(z) 2 >fr)

Therefore, the curve F(z) crosses any fixed ray

d, := |1 + [c o s olll
da*i 2 JlO sin j a J

infinitely often at abscissae 0 ' Z1 < Z2 < . . ,for which

hrm zi=+

(Z)2 + 4n-1 ' (Zs+,)2'< (zs)2 + 4n+l , i > 1, n> 1

4n-1 l'Cz)2 ' 4n+1

These estimates easily imply the following bounds

4n-1 / 1 4n-1\ 4n+1 r
1t+1 'Cs>2 < zi+nzi C -(i+ 1

f4n-1 ' zs ' \f4n+ I
which we note for later reference.

Upon inserting (1.4) into (1.2), we get the following representation

Z(S) = Z(O) - f (V(+(s)h ( r--)

(1.8)

4n+1 _1

+ (Z7.)2
i,n > 1

(1.9)

of Z(s) in terms of the vector h:

V(+d)h (- )) (1.10)

where (see (1.1))

x(s): = xO + As,

Note that because of A > 0 and (1.5) (a), (1.3)

+(41s= 4 + XoS + S2
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(a) Z(+ m) = Z(0) +

(b) Z(-) = Z(+ -) -

(c) Z(s) - Z(+ m) = -

V(+O)h ('.IO)
A VIA

it

A V+ 2A /)1J

nA- V(+(s)lh ~.i(s )
A:~ %~W 

The evolute of Z. that is the locus of all centers of curvature M(s) of Z(s) for s £ R, is given by

M~shZ~s) I [ sn Is Z(s) + I (4)M(S)~~ =Y Z(S) = +)+1 +S)o
x(s) Cos +(s X(s)

(1.12)

= Z(0) - V(+rs))T (-) - V(+o)h / X

because fi(z) = h(z) - . Again, the evolute M is a spiral type of curve with the following properties:

(a) M(+ c>) = Z(+ o
(b) M(-o). Z(- °1

(1.13)(c) M(s) - M(+ m) = - V($(s)Th (SicA)

(d) M(s1)#M(s2)fors51S 2

(a) follows directly from (1.7) and (1.11), (b) and (c) follow from (1.11), and (d) from (1.7], since V(+(s)l
is an orthogonal matrix. Furthermore,

if x(0) > 0, A > 0, then for every s > i

1 I
IIM(-i)-M(s)lI < - - -

XRs X(S)

1
IIMS-) - Z(s)ll < -,

that is, for s > sthe osculating circle of Z at s and ZWs) are contained in the interior of the osculating cir-
cle of Z at i

Indeed, according to a well-known result of differential geometry (see, e.g., [15]), the arclengtb a(s)
of the evolute M(s) of any curve Z(s) is given relative to the curvature x(s) of Z(s) by

o(s) = -- X(S)-
ds

so that in our case for s > s
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a(s)-al ) = xi) x (s)

Since M(T), T £ [ss] is not a straight line, we have the additional inequality

I IM(s) -Mi) I I < (s) - Gl) = x(sr'l - xfs)I

which proves the first part of (1.14). The second part follows from the first, as

I I Z(S) - M(s) I I = x(s)-i

2. Interpolation properties of Cornu spirals

In this section we study some simple interpolation problems for Cornu spirals. In stating the results
we make use of oriented circles

Ktar) : +r i I 0 ' 4;+ 2n}
sin4 I )1I 

whose orientation is determined by the sign of the radius r # 0, and of oriented lines

g~lbrl={b+a [, ]|i)R}g=g(b,a) b o aIHotR?
[sin a I

whose orientation is deterined by the direction of the vector (cos a, sin a)T. We say that the orientations
of an oriented line g and of an oriented circle K(a,r) not meeting g are coherent, if K(a,r) lies in the
same halfplane determined by g which contains the point

b + sia
cos aj

Coherent orientation Incoherent orientation
FIGuRE 2

A first simple result refers to the problem of joining a line to a circle by a Cornu spiral.

(2.1) THEOREM:
1. For any given oriented circle K(a,r), r t 0, not meeting a coherently oriented line g(b,a) there ex-

ists exactly one oriented Cornu-spiral Z(s) which joins g to K(a,r) (in this order) such that the resulting
composite curve is a C 2 curve with a coherent orientation.

2. If g meets K or the orientation of g and K are not coherent, then there is no such interpolating
Cornu-spiral.

Of course, a similar result holds for joining an oriented circle K to an oriented line (in this order) by
an oriented Cornu-spiral which we do not state explicitly.
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PROOF: 1. Without loss of generality we may assume that r= I/x >0 and g is the x-axis in R 2 with its
usual orientation. Since K(a,r) is coherently oriented with g, the center a = (xOy0)T of K is such that 3
:=Yor = yOx>l.

Any positively oriented Cornu-spiral touching the x-axis at (0 ,O)T with s = 0 (i.e., +0 = 0, Z0) = 0)
with a curvature x(O) = x0 = 0 has the form (see (1.2)).

A\ u/ x(s)ja s (in~T ) [y )

with some A > 0. In order to solve the problem it suffices to determine s > 0 and A > 0 such that Z has
at s the curvature x and (xo,yo)T as center of curvature (see fig. 3).

x.

FIGURE 3

This leads to the conditions

x(s) = As = x A = x/s

4(S) = s2 = xs/2

cos+(s) = y -ylsl x=Y- x4 S (4 s)

Hence s must satisfy the equation

cos- + S ( = I

or the variable

must solve

cos kp2 + 41VW S (J Mu) =Y

Now the function

pV4p) : Cos t2+P V TrSQ JrJ)

= cos 412 + 24' £ sin t 2dt
0

is strictly monotonically increasing for 4P > 0 because
J

p'(4h) = 2 f sin t2dt > 0 for Mu > 0.
0

Since y- > 1, p(O) = 1 and lim p(T) =+ cc, there exists therefore a unique solution 4'> 0 of (2.2),
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which can be found by Newton's method. In terms of 4', the solution of the problem is

s = 2W2/X , A = x/s

Z(s) =.j F (Ji), x0 = x(s) - sin T2

The proof of (2) is straightforward.

We now turn to the problem of joining two oriented circles,

Ki (ai, I/xi), i = 1,2,,

by an oriented Cornu spiral.

We first show an auxiliary result for the family of Cornu spirals Z1 (s), A>O with

xo=O0, +0=0, ZA(O)=0

x(s) = As, +(s) =_s2

given by [see (1.10), (1.5a)]

ZA (S) =- (V (A ) h (S [) 1[ )
For their center of curvature MA (s) taken at arclength s: = x/A for which x(s) = Y, the following
holds:

MA (X/A) = .A 22
so that because of (1.6} (c), (1.11) and (1.13)

(a) lim MA (ix/A) - F Fi ]° = 0 if x>0
AO ALO.5

(b) im. MA tx /A) ++: [02= 0 if x<0 (2.3)

(c) lim MA (i/A) =
AX-+ Eh M1/

As an easy consequence, we get

(2.4) THEoREM: Let Ki (ai, l/xi), i = 1,2 be two oriented circles.
1. If Ki and K2 are coherently oriented, i.e. if xi X2 > 0, then there exists an oriented Cornu spiral

joining K1 to K 2 (in this order) and having both K1 and K 2 as osculating circle if and only if their
centers a1are different and one of the circles contains the other in its interior.
2. If xi 2 <0, then there exists an oriented Cornu spiral joining Kl and K2 (in this order) and hav-

ing both K1 and K 2 as osculating circles if and only if neither circle contains the other, i.e. I/ai -a21I >
K 1 1-7+ I1K2 11-7 .

PROOF: (1) Assume x2 > xl > 0 without loss of generality and let K1 contain K 2 in its interior; that is,

0< ll al-82 ll <1/xl-l/x 2 (2.5)
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Then by (2.3) (a), (c)

lim 11 MATxA/A)-M(M21XA) 11 =
A. 40

lim 11 MA(xI/A)-MAX(2/A) 11 =1/xl-l/x2
A-+Q

Since MA (XWA) depends continuously on A > 0, there is a A' > 0 such that

II MA' (XI/A')-AMA.(X 2/A') II = II a,-a 2 11

that is the Cornu spiral ZA, has two osculating circles of radii 1/xl and 1/x2 respectively, whose
centers MA' (xi/A'), i = 1,2 have the desired distance. This proves the "if" part of (1). To prove the
"only if" part, note that by (1.13)(d), the centers of curvature of any Cornu spiral are different for dif-
ferent arclengths, so that a, t a 2 is a necessary condition for the existence of a Cornu spiral joining two
different circles KI, K 2 . The rest follows from (1.14).

(2.) Assmne xl > 0 > x2 and II al - a2 11 > I/1 - 1/x 2. Then, because of (2.3)

lim 11 MA(X1/A)-MAGx 2 /A) 1 = 1/xl-l/x2

lim 11 MA(xl/A)-MAX( 2/A) 11= + of
to

Hence by a continuity argument there exists A' > 0 such that

11 MA' (XI/A')-MA'(x 2 /A') 11 = 11 al-a2 11

which proves the "if" part of (2). The "only if" part is trivial. We next turn to the following problems:

(2.6) PROBLEM: For a given oriented circle K and two points P0 6 K and PI 6 K find an oriented
Cornu-spiral connecting PO to P1 (in this order) which has K as osculating circle at PO (see figs. 4 (A),
(B)).

(2.6) is equivalent to the problem of connecting a point PI £ K to a point Po 6 K (in this order) on an
oriented circle K by an oriented Cornu spiral which has K as osculating circle at Po. Using suitable
reflections and changes of orientation [compare fig. 4 (B), (C)], (2.6) is seen to be equivalent to the
following, which involves only positive orientations:

PA P,

(A) (BMC
FIGURE 4
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(2.6') PROBLEM: For a given positively oriented circle K = K(MO, 1/x), x> 0, and two points Po £
K and PI £ K find a positively oriented Cornu-spiral with K as osculating circle at PO, which leads
from Po to PI, if PI is inside, K and leads from P1 to PO if Pi, if PI is outside K.

Clearly, (2.6') depends only on x and the relative positions of PO and PI so that we may assume
without loss of generality

Po = [/$X]' =

4K

E sin a r > 0
[C a]sa]

p

0

FIGURE 5

By (i1. 10) the class of positively oriented Cornu spirals Z with

Z(0) =PO=[-/x]. (O)= , (0) = 0

is given by

CQs) = ii 1] + ( ) V(+Ps))h(xz (s) /Vi ) y

=Jjsh Ax(ic/XA) - V%(eAs))-h(xki(s)t/A))

where

xA(s) := x + As , +A(s) := xs + (A/2)s2.

Essentially, we will show [Theorem (2.25)1 that for r 7 l/x, i.e. PI 6 K, there are countably many
numbers Al > 12 > ... > 0 and arclengths s9, i i 1, such that fk (si) = Pi for all i > 1. To prove this,
we need some auxiliary results. From (1.5) (a) and (1.14) follow

Cj(+ o) = Jh (x/'&) , 11 C, + 11 11 <l/x . (2.8)

We show next:

(2.9) For any fixed bounded interval I [s9, s92 such that for all A > 0 and all s 6 1, x(s) = x + As > 0
there holds

limsup II CA (s) 1 1/X . (2.9)
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PROOF. It follows from (2.7):

CA(s) JT (K (x/ YA)-V(OA(S)) A - V(#A(s) [1i/Xi(S]

By (1.6)(c), the first two terms tend to O uniformly in s 6 Ias A I 0. Hence,

limsup IICA(s)II = limsup 1/XA(s) = /x ,QED.
AO Sil A4O sa

With the abbreviations

hx :=J=z h (zVA) , hkjs) :=4 hlxA(s)nTA)

rA := 11 hA 11 rA(s) :- 11 hA(s) 11

we have from (2.7)

CA(S) = h-V(+A(s))hA(s)

and from (1.6), (2.8), the estimates

i4 3512" 2__3

r_ /1+ 7A2 C AiX 3x3 (1 x4- < /X4 <A/3

(1> (1- 1512 < rA(s) /41+ X
XA(S) \ XA(S)4 ! xA(s)4

for all s with xA(s) = x+As > 0.

Two cases are possible with respect to the location of the target point

Pi = r I 1
' O]

NA < l/x

1

xk(S)

(2.10)

(2.11)

which will be treated somewhat differently.

Case (1): 0 < r < /x , P1 lies in the interior of K
Case (2): r > 1 /x , PI lies outside of K.

In Case (1) there is a sufficiently smallX > 0 such that

CA(+ o) =hA#PjforallO<1< A (2.12)

Note this is exactly true if r = 0, P1 = 0, for then by (2.8),

CA(+ cc= hAO0 forallk>0 

If r> 0, a suitable A > 0 can be found because of (2.1 1). With A > 0 satisfying (2.12), consider the rays

dA: {hA+ a(PI-hAW) oI 0} , 0<ACA

extending from hA towards PI (see fig. 6).
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Cs (s, ))

FIGURE 6

Because of (2.10) and using the same reasoning as with (1.8), every Cornu spiral CA(s), 0 < A A
cuts dA infinitely often at abscissae 0 S sI(A) <s 2 (A) < . . ., which satisfy estimates of the form [cf.
(1.8)].

+A(sl(A)) + 3n/2 4 *A(s,+1 (Al)

1 -- 1 (2.14)
2(n-1)n C 2(n - n C t+sn(A)) C 2(n + - )r C 2(n+ I)u.

for n > 1 , so that

s.+A(A) - sn(A) > 3n +1

X+ASn(k) \
+ 1+ 3n'

[x+Asn(A)12 (2.15)

sm = 4mrn (i1 + 1+ 4mnA
VTx2

)

is the solution of the quadratic equation,

hA(s)=-Xs + A 2 = 2mn

As a consequence,

lim~s5 (A)fin -co = +o-limC;-(sR(! )) = h A

and therefore there exists an N such that for all n > N (see fig. 6),

CAPS,$kI) s [iAi, P,]:= (hAy+ o (P-hx) I 6 a < 1 },

that is, CA intersects dA between hVX and P, at the abscissae s,(K), n < N. Consider any fixed n C N.
By (2.14), sn(A) is bounded

mn(s<(A)"MI forallO<ACA (2.16)
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by some positive constants mn, Mn. Hence by (2.15), also the differences

s.+i(A) -sn(A) > mnf> Ofr all 0 <A, bA (2.17)

are bounded below by a positive Tn., > 0. Moreover, for each n Ž> N, sn(A) is a continuous function of A,
hence also CA(sn(A)), for 0 < A 6 A. Since sn(A) is bounded above (2.16), (2.9) gives for every fixed n

Mim II C1 (sn(A)) II = l/x
140

that is, the points PA,. := C(sn(A)) 6 d1 tend to the boundary of the circle K as A tends to 0. Therefore,
by the continuity of Pa,, and because of

>£[b.P

there is a A5, 0 < An 4 A such that PA., n = PI-
Because of (2.17),

11 CAn1 (s+ 1 (A))-hK1 11 = rinIsn+i(An)I < rxnfs-An)] = 11 Pl-hAn 11

so that

Pl$ CAn (sn+{An)) 6 [hA',Pil

and therefore An+ I <An5

This proves that in case (1) there are indeed countably many positively oriented different Cornu-
spirals CA , n > 1, and abscissae sn namely

sn := sn (An),

having K as osculating circle at s = 0 and passing through P1 ,

CAn (sA) = P , for all n >' 1.

In case (2), r > I /x, a similar reasoning applies: Here we consider the Cornu-spiral CA (S) for 0 > s >
-x/A, that is for all s 6 0 for which

xA(s) = x + As > 0

is still positive. We will show that:

(2.18) To every integer n a 1 there exists a A > 0 and an integer N > 1 such that for every 0 < A 6 A
the Cornu-spiral C1(s) , 0 s > - x/A, cuts d1 at abscissae 0 a s-l (A) > s-2(A). .. >
s-NJn(A) such that

(a) sN(A)>-x/A>-x/A

(b) s-_(A)-s-..(A) >mj>O for i=1,2,. .. ,N+n-l, 0<11, (2.19)

(c) rX [9-N-I (A)]> r+- 
x

(c) means that for A = A, CA (s) has at least n cutting points, namely
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Cl Is-N-i Ill 6 £kA + o (Pr-hllt a > 1}, i = 1, 2,...,n

with dr which lie beyond P1 .

Once (2.18) is proved, then as in case (1), a simple limiting argument DO gives the existence of n

values A,, A > Al > A2 > ... .> A > O such that

CA. (S-N-i (A,) I

since for A4O by (2.9) each CA, (s-N-i(A)), i > 1, tends to the circle K and so, by the continuity of s-N-i 0)
has to pass the point PI for a certain parameter value Ai.

Since by (2.18) n is arbitrary, this gives the existence of countably many Cornu-spirals satisfying the
interpolation requirement.

For the proof of (2.18) let y be defined by y/x := r + l/x, so that y > 2. Let n > 1 be an arbitrary
positive integer. Choose any numbers a and ,3 such that

0 < ar < I, I-a 4 1/(2y)
(2.20)

ap3<I , /3>1.

Choose a natural number N so large that

N+ n + 1Cj3N
(2.21)

aw
2 < 1

a2~~~
H~2(1-at)2 2

and set

aX 2

A N:=

Consider the solution -m , N , m 6 PAN of the quadratic equation

C (s) Xs +As2= -2mn

given by

S-m = -( +\ T- -mn (mn

Since by (2.20)

O< a 4mnA =ik af<1

every such s7m is real. Moreover,

lS-N =-ax/(l + I-a) =-xr (1- 1-a)

A S -PN = -X (1I- 1-fa)
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so that by (2.20)

rA(L-N) = r + )JLN X V'Tha> Xj(L-pN) = X VrFh73a > 0 (2.23)

Since by (2.21)

1512

x`) (5-N)4

1Sa 2

1 6N2n 2 (1-a) 2

1

2

we get from (2.11) and (2.20) the estimate

I0.5 0.5 y

-> X( S--N) XV I; x
=

(2.24)

Since by (2.21)

*I(s--pN) =-2PNn<-2(N+n+l)n

Ci(sl cuts dx at least N+n times within the interval [s-pN, O] at abscissae

satisfying the estimates

-2(i-lr a *1(9-i/)) > -2(i+ 1hz for i = 1, 2,.. ., N + n

so that

In particular, we have 0 > ?LN > s-N-AW, so that because of (2.24) and the monotonicity of ri(s),
we get (2.19)(c). (2.19)(a) follows from s-N-(A) > S-N-n-I, (2.21) implying T-N-n-l > s-pN and
(2.23). (2.19) lb) is proved as in case (1). All in all, we have shown the following:

(2.25) THEOREM: For all oriented circles K and two points Po 6 K and PI 6 K there are countably
many different Cornu-spirals connecting Po to PI (in this order) and all have K as osculating circle at
Po.

3. Interpolation by Clothoidal Splines

A clothoidal spline is a C2 -curve in R2 whose curvature x(s) is a continuous piecewise linear function
of arclength s. More precisely, such a curve Z(s) is given by a finite collection of parameters

0=50<SI<... <9n+1

(Z;, +;, xi, Ai), Zi E R2 , i = 0, .... , n

such that for each i = 0, 1.. , n , Z'(s):= Z(s)Isi, si+I] is a Cornu-spiral with curvature xi(s) and
phase $i(s) given by
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xO(s) : xi + Ai(s-si)

: i + xics-s;) + 24s-s.)2
2 ~~~~~~~~~~~(3.1)

Z(s) Zi + I Ic (+i(t)) dt
Si Lsinm

so that Z(s) is a c2 -curve; that is, the Zi(.), +i(.) , xi(.) satisfy the following continuity conditions for anll
i = 0, 1. n-i:

Z (Si+ - Zi+ I = Zi + X [ si] (+i(si+T)) dT -Zi+l = 0

+ {Si+ I) +i+1 = i+ X i+ Xi Ti + 2Ti- = 0 (3.2)

Xi(si+I) - xi+ I Xi + rTi Xi+i = 0

with Ti :=si+ - si. Of course, the parameters si are determined by the Tij Si+I = To + Tr + + Ti

so that instead of the si, we may take the Ti > 0 as parameters. Note that we do not require A1 i 0, so
that Z(s) may contain linear or circular segments.

In this section we study the interpolation problem of finding a clothoidal spline passing through a
finite number of given points. In this form, the problem is not very meaningful, since by Theorem
(2.25) it has arbitrarily many different solutions. More interesting is the problem of finding an inter-
polating clothoidal spline with minimal f x(s)2ds, in analogy to cubic spline interpolation.

(3.3) PROBLEM: For a given family (Zi;)=o I n+ I of different points Z; 6 R2 fnd parameters PX
= (+, x;, A;, Ti), i = 0, 1,...,n with T; > O such that these parameters together with the Z; determine a
clothoidaispline Z(s) by(3.1)satisfying(3.2)and Z(s5 +i) = Zn+1so that

9n+1 n 9i+1
5 x(s)2ds = I J x1(s)2ds
0 i=O si

is minimal.

With the notation

ar:= (+, xi), b := (, Ti)

PT:=(pp .(x 1 ,xTpT),i=,1, A... n (3.4)

the objective function to be minimized is the function

n Ti
F(P):= 3' | (Xi + Ar)2dT

i=O 0

which is separable in variables Pi.

The transpose F' (P9 of its gradient and its Hessian F (Pt are
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F' (P) =(a, vO, v 1, vj,... a n , va)

Fo
F1

F'(P) =

0

01

F.

(3.5)

with the R 2 row vectors

[0:=f, 2x,,r 1 + Ag]

(3.6)

Vi := [rf(xi + 2 Ati)(Ki + AjTi)2 ]

and the 4 x 4 square matrices

0, 0

0 T.;

0 , 2Ti

0 , xi + kTi

2Ti

Tj3

(xi + AjTr)Tr

(Xi + k'Ti)Ti

(xi + AkTr)Ai

Also, the conditions (3.2) to be satisfied by P are highly structured. They have a staircase-like form

G(P) = G(aO, bo ...... a5 , b,) =

.- S2

* a,* JlI,,,b,)+Z.-Z,+,
334

0 0

(3.7)

J(ao, bo)+Zo-Z
K.hb9) , --I

. JIlu.b,)+Z,-Zz.
, KI., bl)

0

0

0

0

.
,



where

J(a, b) := sinj (+ + XT +-2 T2)dT, a : = x, b := t

(3.9)

K(a, b):= [ ++ XT+- T2

x + AT j

Note that the integral in RJa,b) is easily computed in terms of Fresnel integrals (see 1.2) for Ai # 0 and
elementary integration rules for A, = 0. The Jacobian G' of G has a similar structure

G '(P) . = G '(aO, bo, * * *, an, bn) =

AO, Bo,

Co , Do,
0

-I
Al, B1

Cl, DI, -I

An- 1 , Bn-1

Cn*1, Dn-1, ,-
An, Bn,0

(3.10)

with partial derivative 2 x 2 matrices

Ai := D(A7),J(+.XrJ)Ip

Bi := D(A,,/(+,XA,T)lpi

(3.11)

, Di := [4/2
_Ti

Xi + Air]

In terms of the notation just introduced, (3.3) is equivalent to the minimization problem,

Minimize F(P) subject to G(P) = 0

Let

L(P, A) := F(P) + ATG(P)
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be the Lagrangean of (3.12) and suppose that (3.12) satisfies the usual first order necessary and second
order sufficient conditions at the optimal point P (which we assume to exist):

1. The Jacobian G' (P) of G at P has full row rank and there exists a A such that (P, A) is a sta-
tionary point of L:

+(P,A) = O, with +(P, A) := [PL(P;A)M =L'P, A)T (3.13)

2. For the Hessian Lpp (P, A) of L with respect to P

PTLpp(P,A)P > 0

holds for all P t 0 satisfying G' (P)P = 0.

Then P and A can be found as the solution of the nonlinear equations (3.13). The Jacobian +' of + is
a highly structured matrix of the form

1A [L (PA) )] (3.14)

where G' is given by (3.10). It is seen from (3.5), (3.10) that LPP has the same block-structure as Fi
(3.5). In solving (3.13), Newton's method can be applied to generate iterates W(k), Afk)), k = 0,
1,... by solving at each iterate (p (k), A(k)) the linear equations

*' (JJPk), AW) 6P = -+(p'k),AIk)) (3.15)

F6 p(k)]
For the Newton direction I 6 )] with+' given by (3.14).

Since computing the Hessian L (Pk), A.k)) may be too costly, we may replace Lpp within +' by a
sufficiently close approximation IA' as it is done in the minimization algorithms of Han [4, 51 and
Powell [11, 12]. One may choose as H(k), e.g. a matrix of the same block structure as Lpp, namely
(compare 3.5)

0
Hok) 

H0'k)= (3.16)

0 Hlkp

with 4 x 4 blocks HWk , i = 0.1, . . ., n. One then solves (3.15) with Lpp replaced by H(k), namely

rHkl G2 bk(pl k))JT t = -+(p k), Ak)) (3.17)1G (p kW) , I JIC( I _
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and computes a new iterate of the form

k+1)1 = tpk)] gp 1

L~k+1 j k1 + & LdAOkk j

by choosing a step size Ok, 0 < k 6; 1, for example as in Han [5], by minimizing a certain penalty func-
tion along the ray

f Ak) ]kA() a | 0
(F a FP FI '

After having computed the new iterate (p(k+1) , A0"+1)), one may use a rank-2 update formula, say
the PSB-update formula, on each 4 x 4 block H4 ) in order to generate another matrix Hlfk+ l) for each i
= 0, 1, . . . , n, and thereby H0'+l), having the same structure (3.16) as HIk) and satisfying the usual
Quasi-Newton equation:

Hfk+ 1)(pfk+ 1) - ph()) = V PIJ~p(k+ 1), A(k+1)) V P.L(p(k),A(+ 1))

(3.18)

When solving (3.17), the structure of H~k) (3.16) and G '(Pk) (3.10) can be exploited to reduce the
number of operations drastically. For ease of notation, let us drop the superscripts and arguments mn
(3.17) and write briefly

[d]

for the right hand side -+(Ptk), Alk)) of (3.17). The problem then is to solve an equation of the form

d[i [1 (3.19)

lG ' , J LdAJ Ldi

where Hand G' have the block structure (3.16) and (3.10), respectively.
We first reduce G' by a series of Givens reflexions Q. SO Qj, Qj2 1, to a lower triangular

matrix of the form [compare its structure with (3.10)]:

G '-I-S2 .... QN = (L, 0)

0 10

X I | 4n+2t >s I tJ (3.20)

0 w
2

where all blocks indicated have size 2 x 2 and L is a (4n + 2) x (4n + 2)-lower triangular band matrix.
Again, because of the band-structure of (3.10), the number N = O(n) of Givens reflexions needed is
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linear in n, so that the unitary matrix

Q:= SQQ 21- . ..... QN (3.21)

need not be computed explicitly, but can be stored in product form. Partition the matrix

Q = (Q. Q)

where

Q= [Z]o = Ql2 QN[. 2]
are the last two columns of Q, which are computed using the product form of (3.21), Q is not needed
explicitly. Introduce new variables

[t2]

via dP = Qt = Qtl + Qt2-

Then because of

G'Q = L, G'Q = 0

the second set of equations (3.19)

G'dP = Lt, = d - tj

can be solved for t in O(n) steps using the structure of L (3.20), and the vector

P := Qtl = Q1Q 2 ... QN [°]
is computed using (3.21).

Now we turn to the first set of equations (3.19)

H6P + G'TdA = c (3.22)

Multiplying these equations by 9T and introducing t1 and t 2 instead of 6P, we get because of
2TG' T = 0

QT Hgtl + QTH t2 =TC

or

(QTHQ22 = Tc - QTHP' - t2 (3.23)
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Again, the 2 x 2 matrix QT HQ and the vectors QTHP1 can be computed with 0(n) operations using the
block structure of H (3.16). t2 is obtained by solving the two linear equations (3.23) and rP is
calculated by

P2 :=&=2t2, dP =P1l+2 p

Finally, we multiply (3.22) by KjT in order to get dA. Observing 13.20) we obtain a triangular system of
linear equations

LTtdA = QTc - QTH6P

the right hand side of which can be easily computed with 0(n) operations using the structure of H and
the product form of 0-T:

FI 000]

QT = . QNQNI ... .Ql

I 100

All in all, we can compute the solution of (3.19) with 0(n) arithmetic operations, so that the Han-
Powell method is quite effective in our case. The method has been realized and successively tested by
Huckle [61. With respect to a convergence analysis of the above method (the method converges locally
superlinearly under some mild assumptions) we refer to the literature Han [4,51, Powell [12], Tapia
[161.

4. Smoothing by Clothoidal Splines

We consider the following generalization of (3.3) (compare Reinsch [131):

PROBLEM: For a given familyZ..j=Oj, , n+ I of dirent points

Z; [y;] R2

and numbers S > 0, Ax;> 0, Ayj >0, i = 0,1, . . . , n+1,find parameters

...... AZ4ji=O,1..., n+I, 4 Zi E ,R

which determine a clothoidal spline Z(s) via (3.1) satisfying the conditions

a) (3.2) and Z(sn+i) =Z+
(4.2)

/ ~ ~2 2\

b) n-I X + Z2= S
i=0 A; / \ AYi

(z is a slack variable) such that en Al(s)2ds is minimal.
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0

Lpp(P,A) = (4.10)

where the Li, i < n, are symmetric 4 by 4 matrices and Ln+l is the (2 n5) by (2n+5) diagonal
matrix.

Ln+1:=k A *diag(Axo,Ayo , . . ., Ax,+., 1)-2 , (4.11)

where A. is the last component of A.

As in the previous section, one has to solve (4.8) by Newton's method (compare (3.15) - (3.17)
where at each iteration point [ptk), A(k)] the Hessian Lpp is approximated by a positive definite matrix
H(k) having the same structure as Lpp (4.10),

HO(k) 0

H1 (k)

HMk)= (4.12)

Hn~h

0 H+ I(k)

with certain 4 by 4 matrices Hi(k) for i < n and the diagonal matrix (see 4.11)

Hn+](k)= A=(k) diag(Axo,Ayo, . . . , Axn+1,Ayn+,l1)2 . (4.13)

After having computed p4k+l), Afk+l) (see previous section) H(k+l) is obtained from Hk) by updating
each Hi4k), i 4 n, individually by some update method (e.g., the PSB-method) which guarantees the
same quasi-Newton relation (3.18) as in section 4; H(n+l)(k+ 1) is computed by (4.13).

Of course, for large numbers n the efficiency of the algorithm outlined crucially depends on the
number of operations needed to perform one Newton step [Ptk), Ak)] . [Pk+l), A(k+l)], that is to solve
a linear system of equations [see (3.17), (3.19)] of the form

Hi sG'I [,,,IPI= [cI (4.14)

LG' ° J L6A d j

for 6P, 6A, where H and G' are given matrices with the structure (4.12) and (4.9), respectively. An
algorithm of the type considered at the end of the previous section leads to difficulties inasmuch as it
would take O(n3 ) operations to solve (4.14) because it requires the computation and storage of a large
dense matrix of the order O(n).

Another numerically stable way to solve the linear system (4.14), which exploits the symmetry of the

matrix

II 1 (4.15)
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would be to use the Bunch-Parlett decomposition of (4.15) (see Bunch, Parlett [41). However, this
method requires a pivot selection in each basic elimination step, which, though preserving the sym-
metry, will in general destroy the specific block structure of the matrix in (4.15). This method,
therefore, also requires (N3 ) operations to solve (4.14). A cheaper method for solving (4.14) might be a
variant of the conjugate gradient algorithm for solving linear equations

Ax = b

with a symmetric nonsingular, but perhaps indefinite matrix A, which is described in Paige and
Saunders [91. This method can take the block structure (4.12), (4.9) of H and G' into account and
therefore requires only 0(n 2) operations and 0(n) storage to solve (4.14).

It is interesting to note in this context that the system (4.14) can be solved with only 0(n) operations,
if the block-diagonal matrix Lpp(P, A) (4.10) would be positive definite at the solution (P, A) of (4.7). In
this case, it can be shown that the matrices H(k) (4.12) generated by the usual update techniques (PSP-,
DFP-, or BFGS-methods) will be positive definite, at least locally, if the starting values [P4O), AM0 ), and
110] are sufficiently close to (P, A) and Lpp(P, A), respectively.

If H is positive definite, then a numerically stable method of solving (4.14) requiring only 0(n)
operations runs as follows:

In a first step compute the Cholesky decomposition of

H = RTR

which requires 0(n) operations and gives an upper triangular R of the form [compare (4.12)]

Ro 
R,

R = . (4.16)

Rn

O_ R I_

with 4 x 4 upper triangular Ri for i 6 n and diagonal Rw+i. Premultiplying (4.14) by

rRT o0

L-G 'R-11?-T ,1

gives the equivalent system

R , (G'R-l)T rP RTc 1
0 ,-(G'R-1)(G'R-l)TJ L6A Ldo-G'R1R-Tcl (4.17)

So the next step is to compute

c' := R-Tc,A := G'R-1

which again requires only O(n) operations because of the simple structure of R (4.16) and G' (4.9).
Note, moreover, that the product matrix A = G 'R- 1 has a form very similar to (4.9), namely (illustra-
tion for n 2):
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xxxx 0 xoxo 0 0
x xx 0 x 0 x
x xx x x K
x x X x x X

x x x 0 1 0
A - x x x o x o x (4.18)

x x x x x 0
x x x x x x

x x x x x 0 x
0 x X x x 0 ox o x o

0 x x x xxx xx

We next reduce A to "lower triangular" form by multiplying A from the right by suitable Givens
reflexions Q1, Q2, . . ., QN = O(n) matrices Qi and only O(n) operations are needed and the structure of
(4.16) is essentially preserved and fill in will occur at most O(n) places. Each will annihilate a particular
above diagonal element of A; the resulting matrix is of the form

AQ1 222 . .. QN = (L, 0) (4.19)

where "O" denotes a (4n+3) by (2n+6) zero matrix and L is a (4n+3) by (4n+3) lower triangular
matrix with the structure

0 I1

21

Note that the dense (6n+9) by (6n+9) product matrix Q=QIQ2 ... ., QpN need not be computed.
Its storage in product form requires only O(n) places. Concurrently with the elimination process for
finding L, we can compute the vector

C':= QN. *2. 21C

Now it is easy to solve (4.17) for dP and dA. The second equation (4.17) gives by (4.19) at once

AATdA = LLT6A = -d + Ac' = -d + (L,O)c" (4.20)

so that

dA = -L-TL-ld + (L-T,O)cx (4.21)

i.e. dA can be found by solving three linear equations with triangular matrices. The first equation(4.1 7)
now gives by (4.21)
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RdP= R-Tc-AT6A

-L-ld+IO)c]
= co o-Q

Unfortunately enough, the computation of

c. :=QI

(4.22)

FL-Id-(LO)c]

L O 
= Q192 !N

[id-(IO)c
L 1 

requires the storage of all Qj (this was not needed in computing c"). Note that L-Id has already been
obtained during the calculation of rA (4.21). Finally, by (4.22), rP is obtained by solving one more
triangular system of linear equations

R6P=c'-c'''-6P, (4.23)

again requiring only O(n) operations.

At the expense of numerical stability one may get around the elimination process to find L and the
storage of the orthogonal matrices S2 in the following way:

Having computed the Cholesky decomposition of H = RTR, the matrix A = G 'R- 1, the product
AAT and its Cholesky decomposition AAT = LLT, computing dA and rP from (4.20), (4.22) is
straightforward:

LLT6A = -d +Ac ' AAT6A

RiP =c'-ATdA - dP 14.24)

Note in this context that the product AAT has a simple sparse structure
storage:

~z4 7

needing only O(n) places for

4 }

2

Both algorithms require only O(n) operations for solving (4.14) in each Newton step, but the former
will be numerically more stable, as it avoids the calculation of AAT and cancels products such as
LL- 1 , RR- 1 , which arise inherently during the solution of (4.24), as often as possible.
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