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Model equations describing large scale buoyant convection in an enclosure are formulated with the vorticity
and stream function as dependent variables. The mathematical model, based on earlier work of the authors, is
unique in two respects. First, it neglects viscous and thermal conductivity effects. Second the fluid is taken to
be thermally expandable: large density variations are allowed while acoustic waves are filtered out. A volumetric
heat source of specified spatial and temporal variation drives the flow in a two-dimensional rectangular enclosure.
An algorithm for solution of the equations in this voticity, stream-function formulation is presented. Results of
computations using this algorithm are presented. Comparison of these results with those obtained earlier by the
authors using a finite difference code to integrate the primitive equations show excelent agreement. A method
for periodically smoothing the computational results during a calculation, using Lanczos smoothing, is also
presented. Computations with smoothing at different time intervals are presented and discussed.
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1. Introduction

Over the past few years, the National Bureau of Standards has sponsored a joint research project between
the Center for Fire Research and the Center for Applied Mathematics to develop, starting from basic con-
servation laws, a mathematical model of fire development within a room. Large scale convection is an essential
component of such a model because this fluid motion governs the smoke and hot gas transport within a room
and also supplies fresh oxygen to the fuel to sustain combustion. Therefore, development of a mathematical
model of buoyant convection was begun as a first step toward a more complete room-fire model, which would
include effects of combustion chemistry, radiation, and smoke dynamics. The mathematical model for con-
vection, the partial differential equations, and boundary conditions, are derived in reference [11.1

As noted in earlier papers [1,2] the mathematical model is unique in two respects. First, it is assumed
that viscous and thermal conductivity effects are negligible. Second, the fluid has been taken to be thermally
expandable so that large temperature and density variations can be taken into account, while acoustic waves
have been filtered out to reduce computational time.

The model equations were integrated for density, pressure, and velocity components by finite difference
techniques; the algorithm is presented in detail in reference [2]. The algorithm has been verified by comparison
with solutions to the equations in special cases obtained by analytical and independent numerical means;
the verification is described in references [3] and [4] and in the present study.

In section 2 the model equations are recast into a form such that the dependent variables are density,
pressure, vorticity, velocity potential, and stream function. This formulation, the so-called vorticity, stream-
function formulation, is an alternate one to that described in reference [2], which we call a primitive-variables
formulation. An algorithm for integration of the equations in a vorticity, stream-function formulation is also
presented in this section.
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Results from the two algorithms are compared: the results are in such good agreement that the difference

cannot be seen on plots of the dependent variables. This comparison represents a final check on the validity

of the integration algorithms and their computer code implementations. Therefore, we believe that the solutions

obtained by these computations are excellent approximate solutions to the model partial differential equations

presented in reference [1].
The model has been developed for two-dimensional, time-dependent fires evolving in a room (rectangular

enclosure). The fire has been modeled as a volumetric heat source of specified spatial extent and temporal

behavior. In section 3 density or temperature (which are inversely related at any specified time in this model),

vorticity, pressure, and velocity potential plots at fixed times during the heating are shown for a sample

computation.
It is well known that, because of the quadratic nonlinearity in convection, initially smooth flow fields

become increasingly more furrowed as time progresses; i.e., energy cascades from lower wavenumber modes

to higher ones. The computational results display this behavior, and the flow field becomes more intricate

with increasing time, the resolution of the grid providing the only limitation to the resolvable detail. However,

such an accumulation of energy at a wavenumber inversely proportional to the grid size is both unphysical,

and, if the computation is carried out long enough, disastrous. Local gradients of the dependent variables

become much too large and the computation ultimately fails. Therefore, also shown in section 3 of this paper

are preliminary considerations of smoothing or filtering of the computational results. Such smoothing acts

analogously to viscosity and can be used to prolong the lifetime of the computation. A brief discussion of the

effects of a particular type (Lanezos) of smoothing is presented, and results obtained using this smoothing

are shown.

2. Formulation

2.1. Continuous equations

In an earlier paper [1], the authors had derived a set of nonlinear equations describing very nonadiabatic

buoyant flows of a nondissipative perfect gas. The magnitude and the spatial variation of the heat source

(representing the exothermic reaction in a fire) were taken as known. The fluid and the fire source were

assumed confined in a closed rectangular room with the center of the source along the floor. In contrast to

reference [1], in this paper we consider only a completely enclosed room (no leaks), and when difference

equations are introduced, we confine attention to the two dimensional evolution of the flow.

In this section, the equations derived in reference [1] for a two-dimensional configuration are rewritten so

that vorticity and the stream function are primary variables, and the finite difference methods used to solve

the revised equations are presented.
Equations (11) of reference [1] are

op a
- + a (Pui) = 0
at ax;

/ (aui + 'j au,\+ a(p-p.(t))
PxJ + :' pkjg = 0 (1)

PCP (aT + u a-) - dp = Q(Xit)

po(t) = pRT

Here p is density, u, the velocity in the i'h coordinate direction (i = 1, 2, 3), p is the pressure excess above

the mean pressure p0 (t) in the room, T the temperature, C, the constant-pressure specific heat, R the gas

constant, kig is the gravitational acceleration, and Q(x,,t) the specified volumetric heat source. The spatially

uniform mean pressure p0 (t) depends only upon time and increases because of the heating within the room.

It is determined in a completely enclosed room by the equation
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dp _ J Q(xat)dV (2)

where y is the ratio of specific heats, V is the volume of the room and the integration is performed over this
entire volume.

We take the substantial derivative of the equation of state and use this with the energy equation to eliminate
the temperature. The resulting equation describes the evolution of the density under heating

ap + uj ap p au= pD(xj,t) (3)
at ax; ax0

where

D(xt) = I() [(Y- l)Q(Xt) - dp° (4)

Equation (3) and the continuity equation identify D(x1,t) as the divergence

au, = D(xj,t) . (5)
Oxj

Finally, as in reference [1], the equation for the spatially variable portion of the pressure is obtained by
dividing the momentum equations by density and taking the divergence of these equations. The resulting
equation is

i% tpaxt) - - [ GPaa + atj 2 (6)

The boundary conditions on these equations are that velocity normal to any (impermeable) wall vanish.

uini = 0 (7)

where aj are the normal components of a vector describing the boundary wall. From eqs (1) and these
conditions, the appropriate boundary conditions on the pressure equation are obtained

nO- = pg n ki (8)

In two dimensions (no dependence on z), these equations become

ap + a-p + v-ap = D(xyt)
at Ox ay

- + 1/2 a (U2 +v 2) - I= _ ap
at ax p ax (9)

a- + 1/2 a (U2 +v 2) + aUW = _ 1 _ g
at ay p ay

a /ldp\ 8 /1a p\. aD a a
a_ Ip ax} - j- =- at +-P (no)) -a (un)) - 1/2 V2 (u2+v2)
Ox pax/ Oy \p y/ t Ox ay

where x and y are the horizontal and vertical coordinates with velocity components u and v respectively and
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av Ou
(0 = - - -

ox ay
(10)

is the only nonzero component of vorticity.
Equations (9) can be recast into a form in which the vorticity, the stream function and the velocity potential,

together with density and pressure, are primary dependent variables. The velocity components can be written
as

a =-ati+ ad
ax ay

ay Ox

(11)

where (a is the velocity potential and +; the stream function. Equations for (4 and $ come from the divergence
eq (5) and from the definition for vorticity (10)

V2¢b = D(x,y,t)

V'd = - W)

(12a)

(12b)

For these two elliptic equations, the stream function and the normal derivative of the potential are zero on
the boundary:

a0h
=0 and 0 = 0

an
(13)

The equation describing the density evolution remains as it was in eqs (9), and an equation for the vorticity
evolution comes from taking the curl of the two velocity equations in eqs (9).-+ u + Va- + owD = - -

at ox ay ax
I ap + a 1 ap'
p Ty) ay pax

In figure 1 a schematic diagram of a fire evolving in a room in two dimensions and a set of coordinate axes
are shown. It is assumed that initially the enclosure is filled with quiescent, stratified fluid of density p 0(y).

Smoke and

hotm gas'At___ L _ 

_ 2Fire g/W

< < ~~~~~~~L

FiGURE 1. Schematic diagram of a two dimensional fire evolving in a mom:
it is assumed that there is no dependence upon z of any of the properties of
the fire or of the induced flow field. The fire, localized along the floor, has
a plume of combustion products rising above it. The smoke and hot gases
rise to the ceiling and fill the mom from the top down.

168

(14)



We define a density difference from ambient and a pressure difference as follows

p(x,y,t) = p(x,y,t) - pX(y)

P(x,y,t) = p(x,y,t) - p0(t) + gfyp.(y') dy'

These differences p and p need not be small compared with p,(y) and p0(t) respectively. Then the first and
last of eqs (9) and eq (14) become

Op p op dp0

OP + n- + v + v- = - (p0(y) + p)D(x,y,t)
at ax ay dy

Ow awO aOw a 1

- + au + l -y + toD = - -- [(I/(po+P)) af + gp]
Ot Ox ay Ox a

+ a-' [(lI(Po + P)) ax]ilS+ Aa±p x (15)

a, kl/(p. + P)) ax] + a [('/(P + P)) FPY= a[gpI(p0 ± P)]
L axJ ay La y

aD _ (1/2)VU 2 + V2 )
at

+ a (vO) - a (uw)
Ox ay

Equations (11), (12) and (15) constitute the complete set of differential equations for numerical integration

in the vorticity, stream function formulation. The boundary conditions are given by eqs (8), with fi and p

replacing p and p, and by eqs (13).
Finally, we form dimensionless equations using the density p00 -- p(O), the height of the room H as the

length scale and the free fall time (H/g)I/2 as the time scale. Then, denoting dimensionless quantities with a

hat

P = P/p , P =fpi(p. 0 gH), = PJpA0

1 1~~~~~~ (' gH rg =| (16)
HVI ' H v=ViITx y n V X y

t =tIV -lV

Equations (11), (12) and (15) remain exactly the same in dimensionless form with g set equal to one.

Subsequently, in this paper all quantities will be understood to be dimensionless, and the hat notation will

be dropped. For the dimensionless coordinates, we note that 0 '- x < 1/AR and 0 G y Gi 1 where AR

HIlL.

2.2. Discrete Equations

2.2.1. The Basic Algorithm

In this section the finite difference equations and the boundary relations for the solution algorithm are

presented. In figure 2a, the two-dimensional rectangular enclosure in dimensionless variables is shown together

with a schematic representation of the spatial grids used for the finite difference scheme. The grid formed
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flcice 2a. Rectangular enclosure in dimensionless variables 3 G x -T

0 y r 1. The mesh upon which the difference scheme is based is shown
schematically for if J = 4)!a a grid of solid lines. The mesh of dashed tines
joins the center points of the basic mesh cells and is the grid upon which the
pressure computation is performed.

from solid lines represents the basic mesh into which the enclosure is divided: in general there are I mesh
cells in the x-direction and J mesh cells in the y-direction.

Upon this basic mesh, the two components of the vector (u,v) and single component of the vector vorticity

av au---are defined.
ax ay

The second grid, formed by joining the center points of the basic grid cells and denoted by dashed lines,

is that upon which scalar quantities such as density p and pressure p are defined. In figure 2 a the densities

in the left-hand column of cells and in the bottom row of cells are shown to indicate how they are enumerated

for the numerical computation.
In figure 2b a typical mesh cell is shown, illustrating where all of the dependent variables in the finite

difference scheme are defined relative to the cell.

Cop,]

Cl i}e- l)j4i

FictRE 2b. A typical mesh cell, with center located at x = (i - 1/2) aix
and y = (u - 1/2) ay, illustrating where all dependent variables for the
finite difference scheme are defined.

170

....................... t
6,=I/(l AN)

By



The following discretely evaluated functions will denote approximations to the corresponding solutions to
eqs (11), (12) and (15):

t4(i-1/2)Sx,(j-112)Synbt)

uIr,;-spQix,j~y, nbt)

uj -u(i8x,(j- 1/2)8y,nbt)

= ((i - 1/2)8x,jBy,n8t) (17)

Plj-P((i-l/2)8x,(i-l/2)8yn/8t)

j-p((i- 1/2)8x,(j- 1/2)8yn8t)

D= D((i- 1/2)8x,(J- 1/2)Syn8t)

turn -wcu(i8xj8y,n8t)

where 8x = 1/(1AR) and ay = 1/J are the mesh cell sizes in the x- and y-directions respectively and where
bt is the time-step size. Such a staggered grid is commonly used for multidimensional finite difference
integrations [5].

With this notation, the following set of finite difference equations was used to approximate eqs (11), (12)
and (15) and boundary conditions (8) and (13):

For the first of eqs (15), 1 i / Il, 1 'i j C J and n m 2,

i12+1 - 1 +(2 g {P2 '(1 -(1/2)Di5t) - 28t(Fox + F (81+(l/2)DjI, vtY (18)

+ (1/2)Djp0(J))}

where

p= - p0(j) = the density difference from the initial density,

p.(j) = exp[-j-11/2)8y/Y,] = the ambient, initial stratification, (19)

Y. = the stratification length scale.

The flux terms F' and Fp for 1 j i C 1, 1 C j J are given by

(2p.(j) + P?+:J + P?-,,) U x - /j + (P+IJ -N )U4 + ) (20a)

_ p(i+ 1) + p(i- 1) + pn,i+i + v,. - v, rS2
Pry 4 by I

pk+21) - Pk-i) + +- o- ( (20b)+ ~~~~~28y2
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For the second of eqs (15), 1 Ci i C I, 1 C j C- J and n ¢ 2,

DUy O)Y 28t x
1~~~~~~~~~~~~~~~~~~(1

+ (v',i+ 1 w.)+1 - v 4Jiog._1 ) + G-4

where

V.j = (1/2)(v; + V,)

U = (1/2)(u' +, + uy), (22)

G"= 2 | +Pa , _ p- +, + (pn+,1+, + p0+,j)(8y/2)
'' 8x8y I pi0+1) + Pk() + p"j, + P± +j

Pi, - PU + (pj -- pj)(8y/2) (23)
POj + 1) + POj) + Pj+i + 

fijij- pn.± hl;-P
Ps+X~~il . . ....... i+l + P.i Pi+............................ 

2pO(j + 1) + P7+Ji+, + pn, 2p0(j) + p+ + PI

Equation (18) employs a second-order accurate temporal discretization which eliminates instability that would
arise if leap frog had been applied. The first of eqs (15) has an undifferentiated term pD(x,y,t) that is well
known to lead to a computational instability for ordinary differential equations when leap frog is used. Reference
[10] discusses the simple change in temporal differencing used here to eliminate this instability.

Equation (21) uses a straightforward leapfrog temporal differencing, and both eqs (18) and (21) are started
by using the same spatial discretization and an explicit, first-order time step.

At each time step, after the vorticity has been updated, three elliptic equations must be solved, eqs (12a),
(12b) and the last of eqs (15). Equations (12 a) and (12b) are differenced using a standard five point star

8+Ij+ ( - 24 + 4 ) = D(24a)
1 1Y + (~ ' 2a

8j k Itj - 2VJ + +4 -1.j) + 4 (P+I - 2ti'- + n - o (24b)

and the boundary conditions (13) are introduced in the usual fashion. These equations have been solved

using software routines from FlSHPAK [6]: eq (24a) was solved using BLKTRI and more recently using
POISTG, while eq (24b) was solved using PWSCRT and more recently GENBUN. Routines BLKTRI and

PWSCRT have limitations on the number of mesh points or unknowns which they can solve, whereas POISTG
and GENBUN were produced more recently and are free of such limitations. Most computations were performed
with the former routines, but recently several computations have been performed using the latter.

The velocities are then obtained from the potential and stream function by difference forms of eqs (11):

1 1
U. = ( -+ - -.- 1 ) (25a)

Vt = 8 +1- - (q. - (25b)
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For the third of eqs (15), for 1 C i I and 1 C j C J,

2 | p +3 - f 1 n 

2p.(J) + P-+- 0 + Pg 2p.(/) + pg + p7 1 j

+ 2 rii+i -plj Pui - Pih-I
8y2 p(: + 1) + p0(i) + p +i + p. p.(J) + p(i- 1) + P_ + P.J-D-+- ± Dn- FZ - + Fn -Fn

28t Sx by

- y [p ± + 1) + p.G) +±p + p- Pk(J) + p (-1) + P2

where the fluxes F21 and Fv are defined as follows:

for 1 C i l - 1, 1 C j J

81 2.a nd -- (qe2] --2 (o r I j ± VI i )

and for 1 C j GC] - 1, 1 C i GCI

Fy = - [(q9.,
1 )2 -($12) ] + 1( j;

2 (a2 wg

V " - v U U*tOfl = i+1.1 I J -Vz Uj +i - U"

v 8X by

I
V = - (VW + Vz )

(qj)2 = ( y _&-,j

(26)

(27a)

(27b)±+ U-iIJO)-IJ)

0-i = -2 (uj+4 + Uyj)

+<)2 (27c)

Note that boundary conditions (7) on the normal velocities imply that uaj = uaj = 0 for 1 C j C J and
v,,0 = v,,, = 0 for 1 C i C I. These boundary conditions are applied formally in the expressions for the
fluxes F', F F12 and FW in mesh cells adjacent to boundaries. The boundary conditions (8) in discrete

form become

PR = Pul

for 1 C j C J (28a)

pjj = p'±14
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X1 - pro = 8Yp?, + pz0)/2

for 1 G i --- I (28b)

j+i - Pfj = - 8y(p'j+l + pj?)/2

We note that eqs (26) together with boundary conditions (28) constitute a singular linear algebraic system of
equations. When eqs (26), with boundary conditions incorporated, are summed, the left hand side sums to
zero, demonstrating that all of the equations are not linearly independent. Also, the last three terms on the
right hand side sum to zero, producing the requirement that the double sum over (D-+' -'D'-')/28t must
vanish. Examination of eq (30) below for Dg shows that it has been chosen so that its double sum over all
mesh points vanishes. and that the condition which must be satisfied to allow this choice produces eq (31)
below for the mean pressure. Therefore, the singular linear algebraic system is seen to be consistent and
thus to allow a solution. The solution is unique by noting that the double sum over all mesh points of pfi must
be zero.

At each time step it is necessary to calculate the solution of the linear algebraic system for the pressure,
eqs (26) with boundary conditions (28) incorporated. The method of solution must take into account non-
uniqueness of the algebraic system. The solution method must also be able to solve large linear systems
accurately, since there are IJ equations and cumulative errors from many time steps may destroy the com-
putation. Finally, it is very important that the solution be obtained quickly since the calculation is made at
each time step, and hundreds of time steps must be taken.

The solution method we have adopted is a hybrid method which combines an iterative algorithm, conjugate
gradients, with a fast direct Poisson solver. The conjugate gradients algorithm provides an iterative technique
for solving the linear algebraic system of equations. Details of the algorithm are presented in reference [7].

The heat source has been chosen to have the form

Qn= Qj f. (29a)

1/2

Q = (65) X exp [-Pfxt-x¢)2 - Xyj] (29b)

x= (i - 1/2)8x, j= (i-1/2)8y (29c)

= Q0 tanh At, (29d)

.,-1
to = o0, t = E bt' (29 e)

n1=o

Hence, the discrete divergence of the velocity field becomes

D- = ±pn [(y-1)O,,-KIP (30a)
'yP2

K = YU 27 2 QY (30b)IJ i=1-j=1

and the mean background pressure is found from the difference equation

pfil = pl + Kp28t (31)

withp.0 = p' = 1 sinceft = 0.
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The linear stability of the algorithm is the only other consideration for discussion. A linear stability analysis
of eq (18) for the density shows that the time step St must satisfy the following condition for stability

S 2_ ~MM {(Dy)2 + [L. + [' ]} (32)
1IssG 8 x 8y

where

Jj -n (1/2)(au + leij) (33a)

Vn (1/2)(vn + vj (33b)

When the stability condition, eq (32), is not satisfied by a time step, the time step Sr is halved. Then the
time-marching algorithm is restarted using the last time-level values as initial conditions. A first-order time
step is taken and then leap-frog is resumed.

A linear stability analysis of the difference equation for the vorticity, eq (21), yields exactly the same form
for the stability criterion as that found above for the density equation. Reference to figure 2b shows that the
density and vorticity are evaluated at different points in the mesh, however, and therefore, the divergence D
and the velocity components U and V are to be evaluated at different points than those used in eq (32). To
account for the difference in the stability criterion implied above, in all calculations performed using the
algorithm described above, the time step was chosen to be less than or equal to 0.8 the maximum value
found for the right hand side of eq (32).

2.2.2. Lanczos Smoothing

The nonlinear nature of the equations of fluid dynamics implies that initially smooth data will, in general,
produce flow fields with fine structure. Since the results presented are for finite difference computations, the
resolution of the flow field is limited by the grid size used to perform the computation: structures of a size
comparable to a few grid cells can be resolved, whereas smaller structures may represent artifacts of the
calculations. In addition, in the computations it has been found that the calculation will eventually fail because
of the intricate detail (and sharp gradients this detail represents) if the number of time steps becomes large
enough.

It is for these reasons that various methods of smoothing data generated by the computations have been
examined. In the method presented here, the computation is stopped periodically, with a period specified as
input to the computation, and the data are smoothed spatially. The computation is restarted using the smoothed
data as initial conditions, the results not being allowed to develop the intricate detail it might otherwise
develop. The method used to smooth the data is a variation of one suggested by Lanczos in reference [8].
Using this method with a relatively long smoothing period, computations have been extended indefinitely.

The smoothing used here is that proposed by Lanczos, but is modified slightly for our purposes. In reference
[8], the smoothed data is obtained from the value of the data at each point by adding a specified multiple
of the fourth difference at that point. The change in value between the smoothed and unsmoothed data then
is of order h4 where At 1/J and J is the number of mesh points in one direction in space.

Since the computational scheme described here is only second order accurate in the spatial mesh size,
0(h2), a less refined smoothing was used. The smoothing is accomplished by adding a specific multiple of
the second-order difference at the point to the value of the datum at that point and is 0(h 2). When the method
is generalized to two dimensions, it becomes equivalent to adding one fifth of the finite difference, five-point
Laplacian to the value of the datum at each point to obtain the smoothed datum. (This is also equivalent to
replacing the value at a point by the average of its value and the values of its four nearest neighbors.)

Therefore, after a specified number of time steps m, the density and vorticity data at time level m are
changed according to the following prescription:
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1
(P I + m + PmZ+i + pm-a - IpT7) (34a)

(iW - o° + I (w + + -4o0t^?) (34b)UV 5i i "J "'-4-

At the boundaries, the following rules are used for the smoothing. For cells adjacent to boundaries, the density
is assumed to have the same value in a ficticious cell outside the boundary as its value in the cell under

consideration. (This is the difference equivalent of saying that the normal derivative of the density at a
boundary is zero.) The vorticity is taken to be zero on the boundary, and represents a free slip boundary

condition.
A rough estimate of an equivalent Reynolds number or Grashof number introduced by smoothing can be

made by the following argument. The effect of viscosity in the vorticity equation in the Boussinesq approx-

imation arises, when the equations are made dimensionless in an appropriate way, as V 2w, where Re is
Re

the Reynolds number, V2 is the Laplacian and wo is the vorticity. The average effect per time step of Lanezos

smoothing in the vorticity equation can also be represented as 8s V2wO where c is a constant of order unity,

8 is the time step, h is the mesh spacing, m is the number of steps between smoothings and V2 is the
discretized, five-point representation of the Laplacian. Equating the coefficients of the Laplacian operators
provides an estimate of the Reynolds number introduced by smoothing:

Re = - m2 = - ml J
ch C

where I and J are the number of mesh points in each direction. Taking c = 1, 8 = 0.1, m = 40, 1 J
1000, then Re 2 4 x 103, and noting that the Grashof number Gr is approximately the Reynolds number
squared, Gr 8 1.6 x 107.

3. Computational Results

As discussed in the Introduction, the vorticity, stream-function algorithm and a code implementing this
algorithm were developed as a method for solving the partial differential equations derived in reference [1].
The other method for solving these equations, a finite difference method for directly integrating the equations
of motion in primitive variables (density, pressure and the two components of velocity) was described in
reference [2]. Reference [3] describes comparisons of the results computed using the primitive variable
algorithm with analytical results obtained in special cases. These comparisons were performed to test the
algorithm and the computer-code implementation. Final comparisons were made between results computed
using the primitive variables code and those computed using the vorticity, stream-function code. Agreement
between results was found to about five significant figures after a few time steps and to between three and
four significant figures after hundreds of time steps. The discrepancy between results is smaller than the
errors introduced by discretization for the mesh sizes used and well below differences which could be observed

by plotting.
In this section some computational results are presented and discussed. The density, pressure and vorticity

are scalar functions of the horizontal and vertical coordinates at any specified time. We have found that
contours of constant value of any of these scalar quantities are a convenient way to display them. Since the
temperature and density are inversely related at any particular time, contours of constant density are also
contours of constant temperature.

All contour plots were prepared from a graphics package developed by the National Center for Atmospheric
Research. The numbers indicating contour values are relative only. Solid lines represent values of the variable
greater than zero and dashed lines represent values less than zero. For the results presented here, density

and temperature are inversely related: contours of constant density have been labeled as contours of constant

temperatures for illustration. Therefore, for the temperature plots, temperature contours above a reference
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value appear dashed and below that reference are solid. Graphic details on the scale of a mesh cell, which
is determined by the distance between fiducial marks on the sides of the plots, should be ignored.

All computations have been performed on one of three computers, the NBS UNIVAC 1108, the U.S.
Treasury UNIVAC 1100/81 or the Cybernet Cyber 175. The computations require about 45K words of storage

for the 31 x 31 mesh and were performed on any one of the three machines. Typical running times on the
1108, which is the machine most frequently used, is about 30 to 45 min of CPU time for 200 to 300 time

steps.
In figure 3 contours of constant temperature (isotherms) are shown at four dimensionless times for a

volumetric heat source centered along the floor in a square room. The rate of heat added per unit volume is
largest along the floor at the center of the room and decreases in a Gaussian fashion with horizontal distance
from the center and exponentially with height above the floor. The heat source is "turned-on" as a hyperbolic
tangent with respect to time asymptoting to full strength around t = 1.0. (Note that T denotes time on the
figure titles.) At the first time, t = 2, the problem is still linear; the flow velocities are sufficiently small
than convection is unimportant, and the temperature increase in the fluid is directly proportional to the
volumetric rate of heat added. Therefore, the isothenms are also contours along which the volumetric heat-
addition rate is constant. (These contours are found to be parabolas.)

These computations were performed on a spatial mesh having 31 cells in the horizontal and 31 cells in
the vertical directions; the tick marks along the boundary of the enclosure show the mesh cell spacing.

At time 8.5, the second frame of figure 3, a buoyant thermal has developed, giving the appearance of a
mushroom cloud. The buoyant thermal intensifies in strength until the thermal hits the ceiling, as shown in
the third frame, t = 11.5 and begins to spread. Inside the plume a distinctly periodic structure has begun
to develop, as can be seen vividly in this frame; here, progressing up the plume along its centerline, one
finds a local low first, then a periodic sequence of local highs and lows up to about the center of the head
of the thermal.

The heated gases spread along the ceiling and fill the room from the top down, as shown in the last frame
of figure 3 at t = 14.5. This physical behavior is exactly what is observed in room-fire tests and in other
experimental observations of heating in enclosures. The symmetry about the centerline of the room displayed
in these computations is some measure of the accuracy with which they were performed: the heat source is
placed symmetrically, but the computations were performed as if no symmetry existed.

In figure 4 contours of constant vorticity at various times are displayed. The contours show an anti-symmetry
about the centerline, as would be expected for the vorticity, and the physical features described for the density
(or temperature) contours are reflected in the vorticity plots. Because the vorticity represents a higher order
difference of the dependent variables, these contours display more fine scale (on the mesh scale) features
than the density contours. Also, later in the computations, "noise" of a nonsymmetric and fine scale begins
to show up. The vorticity plots are not as "smooth" as those of the density (or temperature).

In the first frame of figure 4 at time 2.0, early in the heating process, two vortices of equal magnitude and
opposite sign develop with centers in the regions of steepest gradient of the heat source. Convection has
begun by dimensionless time t = 8.5, frame 2 of figure 4, and the vortices are pinched together and buoyed
upward off the floor. The vortices are convected toward the ceiling. Also vorticity of periodically varying
strength is generated within the source region and the strength of the vorticity increases with distance above
the source. Finally, frames 3 and 4 of figure 4 show that the periodically varying vorticity trains split when
the ceiling is encountered and form two large regions of vorticity of opposite sign.

The pressure as a function of horizontal and vertical coordinates at any specified time can also be displayed.
In figure 5 contours of constant pressure at four times during the room filling are shown. This pressure actually
represents only the spatial variation of the pressure and has been normalized at each time so that its mean
value is zero. This is the quantity which, together with buoyancy, induces the flow. As with the other contour
plots, solid lines represent contours with values greater than zero and dashed lines indicate values less than
zero. The pressure plots are seen to be smoother than those of density (temperature).

Early, the first frame at t = 0.5 of figure 5, the pressure is highest at the source, where heating takes
place. As convection starts, the high pressure region is lifted off the floor, time t = 2.0: a significant enough
convective velocity has developed by dimensionless time t = 2.0, that a low pressure region due to a Bermoulli
effect can be seen at the floor. This low pressure region is associated with the high convective velocities, or
the vorticity pair shown in figure 4. The low pressure region develops a double minimum, symmetric about
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TEMPERTrURE £0NTeUR5S rnT r 6. 500

F[CtRE 3. IsothenMs at four dimensionless times, T, during heating by a volumetric heat source cenlered alOng the floor in a square rom . These four
franes illustraLe (1) early heating with no convection, t2) a starting plume, (3) the plume impacting the ceiling, and (4) the room filling from the top dolwn.
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V0RTICITY C0NTOURS RT T =

FiGURE 4. Contours of constant vorticity at four dimensionless times, 7, during heating by a volumetric heat source centered along the floor in a square
room. These four frame correspond to the ones shown in figure 3.
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C0NT0URS PT T = 2.000
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PRESSURE C0NT0URS PT T = 11.500
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FIGURE 5. Contours of constant pressure at four dimensionless times, r, during heating. The calculation shown here is the same as that displayed in
figures 3 and 4, but the times are chosen to illustrate the stages in the development of the pressure field.
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the room centerline as seen at time 8.5 and rises to the ceiling, as shown in figure 5, time 11.5, where a
strong compression develops at the center of the ceiling. The final pressure diagram displays the double
minimum, associated with the strong vortex pair and high temperature shown in figures 3 and 4, separating
and moving toward the walls.

In figures 6 and 7 contours of constant potential +k and constant stream function t are shown. Only one
plot of the potential is shown because the spatial dependence does not change with time: the potential function
is separable in space and time. Four frames of stream function are shown in figure 7. The stream function
is antisymmetrical about the centerline and displays a peak and a valley which slowly rise toward the ceiling.
The stream function is rather smooth. showing only a slightly wavy behavior at later times.

P0TENTIRL C0NT0URS AT T 1.000

FIGuRE 6. Velocity-potential contours at dimensionless time, T = 1.0 for
the calculation displayed in figures 3-5. The potential function is a function
of space times a function of time; therefore, the spatial dependence does
not change with time.

The base computation, shown in figures 3-7, was repeated several times with smoothing introduced at
different numbers of time steps. Figures 8 and 9 compare constant temperature contours at dimensionless
time 11.5 and 14.5 respectively determined by the base computation, on the upper left, and by three levels
of smoothing in the other three plots of each figure. It is seen that the fine structure is eliminated by smoothing,
but large scale features are still retained. In figure 8 four plots of constant temperature contours at approximately
the same time are compared. The plot in the upper left hand corner is the unsmoothed computation. The
plot at the upper right is the result of the computation smoothed only once up until that time, after N = 160
time steps. The next plot, lower left, is from a computation smoothed every 80 time steps, that in the lower
right is from a computation smoothed every 40 time steps. Figure 9 shows a similar comparison of the effects
of smoothing, but at approximately t = 14.5. These plots show clearly the loss in detail with increasing
frequency of smoothing or increased simulated viscosity. They also show that the buoyant plume rise slows
due to the decreasing gradients. The smoothing and loss of fine-scale detail with increased frequency of
smoothing are apparent, and, in fact, these results appear much closer qualitatively to results obtained in
previous studies which integrated the Navier-Stokes equations by finite difference techniques (for example,

reference [9], figures 4 and 5).
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STRERM C0NT0URS RTT = 2.000

STRERM C0NT0URS RT T = 11.500 STRERM C0NTOURS RT T = 14.500
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FIGURE 7. Stream-function cnmours at iour dimensionless times coaesponding to the imes displayed in figures 3 and 4.
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TEMPERATURE CONTOURS AT T = 11.500

FIGURE 8. Isotherms at approximately the same dimensionless time, T, with Lanczos smoothing applied at different frequencies. The frame in the upper
left comer is the unsmoothed computation. The frame at the upper right is smoothed every 160 time steps, that at the lower left every 80 time steps and
that at the lower right every 40 time steps.
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TEMPERPTURE C0NT0URS PT T = 14.500 TEMPERPTURE CONTOURS AT T = 14.500

TEMPERATURE CONT0URS RT T = 14.550…:.j. T-:. -- .. *. .Tl: C a..>V …=T-' . ..
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FIcURE 9. Isotherms at approximately the same dimensionless lime, T. with Lanezos smoothing applied at different frequencies. The frame in the upper
left corner is the unsmoothed computation. The frame in the upper right is smoothed every 160 time steps, that at the lower left every 80 time steps and
that at the lower right every 40 time steps.
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