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Moadel equations describing large scale buoyani conveclion in an enclosure are formulated with the vorticity
and stream funclion as dependenl variahles. The malhematical model, based on earlier work of the authors, is
unique in two respecls. First, il neglects viscous and thermal conductivitly eflects. Second Lhe flnid is taken lo
be thermally expandable: large density variations are allowed while acouslic waves are fillered oul. A volumetric
heat source of specified spatial and lemporal varialion drives the flow in a two-dimensional rectangular enclosure.
An algorithm for solulion of the equations in this vonicily, stream-function formulation is presented. Results of
compulalions using lhis algornhin are presented, Comparison of these resulis wilh those obtained carlier by the
authors using a finite differenee code lo inlegrale the primitive equations show excellem agreement. A method
for periodically smoothing Lhe computational resulls during a ealeulalion, using Lanczos smoothing, is also
presented. Compulalions with smocthing at different 1ime intervals are presented and diseussed.
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1. Introduction

Over the past few years, the National Bureau of Standards has sponsored a joint researeh projeet between
the Center for Fire Research and the Center for Applied Mathematics to develop, starting from basic con-
servation laws, a mathematieal model of fire development within a room. Large scale convection is an essential
component of such a model because this fluid mation governs the smoke and hot gas transport within a room
and also supplies fresh oxygen to the fucl to sustain ecmbustion. Thercfore, development of a mathematical
model of buoyant convection was begun as a first step toward a more complete room-fire model, which would
include effects of combustion chemistry, radiation, and smoke dynamics. The mathematical model for con-
vection, the partial differential equations, and boundary conditions, are derived in reference [1].!

As noted in carlier papers [1,2] the mathematical model is unique in two respects. First, it is assumed
that viscous and thermal conductivity effects are negligible. Second, the fluid has been taken to be thermally
expandable so that large temperature and density variations can be taken into account, while acouslic waves
have been filtered out to reduce computational time,

The model equations were integrated for density, pressure, and velocily components by finite differcnece
techniques; the algorithm is presented in detail in reference [2]. The algorithm has been verified by comparison
with solutions to the equations in special cases obtained by analytical and independent numerical means;
the verification is described in references [3] and [4] and in the present study.

In section 2 the model equations are recast into a form such that the dependent variables are density,
pressure, vorticity, velocity potential, and stream funetion. This formulation, the sc-called vorticity, stream-
function formulation, is an alternate one to that described in reference [2], which we call a primitive-variables
formulation. An algorithm for integration of the equations in a vorticity, stream-function formulation is also
presented in this section.

* Center for Applied Matliemalics, National Engineering Laboratory.
T Center for Fire Research, National Engineering Laboratory.
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Results from the two algorithms are compared: the results are in such good agreement that the difference
cannot be seen on plots of the dependent variables, This comparison represents a final check on the validity
of the integration algorithms and their computer code implementations. Therefore, we believe that the solutions
obtained by these computations are excellent approximate solutions to the mode! partial differential equations
presented in reference [1].

The model has been developed for two-dimensional, time-dependent fires evolving in a room (rectangular
enclosure). The fire has been modeled as a volumetric heal source of specified spatial extent and temporal
behavior. In section 3 density or temperature (which are inversely related at any specified time in this model},
vorticity, pressure, and velocity potential plots at fixed times during the heating are shown for a sample
computation.

It is well known that, because of the guadratic nonlinearity in convection, initially smooth flow fields
become increasingly more fnrrowed as time progresses; i.e., energy cascades from lower wavenumber modes
to higher ones. The compulational results display this behavior, and the flow field becomes more intricate
with increasing time, the resolution of the grid providing the only limnilation to the resolvable detail. However,
such an accumulation of energy at a wavenumber inversely proportional to the grid size is both unphysical,
and, if the computation is carried out long enough, disastrous. Local gradients of the dependent variables
become much too large and the computation ultimately fails. Therefore, also shown in section 3 of this paper
are preliminary considerations of smoothing or filtering of the computaticnal results. Such smoothing acts
analogously to viscosity and can be used to prolong the lifetime of the computation. A brief discussion of the
effects of a particular type (Lanczos) of smoothing is presented, and resnlis obtained using this smoothing
are shown.

2. Formulation
2.1. Continuous equations

In an earlier paper [1], the authors had derived a set of nonlinear equations describing very nonadiabatic
buoyant flows of a nondissipative perfect gas. The magnitude and the spatial variation of the heat source
{representing the exothermic reaction in a fire) were taken as known, The fluid and the fire source were
assumed confined in a closed rectangular room with the center of the source along the floor, In contrast to
reference [1], in this paper we consider only a completely enclosed room (no leaks), and when difference
equations are introduced, we confine attention to the two dimensional evolution of the flow.

In this section, the equations derived in reference [1] for a two-dimensional configuration are rewriiten so
that vorticity and the stream function are primary variables, and the finitc difference methods used to solve
the revised equations are presented.

Equations (11) of reference [1] are

dp
+ —_—
ot ox; (pu ) =

p( y 2 ) D) _

(1)
ol T
Cl—+uy—| — = .t
p p(at by ax,.) Q(x,.t)
p.(t) = oRT
Here p is density, u; the velocity in the i** coordinate direction (i = 1, 2, 3), p is the pressure excess above

the mean pressure p,(t) in the room, T the temperature, C, the constant-pressure specific heat, R the gas
constant, kg is the gravilational acceleration, and Q(x;,t) the speeified volumetric heat source. The spatially
uniform mean pressure p.(¢) depends only upon time and increases beeause of the healing within the room.
It is determined in a completely enclosed room by the equation
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dp

-1 .

where <y is the ratio of specific heats, V¥ is the volume of the room and the integration is performed over this
entire volume,

We take the substantial derivative of the equation of state and use this with the energy equation to eliminate
the temperature. The resulting equation deseribes the evolution of the density under heating

T N P
o + u oz, = P o, = pD("jv‘) (3)
where
1 dp
D(x,t) = - 1) — =2,
(;.1) 7.0 [(v DQ(=;.1) d;] (4)

Equation (3) and the continuity equation identify D(x,,t) as the divergence

ou;
Exﬁ = D(xjv‘) . (5

Finally, as in reference [1], the equation for the spatially variable portion of the pressure is obtained by
dividing the momentum equations by density and taking the divergence of these equations. The resulting

0 (134 ; aD(x, .
Y S B 7 7)) ©)
dx; \p Ox; ox; \ 7 o ot

The boundary eondilions on these equations are that velocity normal to any (impermeable} wall vanish.

equation is

wn, = 0 (7

where n, are the normal components of a vector describing the boundary wall. From eqs (1) and these
conditions, the appropriate boundary conditions on the pressure equation are obtained

g
L = pg nk )
dx,

In two dimensions (no dependence on z), these equations become

ap op 4

+u—+v— = —pDxyt
o¢ uax vay p D(x.1)
3 8 19
212t (W) —ow = — =L
dat dx p ox (9)
3 139
Y el = -2,
ot oy pdy
3 ({13 d {13dp\. D | 9 3
=== +—(——’-’ = —— + — (w) ~— (uw) — 12 V2 (F+7)
dx \p ox oy \p oy ot ox dy

where x and ¥ are the horizontal and vertical coordinates with velocity components u and v respectively and
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w=——-— (10)

is the only nonzero component of vorticity.

Equations (9) can be recast into a form in which the vorticity, the stream function and the velocity potential,
together with density and pressure, are primary dependent variables. The velocity components can be written
as

o
ox dy (11)
abp A

v=— - -
dy ox

where ¢ is the velocity potential and ¥ the stream function. Equations for ¢ and  come from the divergence
eq (5) and from the definition for vorticity (10)
Vi = D(x.y.t) (12a)
Vzlb = - W (12]:))

For these two elliptic equations, the stream function and the normal derivative of the potential are zere on
the boundary:

—=0 and U =20 (13)

The equation describing the density evolulion remains as it was in eqs (9), and an equation for the vortieity
evolution comes from taking the curl of the two velocily equations in eqgs (9).

ow ow dw d (1dp d {1ap
—+tu—+trv—+wD=—-—|—-""| +—|—-—— (14}
ot Ox dy dx \p dy dy \p ox

In figure 1 a schematic diagram of a fire evolving in a room in two dimensions and a set of coordinate axes
are shown. It is assumed that initially the enclosure is filled with quiescent, stratified fluid of density p,(y).

Smoke and
hot gases

H
/ |

7 |
FIGURE 1. Schematic diagram of a lwo dimensionzl fire evolving in a room:
it is assnmed that there is no dependence upen z of any of the properties of
the fire or of the induced flow field. The fire, loealized along Lhe floor, has

2 plume of combustion products rising above il. The smoke and hot gases
rise to the eeiling and fill the room from the top down.
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We define a density difference from ambient and a pressure difference as follows

f)(xmt) = p(x,y,t) - Pa(J’)
Blxy,0) = p(xy.0) — pt) + gfip.(y") dy’

These differences p and § need not be small compared with p,(y) and p,(¢) respectively. Then the first and
last of egs (9) and eq (14) become

w T ra Ty vy s (0 DG
o | e de 2 i
™ + u o + v 3y + wh = b [(1/(pg+p))(ay + gp)]

g %
i [(lf(p[. +0) ax] 15

%&Mm+m§}+§PMm+m%} - 5 leve, + )]

oD
- = U+

+ laix (vw) — %(um)

Equations (11), (12) and (15) constitute the complete set of differeutial equations for numerieal integration
in the vorticity, stream function formulation. The boundary conditions are given by eqs (8), with p and p
replacing p and p, and by egs (13).

Finally, we form dimensionless equations using the density p,, = p,{0), the height of the room H as the
length scale and the free fall time (H/g)' as the time scale. Then, denoting dimensionless quantities with a
hat

P = plp, , p = plp.et), P = P/Pos
b -y U -y 4
= , = , w = —w
L _u Lo Y .o X P 4
“TNeH " T NeAR 0 T H 7 T H

I\ HTg)

Equations (11), (12} and (15) remain exactly the same in dimensionless form with g set equal 1o one.
Subsequently, in this paper all quantities will be understood to be dimensionless, and the hat notation will
be dropped. For the dimensionless coordinates, we note that 0 = x < 1/AR and 0 < y < 1 where AR =

HiL,

b )
I

2.2, Discrete Equations

2.2.1. The Basic Algorithm

In this section the finite difference equations and the beundary relations for the solution algorithm are
presented. In figure 2a, the two-dimensional rectangular enclosure in dimensionless variables is shown together
with a sehematic representation of the spatial grids used for the finite difference scheme. The grid formed
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FictRE 2a. Rectangular enclosure in dimensiondess variables 0 < x = E’

0 = y = 1. The mesh upon which the difference seheme is based is shown
schematically for {f = J = 4) as a grid of solid lines. The mesh of dashed lines
jeins the center points of the basie mesh cells and is the grid upon which the
pressure compulalion is performed.

from solid lines represents the hasic mesh into which the enclosure is divided: in general there are / mesh
cells in the x-direction and J mesh cells in the y-direetion.
Upon this basic mesh, the two companents of the vector {u,) and single component of the vector vorticity

d
w = L. é—[f are defined.
oz dy

The second grid, formed by joining the center points of the basic grid cells and dencled by dashed lines,
is that upen which scalar quantities such as density p and pressure p are defined. In figure 2a the densities
in the left-hand column of cells and in the bottom row of cells are shown to indicaté how they are enumeraled
for the nurmerical computation.

In figure 25 a typical mesh cell is shown, illustrating where all of the dependcnt variables in the finite
difference scheme are defined relative to the cell.

\'i_l
Wiy iy
(JJ;J;
&y
——— Bjj o pij ———
Uia,j Dij Uy
YiH
®ip Wij1

FiGuAE 2b. A typical mesh cell, with center located at x = (i — 1/2) 8
and y = {j — 1/2) 8y, illustrating where all dependenl variables for the
finile differcnce scheme are defined.
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The following diseretely evaluated funetions will denote approximations to the eorresponding solutions to

eqgs (11), (12) and (15):

&p = &((i—1/2)8x,(j — 1/2)8y, 1)
7 = (i8x,jOy,ndt)
= u(idx, (j— 1/2)8y, nbt)
o = ((i — 1/2)8x, jBy,ndt) a7
pg = p((i —1/2)dx,(j — 1/2)3y,ndt)
Py = p((i— 1/2)dx, (j— 1/2)8y,ndt)
D} = D((i—1/2)3x,(j— 1/2)8y,nd¢) ,

'
tey

w} = w(idx,jdy,ndt)

where 8z = 1/(I*AR) aud 8y = 1/J are the mesh cell sizes in the x- and y-directions respectively and where
8t is the time-step size. Such a staggered grid is commonly used for multidimensional finite differenee
integrations [5].

With this notation, the following set of finite difference equations was used to approximate eqs (11}, (12)
and (15) and boundary conditions {8) and (13):

For the fist of eqs (15), 1 < i =/, 1=j< Jandn = 2,

1
n+l — n—1 _ 7 _ 'n "
P 1+ (U2)D5: {p,, (1—Q/2D38¢) 28¢(Fy,, + Fiy
i (18)
+ (1205,
where

pr = p} — p,(j) = the density difference from the initial density,
p.(7) = exp[ —(j—1/2)84/Y,] = the ambient, initial stratification, (19

¥, = the stratification length scale.

5

The flux terms F, and Fj, for 1 <i =/, 1=j=< ] are given by

20,(j) + Py, + PRuy [ = oy Py — PRy Y(uk +ou
n = L - + 4 LY} 2
Fows ( ) 8x 28 2 (202)

o= pf+1) + p,Gi—1) + Phoa + PRy (v — vy
Py 4 By

4 pt+1) — p,i—1) + D1 — 05— oy + ol 20b
28y 2 (20b)

171



For the second of eqs (15), 1 < i</, 1 =j=< Jandn = 2

[}

1
n+1 n—1 __ n n _— n n.
0 Wy 28¢ {283: (uuu'+ 191 umi—l.jmi—l.j)

(21)
1 n £ Jb N
+ ﬁ (Um.j+1(°u+1 - ”us.j—lw.-,j-l) + G,"}
where
oy = (1/2)(03 + U?+l.j) »
why; = (U2)(uy, + u), (22)
Gt = 2 |:I-)?+l.j+1 — Py T (p?+1.j+1 + p?+1.f)(8y/2)
Y Bady PG D) + p() + By + P
_ e = By ¥ (O — 05)(89/2) 23)

pLi+ D) + plj) + ply + P

_ P-?+l.j+1 - xﬁ?.jﬂ + ﬁ?ﬂ.j _ 133' :|
2p,G+1) + Pleryer + Bl 20,() + PRy OB

Equation (18) employs a second-order accurate temporal discretization which eliminates instability that would
arise if leap frog had been applied. The first of eqs (15) has an undifferentiated Lerm pD(x,y,t) that is well
known to lead to a eomputational instability for erdinary differential equations when leap frog is used. Reference
[10] discusses the simple change in temporal differencing used here to eliminate this instability.

Equation (21) uses a straightforward leapfrog temporal differeneing, and bhoth eqs (18) and (21) are started
by using the same spatial diseretization and an explicit, first-erder time step.

At each time step, after the vorticity has been updated, three elliptic equations must be solved, eqs (12a),
(12b) and the last of eqs (15). Equations (12a) and (12b} are differenced using a standard five point star

1
ﬁ (¢?+1.j - 2¢’:} + ‘b?—l,j) + (¢;J+1 - 2‘1’3 + d)?,j—l) = Di;,‘- (243)

1
g (IIJ?+1J - 2‘I"3 1 1.}) + 2‘1’:_: + ll"a,_; 1) - = UJ; (24b)

5 (s

and the boundary eonditions (13) are introdueed in the usual fashion. These equations have been solved
using software routines from FISHPAK [6]: eq (24a) was solved using BLKTRI and more reeently using
POISTG, while eq (24b} was solved using PWSCRT and more recently GENBUN. Routines BLKTRI and
PWSCRT have limitations on the number of mesh points or unknowns which they can solve, whereas POISTG
and GENBUN were produced more reeently and are free of such limitations. Most computations were performed
with the former routines, but recently several computations have been performed using the latter.

The veloeities are then obtained from the potential and stream function by difference forms of eqs (11):

1
uj = 3% (PP — @5 + = (‘I’ 2i-1) (25a)
- i. d)n — ay — l no__ n 25]3
vy = By( g+ d)q) 5z (‘I-'u i—l,j) (25b)
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For the third of eqs (15), for l =i </and 1l <j < J,

2 [ Bl — By = By }

8® [ 2p,() + Py, + P 20,00 + Py T Py
. _2_[ Biier — B} ~ By — e }
8 [p(i+1) + o) + iy + 05 p0) + 1) + B+ B 26)
= — Dy’ — Dy + Frn = Fy + Frjon — F
28 Oz oy
1 [ PL + DY _ Py + Pl ]
dy [pU+1) + p.() + 0l + 05 0D+ pG—1) + Bp + Bl
where the fluxes F7; and F7}; are defined as follows:
forlsisl-11<j</]
n 1 JL 2 2 1 ]
Fa = 35, [(g21,)% — (@2)7] - E(vmgw?j + ol @) (27a)
andforl=j=<J -1 1={=</
3 1 i 2 2 1 non 23 n
Fy = ﬁ [(Qi.j+1) - (q}) ]+ E(umﬁmg + oy 00 ;) {27b)
and where
woo Ve TOVE Wy —oug
W = —_
Y o By
1 1
Va, = E (U',j + i), Up, = E(u?,j+1 + U-;)
2 2
up + ul_ v + v
(P = (+——H) + | F—+ (27¢)
2 2
Note that boundary conditions (7) on the normal velocities imply that u,; = u;; = 0 for 1 =< =< J and

9,0 = ty; = 0 for 1 = i =< I These boundary conditions are applied formally in the expressions for the

fluxes Fg ., Fy, ., F7, and F7 in mesh cells adjacent to boundaries. The boundary conditions (8) in discrete

form become

Bay = Piy
forl=j=j (28a)
Bli = Prevy
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Fii— B = BY(D?.I + ﬂ?.o)/2
forl =si<] (28b)
Biyer — Biy = — 8Py + D)2

We nole that eqs (26) together with boundary conditions (28) constitute a singular linear algebraic system of
equations. When eqs (26), with boundary conditions incerporated, are summed, the left hand side sums to
zero, demonsirating that all of the equations are not linearly independent. Also, the last three terms on the
right hand side sum to zero, producing the requircment that the double sum over (Dj** — D3~")/28¢ must
vanish. Examination of eq (30) below for D} shows that it has been chosen so that its double sum over all
mesh points vanishes. and that the eondition which must be satisficd to allow this choice produces eq (31)
below for the mean pressure. Therefore, the singular linear algebraie system is seen to be consistent and
thus to allow a solution. The solution is unique by noting that the double sum over all mesh points of 57 must
be zero.

At each time step it is necessary to ealeulate the solution of the linear algebraic system for the pressure,
eqs (26) with boundary conditions (28) incorporated. The method of solution must take into account non-
uniqueness of the algebraic system. The solution method must also be able to solve large linear sysiems
accurately, sinee there are /J equations and cumulative errors from many time steps may destroy the com-
putation. Finally, it is very important that the solution be obtained quiekly since the calculation is made at
each time step, and hundreds of time stecps must be taken.

The solution method we have adopted is a hybrid method which eombines an iterative algorithm, eonjugate
gradients, with a fasi dircet Poisson solver. The eonjugate gradients algorithm provides an iterative technique
for solving the linear algebraic system of equations. Details of the algorithm are presented in reference [7].

The heat source has been chosen to have the form

i = ng" (29a)
B 2
Q; = (;) N exp [~ Bl —2)* — Ay (29b)
% = (i—1/2)dx , y, = (—1/2)%y (29¢)
Jf* = @, tanh Ar® (29d})
n—1
=0, " = E Ll (29¢)

Henee, the diserete divergenee of the velocity field becomes

1 )
Dy = — [{(y-1)0;—K]f (30a)
'YpD
-1& 34 4
K = “’T >0, (30b)
i=1=1

and the mean background pressure is found from the difference equation
P = poml + Kpose 8D

with p® = p! = 1 since f* = 0.
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The linear stability of the algorithm is the only other eonsideration for diseussion. A linear stability analysis
of eq (18) for the density shows that the time step 8¢ must satisfy the following condition for stability

‘U“‘ ‘V"‘ 24 =172
8 < max {(Dp? + |+ D& (32)
1sest &x Sy
1=y
where
Up = (U2 + ufyy) (33a)
Vi = (L2)(w} + oF5_1) (33b)

When the stability eondition, eq (32), is not satisfied by a time step, the time step 8¢ is halved. Then the
time-marching algorithm is restarted using the last time-level values as initial eonditions. A first-order time
step is taken and then leap-frog is resumed.

A linear stability analysis of the difference equation for the vorticity, eq (21), yields exactly the same form
for the stability criterion as that found above for the density equation. Reference to figure 2b shows that the
density and vorticity are evaluated at different points in the mesh, however, and therefore, the divergence D
and the velocity components I/ and V are to be evaluated at different points than those used in eq (32). To
account for the difference in the stability criterion implied above, in all calculations performed using the
algorithm deseribed above, the time step was chosen o be less than or equal to 0.8 the maximum value
found for the right hand side of eq (32).

2.2.2. Lanczos Smoothing

The nonlincar nature of the equations of fluid dynamics implies that initially smooth data will, in general,
produee flow fields with fine structure. Since the results presented are for finite diffcrence computations, the
resolution of the flow field is limited by the grid size used to perform the computation: structures of a size
comparable to a few grid cells can be resolved, whereas smaller structures may represent artifacts of the
calculations. In addition, in the computations it has been found that the calculation will eventually fail because
of the intricate detail (and sharp gradicnts this detail represents) if the number of time steps becomes large
cnough.

It is for thesc reasons that various methods of smoothing data generated by the computations have been
cxamined. In the method presented here, the computation is stopped periodically, with a period specified as
input to the computation, and the data are smoothed spatiatly. The computation is restarted using the smoothed
data as initial conditions, the results not being allowed o develop the intricate detail it might otherwise
develop. The method used to smooth the data is a variation of one suggested by Lanczos in reference [8].
Using this method with a relatively long smoothing peried, computations have been extended indefinitely.

The smoothing used here is that proposed by Lanczos, but is modified slighily for our purposes. In reference
[8], the smoothed data is obtained from the value of the data at each point by adding a specified multiple
of the fourth difference at that point. The change in value between the smoothed and unsmoothed data then
is of order h* where h = 1/J and [ is the number of mesh points in one direction in space.

Since the computational scheme described here is only second order accurate in the spatial mesh size,
0(h?), a less refined smoothing was used. The smoothing is accomplished by adding a specific multiple of
the second-order difference at the point to the value of the datum at that point and is 0(h%). When the method
is generalized lo two dimensions, it becomes equivalent to adding one fifth of the finite difference, five-point
Laplacian to the value of the datum at each point to obtain the smoothed datum. (This is also equivalent to
replacing the value at a point by the average of its value and the values of its four nearest neighbors.)

Therefore, after a specified number of time steps m, the dengity and vorticity data at time level m are
changed according to the following prescription:
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1
Pi < PF o (R Py, PRy el — 4pF) (34a)

+ ool + ool — dw? (34b)

1
Wy oy + 3 (ot + Wiy,

At the boundaries, the following rules are used for the smoothing. For cells adjacent to boundaries, the density
is assumed to have the same value in a ficticious cell outside the boundary as its value in the cell under
consideration. (This is the difference equivalent of saying that the normal derivative of the density at a
boundary is zero.) The vorticity is taken to be zero on the boundary, and represents a free slip boundary
condition,

A rough estimate of an equivalent Reynolds number or Grashof number introduced by smoothing can be
made by the following argument. The effect of viscosity in the vorticity equation in the Boussinesq approx-

. 1 .
imation arises, when the equations are made dimensionless in an appropriate way, as e V2w, where Re is
e

the Reynolds number, V2 is the Laplacian and w is the vorticity. The average effect per time step of Lanczos
2

ch . .
smoothing in the vorticity equation can also be represented as ry V2w where ¢ is a constant of order unity,
m

9 is the time step, & is the mesh spacing, m is the number of steps between smoothings and V2 is the
discretized, five-point representation of the Laplacian. Equating the coefficients of the Laplacian operators
provides an estimate of the Reynolds number introduced by smoothing:

where f and J are the number of mesh points in each direction. Takinge = 1,8 = 0.1, m = 40,1 -] =
1000, then Re = 4 x 10?, and noting that the Grashof number (r is approximately the Reynolds number
squared, &r = 1.6 X 107,

3. Computational Results

As discussed in the Introduction, the vorticity, stream-function algorithm and a code implementing this
algorithm were developed as a method for solving the partial differential cquations derived in reference [1].
The other method for solving these equations, a finite difference methed for directly integrating the equations
of motion in primitive variables (density, pressure and the two components of velocity) was described in
reference [2]. Reference [3] describes comparisons of the results computed using the primitive variable
algorithm with analytical results obtained in special cases. These comparisons were performed to test the
algorithm and the computer-code implementation. Final comparisons were made between results computed
using the primitive variables code and those eomputed using the vorticity, stream-function code. Agreement
between results was found to about five significant figures after a few time steps and to between three and
four significant figures after hundreds of time steps. The diserepancy between results is smaller than the
errors introduced by diseretization for the mesh sizes used and well below differences which eould be observed
by plotting.

In this section some computational results are presented and discussed. The density, pressure and vorticity
are sealar functions of the horizontal and vertical coordinates at any specified time. We have found that
contours of eonstant value of any of these scalar quantities are a convenient way to display them. Since the
temperature and density are inversely related at any particular time, eontours of eonstant density are also
contours of eonstant temperature.

All contour plots were preparcd from & graphics package developed by the National Center for Atmospheric
Researeh. The numbers indicating contour values are relative only. Solid lines represent values of the variable
greater than zero and dashed lines represent values less than zero. For the resulis presented here, density
and temperature are inversely related: eontours of constant density have been labeled as contours of constant
temperatures for illustration. Therefore, for the temperature plots, temperature contours above a reference
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value appear dashed and below that reference are solid. Graphic details on the scale of a mesh cell, which
is determined by the distance between fiducial marks on the sides of the plots, should be ignored.

All computations have been performed on onc of three computers, the NBS UNIVAC 1108, the U.S.
Treasury UNIVAC 1100/81 or the Cybernet Cyber 175. The computations require about 45K words of storage
for the 31 X 31 mesh and were performed on any one of the three machines. Typical running times on the
1108, which is the machine most frequently used, is about 30 to 45 min of CPU time for 200 to 300 time
steps.

In figure 3 contours of constant temperature (isotherms) are shown at four dimensionless times for a
volumetric heat source centcred along the floor in a square room. The rate of heat added per unit volume is
largest along the floor at the center of the room and decreases in a Gaussian fashion with horizontal distance
from the center and exponentially with height above the floor. The heat source is “turned-on” as a hyperbelic
tangent with respect to time asymptoting to full strength around ¢ = 1.0. (Note that T denotes time on the
figure titles.) At the first time, ¢ = 2, the problem is still linear; the flow velocities are sufficiently small
than convection is unimportant, and the temperature increase in the fluid is directly proportional to the
volumetric rate of heat added. Therefore, the isotherms are also contours along which the volumetric heat-
addition rate is constant. (These contours are found to be parabolas.)

These computations were performed on a spatial mesh having 31 cells in the horizontal and 31 cells in
the vertical directions; the tick marks along the boundary of the enclosure show the mesh cell spacing.

At time 8.5, the second frame of figure 3, a buoyant thermal has developed, giving the appearance of a
mushroom cloud. The buoyant thermal intensifies in strength until the thermal hits the ceiling, as shown in
the third frame, ¢ = 11.5 and begins to spread. Inside the plume a distinctly periodic structure has begun
to develop, as can bc seen vividly in this frame; here, progressing up the plume along its centerline, one
finds a local low first, then a periodic sequence of local highs and lows up to about the center of the head
of the thermal.

The heated gases spread along the ceiling and fill the room from the top down, as shewn in the last frame
of fizure 3 at ¢ = 14.5. This physical behavier is exactly what is observed in rcom-fire tests and in other
experimental observations of heating in enclosures. The symmetry about the centerline of the room displayed
in these computations is some measure of the accuracy with which they were performed: the heat sourcc is
placed symmetrically, but the computations were performed as if no symmetry existed.

In figure 4 contours of constant verticity at various times are displayed. The contours show an anti-symmetry
about the centcrline, as would be expected for the vorticity, and the physical features described for the density
(or temperature) contours are reflected in the vorticity plots. Because the vorticity represents a higher order
differcnce of the dependent variables, these contours display more fine scale (on the mesh scale) features
than the density contours. Also, later in the computations, “noise” of a nonsymmetric and fine scale begins
to show up. The vorticity plots are not as “smooth” as those of the density (or temperature).

In the first frame of figure 4 at time 2.0, early in the heating process, two vortices of equal magnitude and
opposite sign develop with centers in the regions of steepest gradient of the heat source. Convection has
begun by dimensionless time ¢ = 8.5, frame 2 of figure 4, and the vortices are pinched together and buoyed
upward off the floor. The vortices are convected toward the ceiling. Also vorticity of periodically varying
strength is generated within the source region and the strength of the vortieity increases with distance above
the source. Finally, frames 3 and 4 of figure 4 show that the periodically varying vorticity trains split when
the ceiling is encountered and form two large regions of vorticity of opposite sign.

The pressure as a function of horizontal and vertical coordinates at any specified time can also be displayed.
In figure 5 contours of constant pressure at four times during the room filling are shown. This pressure actually
represents only the spatial variation of the pressure and has been normalized at each time so that its mean
value is zero. This is the quantity which, together with buoyancy, induces the flow. As with the other contour
plots, solid lines represent contours with values greater than zere and dashed lines indicate values less than
zero. The pressure plots are secn to be smoother than those of density (temperature).

Early, the first frame at ¢ = 0.5 of figure 5, the pressure is highest at the source, where heating takes
place. As convection starts, the high pressure region is lifted off the floor, time t = 2.0: a significant enough
convective velocity has developed by dimensionless time ¢ = 2.0, that a low pressure region due to a Bermoulli
effect can bc seen at the floor. This low pressure region is associated with the high convective velocities, or
the vorticity pair shown in figure 4. The low pressure region develops a double minimum, symmetric about
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the room centerline as seen at time B.5 and rises to the eciling, as shown in figure 5, time 11.5, where a
strong compression develops at the center of the ceiling. The final pressure diagram displays the double
minimurm, associated with the strong vortex pair and high temperature shown in figures 3 and 4, scparating
and moving toward the walls.

In figures 6 and 7 contours of constant potential ¢ and constant stream funetion s are shown. Only one
plot of the potential is shown because the spatial dependence does not change with time: the potential function
is separable in space and time. Four frames of stream function are shown in figure 7. The stream function
is antisymmetrical about the centerline and displays a peak and a valley which slowly risc toward the ceiling.
The stream function is rather smooth. showing only a slightly wavy behavior at later times.
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FIGURE, 6. Velocity-potential conlonrs al dimensionless lime, T = 1.0 for
the caleulation displayed in figures 3-5. The potential function is a function
of space times a funclion of time; therefore, the spalial dependence does
not change with time,

The base computation, shown in figures 3-7, was repeated several times with smoothing introduced at
diffcrent numbers of time steps. Figures 8 and 9 compare constant temperature contours at dimensionless
time 11.5 and 14.5 respeetively determined by the base eomputation, on the upper left, and by three levels
of smoothing in the other three plots of each figure. 1t is seen that the fine structure is eliminated by smoothing,
but large scale features are still retained. In figure 8 four plots of constant temperature contours at approximately
the same time are compared. The plot in the upper left hand corner is the unsmoothed computation. The
plot at the upper right is the result of the computation smoothed only once up until that time, after N = 160
time steps. The next plot, lower left, is from a computation smoothed every 80 time steps, that in the lower
right is from a computation smoothed every 40 time steps. Figure 9 shows a similar comparison of the effects
of smoothing, but at approximately ¢ = 14.5. These plots show clearly the loss in detail with increasing
frequency of smoothing or inereased simulated viscosity. They also show that the buoyant plume rise slows
due to the decreasing gradients. The smoothing and loss of fine-scale detail with incrcased frequency of
smoothing are apparcnt, and, in fact, these results appear much closer qualitatively to results obtained in
previous studies which integrated the Navier-Stokes equations by finite difference techniques (for example,
reference [9], figures 4 and 3).
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FIGURE 8. Isothermns at approximately the same dimensionless time, T, with Lanczos smoothing applied at different frequencies. The frame in the upper
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